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1. Introduction

Elementary textbooks frequently give the impression that lines drawn parallel
to a least squares linear regression at a distance, measured in the direction of the
dependent variable, equal to the standard error of estimate will include about 68
per cent of future observations from the same population, that lines at a distance
equal to three times the standard error of estimate will include 99.7 per cent, and
so forth.

More specifically, let y be a normally distributed random variable whose vari-
ance is ¢® and whose mean y is a linear function of a second variable, x:

(1) v=a+ Bx.

From a sample of NV independent observations, (x;, y;), maximum likelihood esti-
mates of a and g8 are:
(2) a=73— bk,
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where j = 2 y/N, & = z x/N, and the summations, like all that follow in this

paper, run over all NV values of x or y. Then the estimated mean ¥ of y for any
value of x is given by the regression line

(4) VY=a+4bx.

3) b=

The estimate of o, called the standard error of estimate and sometimes denoted
by s,.., is given by

L 2 0-D BNy (=D —7)
s?= = :

5
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In these terms, the implication often given by elementary textbooks is that,
whatever ¥ and s may be,

(6) A=Pr(Y+Ks>y>Y —Ks)=¢
where K, is that number which a unit normal deviate exceeds in absolute value
with probability 1 — ¢; that is, K. is defined by
1 +K,
. —t2207 —
) \/Zw[& e/l =,
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¢ being between 0 and 1. But since 4, through ¥ and s, is a function of the .V ran-
dom observations (x;, y,), and is therefore a random variable, it is clear that neither
(6) nor any statement which puts 4 equal to a constant can be correct. A correct
statement analogous to (6) could, of course, be made by replacing the sample sta-
tistics a, b, and s by the population parameters a, 8, and o:

(8) Pry+Ko>y>y¢y— Keo) = €.

The error underlying (6) is one whose persistence is surprising, considering that
this year marks a full quarter of a century since the appearance of Fisher’s Sta-
tistical Methods for Research Workers, which so strongly emphasizes the necessity
of distinguishing clearly between population parameters and sample estimates
of them.

Pairs of limits within which a specified- proportion of the observations in some
population may be expected to lie have come to be called tolerance limits, follow-
ing Shewhart,! though I prefer the term folerance intervais if both limits are finite.
It is clear that when such intervals are estimated on the basis of a random sample
the proportion included is a random variable, and the most that can be asserted
is something about the distribution of this random variable, for example, that
there is a certain probability of including at least a specified proportion of the pop-
ulatign. Thus, if

(9) A=Pr(Y+ks>y>Y —ks)
where & is some constant, the most we can hope is to select & in such a way that
(10) Pr(d z P)=+«

where v is a specified confidence coefficient and P is the proportion of the popula-
tion we desire to include within the interval.

2. The Wald-Wolfowitz approximation

Wald and Wolfowitz [7] have shown how values of 2 may be determined to an
extremely good approximation when P and v are specified. Bowker [1] has given
an approximation to their formula which simplifies computations, and he has pro-
vided [2] an extensive table of values of %, called tolerance factors, for the case of
a simple normal population,? that is, the situation analogous to (1) but with 8
known to be zero.

This case, in which a random sample of IV is drawn from a single normal popula-
tion of unknown mean and variance, is the only one considered by Wald and Wolfo-
witz, but it is a simple matter to extend their results to cover any normally dis-
tributed variable for whose mean we have a normally distributed estimate with
variance ¢?/N’ and for whose variance we have an estimate independently dis-
tributed as o%x?/n for n degrees of freedom. We shall call N’ the effective number of
observations; thus, the effective number of observations for a certain statistic is that

1 Bowker [2] discusses the meaning of this term, contrasts tolerance limits with various other
limits commonly estimated in statistics, and gives a good bibliography on tolerance limits.

2 Bowker’s table [2] shows tolerance factors to 3 decimal places for P = 0.75, 0.90, 0.95, 0.99
and 0.999; v = 0.75, 0.90, 0.95 and 0.99; and N = 2(1)102(2)180(5)300(10)400(25) 750(50) 1000.
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number which, when divided into the variance of an observation, gives the vari-
ance of the statistic.

Without assuming any connection between N’ and », the Wald-Wolfowitz deri-
vation of tolerance factors may be carried through with negligible alterations. For
expository purposes, we summarize the derivation, referring those interested in
more detail to the original paper [7]. The summary will be in general terms and we
will return later to the case of linear regression as an application.

Given a statistic Z having the following characteristics:

(i) It is normally distributed,

(ii) Itsexpected value ¢ is regarded as the mean of a normal population of un-
known variance o2,

(iii) It hassampling variance ¢2/N’, where N’ is known,
and given an independent estimate s? of ¢% which is distributed as o?x2/n for # de-
grees of freedom, the problem is to find that value of & for which

(11) Pr(Az P) =1«

where v is the required confidence coefficient, P is the proportion of the popula-
tion required to be included within the interval Z + ks, and A4 is the proportion
of the population actually included in a given interval:

1 Z+ks
_———— —(Z—%)/2?
(12) 4 M/waz_h ¢ ds.

The distribution of 4 is clearly independent of ¢ and o, since ¢ merely deter-
mines the point about which Z will be distributed and the sampling variance of s is
proportional to ¢; so we may without loss of generality take { = Oand ¢ = 1 in
our further computations.

The probability of A’s exceedlng P depends on P, k, N, and #u; to emphasize
the dependence on P and % for given N’ and #, we write

(13) F(P, k)= Pr(A = P).

Also, we denote the conditional probability of A’s exceeding P for a particular
value of Z by F(P, k|2).

If F(P, k|Z) is known, F(P, k) may be found by forming the product
F(P, k|Z)-V'N'/2x exp (—3N'Z2)dZ, representing the probability that Z will lie
in a particular internal of length dZ and A4 will exceed P, and integrating out Z; the
result is, of course, also equal to the expectation of F(P, k|Z), since the random
variable F(P, k| Z) has been multiplied by its probablhty density and integrated.
In other words,

(14) F(P, k) =\/§’7—: [:F(P, E|Z) e=N'21dZ =EF (P, k|Z).

F(P, k) can be approximated, therefore, by expanding F(P, k|Z) in a Taylor’s
series and taking expectations. (Wald and Wolfowitz have verified the validity of
the Taylor’s expansion.)

Since F(P, k| Z) is an even function of Z, its odd derivatives are zero, and the
Taylor’s expansion about Z = 0 is R

a d
(15) F(P, k|Z) =F (P, klo)+2laz2+4! a7
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all derivatives to be evaluated at Z = 0. Taking expectations, we find

(16) F(P, k) =EF (P, k|2)
‘ _ 1 9% 1 9F
=F P k0 + o35 57+ 57 5
since the second and fourth moments of Z, which is normally distributed with
mean 0 and variance 1/N’, are 1/N’ and 3/N", respectively.

On comparing the right hand sides of (15) and (16), we see that (15) will be-
come identical with (16), except for terms involving the second and higher even

powers of 1/N’, if in (15) we set Z = 1/V/N’; that is,
1
’ (b, 41 =i)~r o, b0

+ ...

Unpublished calculations made at the Statistical Research Group, Columbia Uni-
versity in 1945 indicated, according to my recollection, that the approximation is
remarkably good even for N’ as small as 2, at least within the range of P and ¥
likely to be used in practice and with » = N’ — 1, N’ = 2 being the smallest value
tested.

3. Comments on the approximation

We digress to comment on this result before turning to its application to regres-
sion functions.

Consider a normal distribution with zero mean; and consider an interval de-
termined by two random, independent components, the location of its center, Z,
the mean of which is zero, and its length, 2ks, & being a constant.

First, we will assume that s has some particular value, and consider the effects of
random variations in Z on 4, the proportion of the normal distribution included in
the interval. The maximum value of 4 will occur if Z coincides with the origin.
If Z is negative, less is included in 4 from above the origin than for the maximizing
interval, byt this is partly (but not fully) compensated for by the inclusion of more
from below the origin than for the maximizing interval. Similarly, if Z is positive,
less is included from below the origin than in the maximizing interval, but this is
partly compensated for by the inclusion of more from above the origin. The com-
pensation will be particularly effective if the interval is long enough (that is, if ks
is large enough relative to ) so that both ends of the interval fall in the flat tail-
portions of the normal curve. Thus, 4 is relatively stable with respect to fluctua-
tions in Z, and it turns out that in calculations concerning A we will not do badly
if we assume that Z always has a value for which 4 takes approximately its aver-
age value, and then ignore sampling fluctuations in Z. The possibility of doing this
successfully depends, of course, upon the proper value of Z not being too sensitive
to the interval length.

With respect to variations in the length of the interval, caused by sampling
fluctuations in s, there is no such compensation, but rather a reinforcement. As-
sume that Z has some particular value and consider the effects on 4 of variations
in 5. The smaller s, the less is included in the interval from above Z and the less
is included from below Z. Thus, 4 is relatively sensitive to variations in s, so sam-
pling fluctuations in s must be taken into account.
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4, Calculation of tolerance factors

To evaluate F(P, k|1/V N, Wald and Wolfowitz point out that there is a
unique value r such that

1 VN +r
(18) 5= e "/2dt =P
V2r fl/ﬁv‘r—r

since the left side is a monotonic increasing function of r. This r, of course, corre-

sponds with the half length ks of an interval centered at 1/ V' N’ for which 4 = P,
and our problem is to select & large enough, in the light of the sampling distribu-
tion of 5, to make the probability vy that ks will be at least r. Thus,

(19) F(P,k|v%)=pr(sg%)

2
since x2(#) = ns*/¢* and here ¢ = 1. This probability can be found from tables of
the chi-square distribution [6], after first finding 7 from tables of the normal distri-
bution [4].

If we are given P and v, and require the appropriate %, we solve for £ in

(20) X2 (n) =%'2—2

where x2(n) is that number which x? for # degrees of freedom has probability v of
exceeding; that is,

n
(21) ) k=r W.

Bowker {1] has given the following approximation to » which for many practical
purposes is satisfactory enough if N' = 1:

1 2Kp-3

(22) r=Ke (14— 54w

where Kp is that number which a unit normal deviate has probability 1 — P of
exceeding in absolute value, as defined by (7).

Wilson and Hilferty {9] have given implicitly the following approximation to
x2(n), which is satisfactory for » = 3:?

(23) X (n) =n[1—92—n+K1_2-,\/%]3.

If v < %, replace K;_2y by — K3y
3For n = 1 and n = 2 the following exact formulas are simpler than the approximation:

xy(1) =Ki, and x3(2) = —2log.y.
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5. Application to linear regression

To calculate the Wald-Wolfowitz tolerance intervals for a linear regression line
as specified by (4), we note that the variance of ¥ for any value of % is given by
the Working-Hotelling formula [10]:

24) S k2
0, =05 pessa———
Y [N E(x_x)g]

Hence, the effective number of observations for any value of x is

N (x—2)?

(25) : N’ = :
D (x—&) 2+ N(x—2&)*

That is, for any value of x the mean value of y is determined as accurately from the
regression line as if N’ observations had been made at that value of x. Also, we
haven = N — 2.

Thus, to find an interval within which we can assert with confidence coefficient
that at least a proportion P of the population lies, we select some value of x and

from it compute N’ by (25), using the values of N and 2 (x — %)% obtained in the

sample. Then either a table of the normal distribution [4] or (22) is used to find 7, if
(22) is used it is more convenient to use /K p at this point. Next, x2(») is found,
either from a table of the chi-square distribution [6] or from (23), and the square
root of » times its reciprocal is computed—the square root being multiplied by K»
if 7/ K p instead of 7 was used in the preceding step. Now we can obtain % by multi-
plying r by Vn/x%(n) or r/K» by K »V'n/x%(n). This is the tolerance factor k. The
product of % by s [the standard error of estimate as given by (5)] is added to and
subtracted from ¥ [as given in (4)] to obtain the tolerance interval.

Table I presents the details of a specific calculation, taking P = 0.90 and v =
0.95; and figure 1 charts the interval, together with the original data, the regres-
sion line, the 95 per cent confidence interval for the regression line, and lines 1.64s
on either side of the regression line.

6. Conclusion

In conclusion, attention may be called briefly to three points:

(1) Linear regression obviously represents only one of a large class of problems to
which the Wald-Wolfowitz method of finding tolerance intervals can be extended.
In general, it can be used to find tolerance intervals for any normal population for
which we have a normally distributed estimate of the mean and know the ratio
between the variance of this estimate and the variance of the population, and also
have an independent estimate of the variance of the population which is distributed
as ?x2/n with n degrees of freedom. The only limitation is that when the effective
number of observations is too small the Wald-Wolfowitz approximations may not
be sufficiently accurate. It seems doubtful that such intervals should be computed
when the effective number of observations is less than 1, though this is a matter
meriting further investigation.
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(2) All of the preceding discussion has dealt with two sided tolerance intervals,
whereas we may frequently be interested in one sided tolerance limsits. In this case,
the intuitive argument of section 3 for disregarding sampling fluctuations in & and
allowing only for their average effect breaks down; and the mathematical argument

TABLE I

LINEAR REGRESSION TOLERANCE INTERVALS: ILLUSTRATION
Average price of common stock and earnings per share, twelve chemical manufacturers, 1935.
From Brumbaugh and Kellogg [3, p. 710].
x = earnings, 4y = price, N =12, x =443
V = 1159 4+ 16.63x;  s,. = 14.58; Z (x — %)? = 52.76
Take P = 0.90, v = 0.95.
Then Kp = 1.64485, K% = 270554, x3(10) = 3.94030, KoV n/x3 (n) = 2.6204,

1 (x — 4.43)2 See r 11.594

12T 5276 Note 2620457 1458k o s,
. /N’ r/Kp k ks v Y—ks Ytk
— 2.52 1.0000 1.3889 3.639 53.06 — 30.32 — 83.38 22.74
0 0.4553 1.2033 3.153 45.97 11.59 — 34.38 57.56
3 0.1221 1.0595 2.776 40.47 61.48 21.01 101.95
4.43 0.0833 1.0410 2.728 39.77 85.25 45.48 125.02
6 0.1301 1.0633 2.786 40.62 111.37 70.75 151.99
9 0.4792, 1.2127 3.178 46.34 161.26 114.92 207.60
11.38 1.0000 1.3889 3.639 53.06 200.84 147.78 253.90

Note: Values in the third column, representing /K p, have been found from the WPA normal probability tables
[4]. Using the approximation (22) for r, the three central values would be unchanged, but the first two and last two'would
be 1.3995, 1.2068, 1.2165, and 1.3995, which would not have altered the results appreciably. Formula (22) becomes, in
this case, /K, = 1+ 0.5(1/N’) — 0.1005(1/N")?, since (2K} — 3)/24 = 0.1005.

of section 2 yields only an approximation of order 1/N’ instead of 1/N%, for
F(P, k| Z) is no longer an even function of Z. The following approximate formula
for an upper tolerance limit* is based on the assumption that Z + ks is normally
distributed with mean ¢ + ko and variance o>(1/N' 4 £*/2n):

(26) U=Z+2 (Kip-1+ VEip1— ab)
where
. ng—l
(27) a=1— 2n
K2
(28) b=Kip1——55 -

If P < %, replace K2p_1 by —Ky_sp; similarly if ¥ < 3. For a lower limit, L, the
sign between the two terms of the right hand side of (26) would be negative. If
formula (26) is applied to the data of table I to obtain an upper 95 per cent toler-
ance limit with confidence coefficient 0.95, the last four tolerance factors (fourth
column) become 2,768, 2.849, 3.312, and 3.804. The last factor, for which N’ = 1,
is about 4% per cent higher than that shown in table I for the 90 per cent tolerance

4 Compare Wallis [8, p. 47, formula 91].
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intervals with the same confidence coefficient; when N’ > 1, the discrepancy
is less.

(3) Tolerance intervals or tolerance limits may be used to test the hypothesis
that further observations are from the same population as an initial sample. That
is, the limits would be computed from an initial sample, and each additional ob-
servation would be regarded as from the same population if it fell within the
limits. Marshall [5] has investigated the power of such a test procedure; as might
be expected, the power is rather low.
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FIGURE 1

Linear regression tolerance intervals: Illustration
Average price of common stock and earnings per share, twelve chemical manufacturers, 1935.
(From Brumbaugh and Kellogg [3].)

emmmemmmw [ inear regression of price on earnings, ¥ = 11.59 4 16.63x
= "¢ 95% confidence interval for regression line

o= 909, tolerance interval, confidence coefficient 95%

Zone 1.64 s, » on each side of regression line, s, » = 14.58
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