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1. Introduction

A set of distributions advanced here generalizes to more than one dimension the
analysis of variance of R. A. Fisher, which is itself a generalization including sev-
eral simpler tests as special cases. The first of these, a generalization of the Student
distribution to p dimensions, was introduced in 1931, and provides a test of sig-
nificance for discriminant functions. The others developed initially in connection
with a wartime problem of air testing sample bombsights, which led to a recon-
sideration of the whole problem of measuring ballistic dispersion. The statistical
tests found efficient for these purposes were then seen to be suitable for a variety
of industrial quality control and sampling inspection problems, particularly those
involving multiple measurements, as on complicated and expensive assemblies and
performance tests. These statistical methods are also related to certain procedures
developed in India in connection with anthropometric investigations.

Of the bombsight report [9] the larger and less mathematical part has now been
published [11]; this published work gives details regarding certain applications of
the sampling distributions for which the fundamental mathematics, originally
written as appendices to the bombsight report, appears publicly for the first time
in the last three sections of this paper.

The multivariate generalization of the analysis of variance is not uniquely con-
fined to the distributions here considered. In passing from one to a plurality of
dimensions the variety of null hypotheses of interest is greatly multiplied, and the

Completion of this investigation was aided by the Office of Naval Research under Project
NR-042 031 for research in multivariate analysis at Chape! Hill. Preliminary versions were em-
bodied in two appendices of a report [9] prepared during the war, in a paper presented at a meeting
of the Institute of Mathematical Statistics at Atlantic City, January 25, 1947, and in an ab-
stract [10].
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relevant families of alternatives are multiplied still more. The statistics considered
in this paper are proportional to sums of roots of determinantal equations of the
form

[S1— ASe] =0,

where S; and S are independent sample matrices estimating the same covariance
matrix in a normal population. As such they generalize the well known ratio F of
independent sample variances. They are invariants under arbitrary linear trans-
formations of the variates, and this fact is of great significance, both in actually
determining their distribution in readily calculable form in certain cases, and in
showing, in all cases, just what parameters enter into the distributions. But the
roots themselves and all functions of them are also invariants, and offer possibilities
for statistical tests of still other varieties, whose properties need further explora-
tion. The statistics here denoted generically by T are, for reasons that will appear
in the course of the paper, seemingly the most suitable for certain classes of appli-
cations. The elimination from use for comparisons of ballistic accuracy of one im-
portant statistic, the ratio of determinants |Si]/|Se|, which equals the product
of the roots, has already been discussed [11, p. 166].

2. Generalized Student ratios and discriminant functions

The Fisher-Student ¢-tests for the significance of means, differences of means,
and other linear functions of observations on a single variate, were generalized in
1931 [6], [26], [15, p. 235 fi.] to make possible combined tests based on two or more
variates which may or may not be independent. An important feature of these tests
is that they yield exact probabilities independent of unknown parameters. A large
category of such tests, corresponding to the many uses of ¢ introduced by Fisher as
extensions of Student’s work, may be summarized as follows:

Let xy, . . . , x, be normally correlated variates, and in a random sample of N
individuals let x;. be the value of x; for the a-th individual. Let [s;;] be a matrix of
unbiased estimates of the covariances among the x; with » degrees of freedom, and
having essentially the Wishart distribution. The conditions of the particular test
to be made lead to the values of constants ay, . . . , @y, €1, - . . , ¢y such that the p
statistics

2; = S¢a (®ia — @)

have the same distribution as x;, . . ., %, independently of the s;;. (Following

Fisher, we use S for summation over the sample, here from 1 to V,and Z for sum-

mation over the p variates.) Thus for testing the collective deviations of a set of
sample means from assigned numbers ¢; we have

1
Ca=N"12, n=N-1, s.-,-=;S(x,~u—£,-)(x,~a—a'c,-).
For testing whether the means of two independent samples of N, and V; individu-

als respectively differ significantly from each other we put N of the ¢, correspond-
ing to one sample and Nj corresponding to the other equal respectively to
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A’Vé/szlm (N1 + ‘\’72)_1/2 and —A\Y:_}/2A\’71_l/2(3\71 + 1\72)_1/2, while n = Nl + :\rg -2 y
nsi; = S (% — &) (50 — &) + 8" (%00 — &) (2ja — %),

where the sums are over the two samples and refer to products of deviations from
the respective sample means. The a; are all zero in this test.

Letting in general
(Vi) = [sal™,

we define T as the positive square root of

=3 S,
(»—2)2 T2
)%
= /2"
SR
The probability P that T should on the null hypothesis tested exceed that actually

found from the observations is the integral of this expression to infinity, and may
with the notation

and have for its distribution

T

M

be written in terms of the incomplete beta function [19]

The now familiar percentage points of the variance ratio distribution may also be
used to test T by putting
n— 1)1 :
F—L—I:;—;;t—) m=p, ne=n—p+1.
The case p = 1 yields the Student test.
The significance of the set of differences between corresponding means of two

samples is often judged by calculating a discriminant function Z kix;, where k; =

2 1,;j(#% — %), substituting for each x, the difference of its means in the two

samples, and comparing with a standard error in a way equivalent to an analysis
of variance with p and #» — p + 1 degrees of freedom. When carried out accurate-
ly, this procedure gives exactly the same final result as the 7-test, and is therefore
correct, since the T distribution has been derived rigorously in full detail. Argu-
ments of dubious validity are often given in support of this kind of ‘“‘analysis of
variance,” but the only real proof of its correctness is its equivalence with the
T-distribution, or by an argument paralleling that leading to it.

Discriminant functions are useful in assigning new individuals to one or another
of populations already distinguished from each other by the T-test or otherwise,
but are unnecessary where the sole object is to decide whether real differences
exist. This point was clarified by R. A. Fisher as early as 1938 [4], but has been
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overlooked by some recent writers who seem to have been unaware of the T test
and to have gone to unnecessary trouble with discriminant functions.

The probability of misclassification of a new individual by a discriminant func-
tion based on samples from two populations has been studied by Wald [24], who
employed a bilinear form with the same matrix [/;;] as 7% and reduced its distribu-
tion function to a triple integral.

Theorems on the efficiency of the T tests have been established by P. L. Hsu [13],
J. B. Simaika [23] and A. Wald [25], who have shown under various conditions
that no better test is possible. Daly [2] has shown these tests to be unbiased in the
Neyman-Pearson type A sense. .

David Durand applied 72 and discriminant functions in a study of criteria for
distinguishing good from bad applications for loans [3]. Durand not only gives in-
structive applications but develops additional details of technique, one of which
uses a theorem that for a particular set of observations T is never less when all
the variates are used than when only a subset of them is employed.

3. Figurative distance and coefficient of racial likeness

T may be employed not only for testing but also to estimate a population
parameter which may be called the “figurative distance.” In a Euclidean space
of p dimensions each individual defines a point, and the normal population is repre-
sented by a swarm of points having ellipsoidal symmetry. Two species may be
represented by two such ellipsoidal swarms. If the covariance matrix is the same
for the two species, a transformation of axes, usually oblique, exists which changes
the ellipsoids to spheres and transforms the covariance matrix into the identity
matrix. The squared distance between the centers of gravity of the two swarms is

then E E \:;8:8;, where 8, is the difference between the two population means of

the ¢-th variate and [\;;] is the inverse of the covariance matrix. If é;and A;; are
replaced by their sample estimates #; — &’ and ;; respectively, the result is
T2(NT! 4+ N3'), which is thus a sufficient statistic for estimating the squared figura-
tive distance. A distribution generalizing that above to take account of values of
this parameter possibly different from zero was derived by R. C. Bose and S. N.
Roy [1]. This distribution may be used to obtain confidence limits for the figura-
tive distance, to test hypotheses about it, and as a power function for the original
T-test.

The use of a multiple of T as a measure of ‘‘distance’’ was introduced by Maha-
lanobis [16], who was concerned about its probable variation when the number p of
variates measured is changed, and particularly about its limiting properties as p
increases. This is a difficult problem and strongly resembles that of psychologists
interested in the variations resulting from changes in a battery of tests designed to
measure a particular set of characters. No solution of these problems appears pos-
sible without reference to a theory of variates regarded as samples of a larger ag-
gregate of variates that might have been measured on the same population of in-
dividuals. Only a beginning has been made on such a theory {7, pp. 504-514].
Mahalanobis used the ‘‘distance” in connection with anthropometric measure-
ments to demonstrate that, contrary to the accepted rules, much intermarriage
has taken place among castes in Bengal.
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Karl Pearson’s “‘coefficient of racial likeness” [18], the sum of squares of the
ratios of the differences of means to the respective standard deviations, was de-
signed as a measure of what might be called distance between two populations,
but is unsuitable for practical use because its sampling distribution, which is still
undetermined, appears to involve a large number of nuisance parameters in such a
way as to make exact probability tests impossible. The sample value of this co-
efficient appears also to be an inefficient estimate of its population value because
it takes no account of correlations between the variates. Pearson was indeed aware
that without correlation terms his coefficient could not be ideal, and alluded to a
possible x* test as a substitute which he considered impractical for computational
reasons. It may perhaps be inferred from this remark that Pearson thought of
using T', the distribution of which, though then unknown, approaches that of x for
large samples, but was deterred by the labor of computing the inverse of the co-
variance matrix. This labor has now been greatly lightened by new iterative meth-
ods, better direct methods, and improved machines, and up to rather high values
of p may in the future be regarded as almost negligible in comparison with the cost
of obtaining the data.

In an endeavor to avoid the weakness of Pearson’s coefficient, Romanovsky [21]
introduced certain substitute statistics and derived exact distributions on the basis
of assumed independence among the variates. These sampling distributions may
be very much affected by correlations among the variates, and such correlations
are in fact very likely to exist. In using 7', on the other hand, one does not need
to know whether there are real correlations or not.

4. Approximate T distribution for large samples

The approach of the T distribution discussed above to that of x is easy to
demonstrate, either directly or through the fact that if [/,;] is replaced by [Ayj], to
which it converges in probability, the resulting statistic has the x2 distribution. A
method of approximation to the probability that T should be exceeded, using the
x* distribution and an asymptotic series in »~, has been given [12]. Writing

PHT 4= P4 (24 5p) T+ 8T
i L F 24n? +oof

~ we have for large values of # an approximation by the first few terms to a variate
having the x? distribution with p degrees of freedom.

Substituting for 72 in this formula a series of powers of #~! with undetermined
coefficients and then making the total coefficient of each power of #n! zero serves
to fix the coefficients and yield the series

pExE | T2 —44 (13p—2) x>+ 4x*
Pt + 27X+ Zdn? +..f.

Substituting on the right any percentage point of the x? distribution with p degrees
of freedom (for example, the value exceeded with probability .05) gives an approxi-
mation to the corresponding percentage point of the 72 distribution. It must be
remembered, however, that the series apparently diverge and that this method is
good only for large values of #.
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In the univariate case the formula

1:;’2-}-...%,

x~1 ; 1-
obtained in [12] as a means of relating ¢ to a normally distributed variate x, and
thus obviating to some extent tables of percentage points of #, may be obtained
from the first of the asymptotic formulae above by extracting the square root and
putting p = 1. Upon extracting the square root of the second asymptotic series
and putting p = 1 we have a series for percentage points of the Student distribu-
tion, the first two terms of which were obtained by A. M. Peiser [20] in a different
way.

6. Ballistic and quality control applications

A new use for T and certain generalizations of it arose during the war in the
study of ballistic dispersion, initially in relation to the measurement of accuracy
of test bombing for quality control purposes [9], [11]. Such dispersion is usually of
a type close to the normal distribution in two dimensions, and the dispersion of anti-
aircraft shells fired from a gun held in a fixed position can doubtless be approxi-
mated by the trivariate normal distribution.

Test bombing errors are expressed in terms of range error x1, measured in the
direction of flight of the airplane, and deflection error x; measured perpendicular
to this direction. On the basis of these measures a particular bomb—or the per-
sonnel, equipment or procedure used in dropping it—might be classified as defec-
tive. Such a decision would be based on extraordinarily large values (positive or
negative) of x; or x» or both. The question is, what combinations of x; and x; should
be taken as indicating that a bomb is defective? An answer to this question is
equivalent to delimiting an area around the target and regarding all bombs falling
within this area as of standard quality, while rejecting as defective all those falling
outside it. The problem is to find an area of suitable shape and size.

A first thought is that the appropriate region is a circle centered at the target.
Consideration must, however, be given to the fact that deflection errors are as a
rule distinctly larger than range errors, since the former include a substantial com-
ponent absent from the latter in that the course of the airplane may be too far to
the right or left and is not easily corrected in the last few seconds before the bomb
is dropped. There is also some indication of a small correlation between range and
deflection errors. The distribution of actual bombs dropped has, therefore, an
elliptical rather than a circular symmetry. If the covariance matrix, and therefore
its inverse A, are known, an ellipse of constant probability density is defined by

2 Z \ijxix; = constant , i,j=1,2.

If an ellipse of this family is chosen as the boundary of a region of acceptance such
that a definite proportion, say .99, of bombs will fall within it, it will overlap a circle
containing the same proportion of the bombs. The part of the elliptical region out-
side the circle has the same probability, and in the long run will receive the same
proportion of normal bombs, as the part of the circular region outside the ellipse.
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The density of probability for normal bombs is, however, greater in the portion of
the ellipse outside the circle than in the portion of the circle outside the ellipse, be-
cause of the way the ellipse was chosen. The density is indeed greater at every point
within the ellipse than at any point outside it. Since for any region

probability = (mean probability density) X (area) ,

the area of the part of the circle outside the ellipse must be greater than that of the
part of the ellipse outside the circle. Consequently, the whole circular region has
a greater area than the elliptical region.

Now if a bomb, or the bombsight used in dropping it, is for some reason abnor-
mal, while the chance factors remain the same as usual, the probability of the bomb
falling within either the circle or the ellipse is decreased. We cannot say exactly
how much it is decreased without knowing details regarding the nature of its ab-
normality which are not ordinarily available. The normal distribution with matrix
\ no longer holds, and we do not know precisely what is the distribution of abnor-
mal bombs. In this situation, a certain presumption exists that the larger area will
receive more of the abnormal bombs than the smaller area. Thus we may expect
the circular area, since it is the larger, to receive more abnormal bombs than the
elliptical area, though the proportions of normal bombs are equal. Since we call
only those bombs abnormal which fall outside the chosen region, the chance of
detecting abnormal bombs is likely to be greater for the elliptical than for the
circular region. ‘

An illustration of this situation would be an error creeping into the manufacture
of certain bombs which adds to each coordinate of the dropped bomb a normally
distributed error of zero mean and variance large in comparison with the variances
otherwise existing. To make the illustration more specific, though this is not essen-
tial to the argument, we may further suppose that the new errors introduced by
the manufacturing defect are independent of each other as well as of the old errors.
Moreover, let us consider them of equal variance in the two dimensions. Then if
these manufacturing errors were the only source of variance, the distribution of
the dropped bombs would have circular symmetry about the target. But it would
be quite wrong to use a circular region of acceptance. Since the variances are now
large, the probability density near the target of the abnormal bombs is substan-
tially constant, and the probability of an abnormal bomb falling into any region is
practically proportional to the area of that region. Since the circular acceptance
region has greater area than the elliptical region defined above, a greater propor-
tion of defective bombs will erroneously be accepted as normal when the circular
than when the elliptical region is used.

To apply this argument it is not necessary to confine oneself to defects producing
equal and independent variances in the two directions, nor having normal dis-
tributions, nor to circles as acceptance regions alternative to the ellipses defined
above. It is clear that as against a very extensive class of abnormal bombs (though
not all kinds of abnormality) the particular elliptical regions considered are the
most efficient possible means of discrimination between normal and abnormal
bombs. For precisely defined distributions of bombing deviations corresponding to
defects for which it is desired to reject bombs, it may be possible to devise better
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acceptance regions, but in the absence of exact knowledge of such distributions
the elliptical regions are to be preferred. The plausible circular regions are clearly
not the most efficient discriminators, even where as in the illustration above the
defects would by themselves and in the absence of other variation produce a circu-
lar distribution.

The statistic

P P
xt= E Nij%i%;
=1

i=1 1

was introduced by Karl Pearson [17] in 1900 as a criterion for deciding whether an
outlying individual belongs to a specified population, and was shown to have the
now well known x? distribution with p degrees of freedom for individuals actually
belonging to a normal population with zero means and covariance matrix A=, For
p = 2, the case appropriate to bombing, the distribution is particularly simple: the
probability that the particular value x? should be exceeded is ex/2. It is this sta-
tistic that commends itself, in accordance with the discussion above, as a means of
picking out abnormal bombs when the standard covariance matrix X! is known.

The only source of knowledge of the covariance matrix ordinarily available is
a record of observations, which in the case of acceptance bombing would mean a
record of coordinates of bombs dropped under conditions of altitude, visibility,
turbulence, etc., of a somewhat standardized character. Quality control plans start
in general from the record of some initial period, and undertake to determine
whether later production is as good as in the initial period. Let i, be the ¢-th co-
ordinate ( = 1, 2) of the a-th among N bombs dropped in the initial period. Then
the covariance o;; of x; and x; (where 7 and § may be the same or different; if they
are the same, the covariance is a variance) may be estimated by Sx;.x./N, or by
S(xie — %) (xja — %;)/ (N — 1), or by sums of products of deviations from corre-
sponding least-square regression values adjusted to take account of various ex-
traneous conditions. The first of these estimates is appropriate if the distribution
is clearly symmetrical about the target and the coordinates are measured from the
target as origin, but the second is safer because of the strong possibility of some
bias, and more refined adjustments may sometimes be needed. Let s;; be the esti-
mate adopted, and let # be the corresponding number of degrees of freedom, which
for the first of the estimates above is IV, and for the second is N — 1. If the choice
is made in a way suitably corresponding to the actual situation, the set of s;’s will
have the Wishart distribution. We shall speak of this initial set of bombs as the
old sample. In selecting the old sample, care should be taken to eliminate any bombs
known to be defective, and to insure that the bombing technique was of the same
standard type used later.

Let [I;;] be the inverse of the matrix [s;;] of covariance estimates derived from
the old sample, and therefore an estimate of the unknown matrix X = [o;]
Using /;; in place of \;; in the x? statistic for dealing with a new bomb yields the

statistic
T = 2 Z lijx.-xj .

This has the T2-distribution described in section 2 with p = 2, a case for which the
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distribution simplifies to

2
n—1)d L
n
TINGID2 "
2 (1+7

This is readily integrated to give as the probability that, for a bomb of standard
quality, the statistic should exceed the particular value,

2\ —(n—1) /2

(142 .
n

Suppose now that a sample of M bombs from a new lot are dropped, and that the

i-th coordinate (i = 1, 2) of the B-th bomb is ;5. The foregoing statistic for testing
the B-th bomb may be written

T} = E Z lijxipxip .

A combined over all test of the quality of the new lot is supplied by the statistic
=Ti1+T;+ ...+ Ti.

If the fundamental covariance matrix were known exactly we should instead use

for the single bomb
xk = E z NijX.B%;B ,

and for the whole new sample,

xt=xi+...+xk,
with the knowledge that, because of the well known additive property, x§ has the
standard x? distribution with 2M degrees of freedom.

Similarly, if p dimensions are measured in quality control and these have the
joint normal distribution and are measured from their means as origin, we have for
an individual article x% as given by the formula above, with the summations from
1 to p, and x3 as the sum of M values of x%. These statistics will have the standard
x? distribution with p and Mp degrees of freedom respectively. They must, how-
ever, in practice be replaced ordinarily by the statistics 7% and T3, whose distribu-
tion is different.

The centroid or mean point of impact (M PI) of the bombs in the new sample
is of considerable interest in itself, and so is the dispersion about the M PI. The

coordinates of the M PI are #; = S'x;s/M, where S’ denotes summation over the
new sample. Because of the identity

S'xipxip = S'(xip — %) (wip — &) + MzX;,
we may resolve xZ into components
xb = E ES')\ij(xm — %) (x;p — %)),
Xh = ME E N iZj
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which have independent x? distributions with Mp — p = 2(M — 1) and p = 2 de-
grees of freedom respectively; and

x3=xb+ xk.

In the same way the over all quality measure T2 may be resolved into com-
ponents

T = z ES'lu(xw — &) (¥ — &),
T =MD > SlsEa;,

of which the last has the 7% distribution described above, and the former has a
distribution which, with that of T3, will be investigated in the next section. We
have

Ti=T4+ Th.

Since Tyr and Tp depend on the same old sample they are not independent. How-
ever, their conditional distributions for a particular old sample are independent.

Control charts have been recommended and illustrated [9], [11] for Ty as a
means of detecting faults leading to abnormal mean points of impact, for Tp as
revealing dispersion about the MPI, for the means and standard deviations of
range and deflection separately, and for the over all measure Ty combining all
these into one number measuring the general accuracy. When the charts illustrat-
ing the method were first prepared the exact distributions of Ty and T» had not
been discovered, so that the control lines corresponding to the .01 and .05 prob-
abilities were fixed on the basis of the x? approximation. The resulting error in the
positions of these lines has been found to be appreciable since the discovery of the
exact distribution, though the number of degrees of freedom # for the old sample
was as large as 256. This emphasizes the importance of using the exact distribution,
which will next be derived for the case p = 2.

The distributions for > 2 are of a distinctly more complicated mathematical
type than for p = 2. Dorothy Morrow Gilford is preparing a study of the distribu-
tions for p > 2.

Further partitions of 7% or of x2, corresponding to the subdivision of sums of
squares into more than two parts in the familiar analysis of variance tables, may
yield much information, and call for no additional distributions. Thus these T" sta-
tistics may readily be adapted [9], [11] to examine variations due to day of flight,
personnel, bombing equipment, etc.

6. Distributions of the T statistics in two dimensions

If each coordinate of each of the M bombs in the new sample has zero expecta-
tion, the p(p + 1)/2 (= 3) statistics
S,i]. = A_l S’x,‘ijB

have jointly the Wishart distribution with M degrees of freedom. If these expecta-
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tions have any values, the same for all the bombs in the new sample, the statistics

=gy ' (2in = £ (230 — &)

have jointly the Wishart distribution with M — 1 degrees of freedom. To cover
simultaneously these and other cases, we use s7; to denote the sum over the new
sample of products of deviations of x;p and x;p from their respective regression
values upon a common set of independent variables, divided by the number of de-
grees of freedom, which we shall call m. If there is only a single set of independent
variables, and these always equal unity, the regression value is the mean, and the
last formula gives s¥; with m = M — 1. If the common set of independent vari-
ables is the null set, we have the first formula for s;;, with m = M.

Upon referring to the definitions of 7T'g and Tp in the preceding section we find
that in terms of the notation above,

\
T3=M> 3 Ly, Th= M — 1) 37 lsiy

From these relations it is clear that if the new sample is drawn independently from
the same normal population as the old, the distribution of T3 is of exactly the
same form as that of T¢ with M replaced by M — 1. We shali, therefore, investi-
gate, for a general value of m, the distribution of the general statistic

T = mz Zlij.f:"j ’

where the variates s}; have the Wishart distribution with m degrees of freedom.
For m = 1 the distribution reduces to that originally found for T2, which is the
same as that of 7% and T3. The family of distributions involves no parameters
but the three integers %, m and $ specifying respectively the numbers of degrees
of freedom in the old and the new samples and the dimensionality. We obtain here
the distributions for p = 2.

Let So = [s4j] , whence Sy = [/;;}, and let S; = [s%;] .

The trace of the matrix Sy'S;, that is, the sum of its principal diagonal elements,
is then T2/m, and we write

u =Ii= trace (S5 'Sy) .
m

Now the trace is the sum of the roots of the characteristic equation
[Sg1S1 — Al =0,

and therefore of the equation, which has the same roots,
| Sy — ASe| = 0.

The distribution of roots of such equations has been the subject of various in-
vestigations, with papers by S. N. Roy [22], P. L. Hsu [14] and R. A. Fisher [5] ap-
pearing simultaneously in 1939 with a joint distribution which may be written in
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terms of the roots Ay, A of the equation above when p = 2, m > 1and # > 2, in
the form
(NN2) (=372 (N1 — N2) AN,

Cmmnr [(n4+ mA) (4 mAy) ] (mim)/2?

where
(m+n=—2)!

C=tm=Dim =21

and A\; = \g = 0. From this the joint distribution of the sum and product of the

roots is found by putting
2

T
u—)\1+>\2=%, v = Az,
so that
dudy = (}\1 - kz)dkldXQ .
This gives
r Cmmury(m=3)/2dud v
(n2+ mnu + m2v) (mtm/2°

The distribution of # is found by integrating this with respect to » from 0 to
u?/4. Changing the variable of integration to

5= m?v
Tt muut m2o’
so that
_nlkmws G mw) ds
T mr(l-2z) - omr(l—2)?
and replacing # by T?/m gives the distribution of 7?2 in the form
712
Cd " T4/(2n+ T?)? ,
L f (=972 (1 — 5) *=D/2d 5.
()

The incomplete beta function

B.($, ) =f0’zp-1(1 — g aidg

has been tabulated in detail [19]. The integral appearing in the element of prob-
ability is of this form. Apart from this integral and a constant factor, the distri-
bution is the same as that obtained in 1931 for T2

The probability integral for T2 may be evaluated in the following manner. We
first observe that the factor of the element of probability before the integral sign
is the differential of

2C T2\ —(r—1)/2
n—1 (1 +7 )
Hence, if we put 72 = 2nw/(1 — w), this factor may be written

2C d /1 —w\=D/2
Trn—1dw\14w

W .

If P denotes the probability that T exceeds a positive value 77, then 1 — P is the
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probability that T < T, and is also the probability that w lies between 0 and
T
2n 4T

w’ w? d 1 —w\=-1)/2
—P = — (m—3)/2 - n-1/2 _( .~
1-P w=1J, fo 2 (1—2) dw(l+w) dzdw.

(We follow the convention that the inner differential goes with the inner integral
sign and corresponds to the first integration.) Reversing the order of integration
gives

wr?
1—-P=——"_ f g2(m=3)/2 (1 — z) (n=1)/2

w =

b
wd 3

dw(l +w

2C wr (n—1)/2
—_—_ (m—3)/2 —_ (n—l)/2
sy [ - g e (1)

1 —w"\—1/2 i

14w ] ?
Separating this into two integrals, and putting z = x? in the first, and then for
simplicity replacing #’ by w, gives finally!

(m+n—2)' 1—w )("—1)/2 m—l nﬂ

P=1—Iw(m_17")+2(m—2)!(n—1)! 14w 2

Replacing the factorials by gamma functions with the help of the formula

() ()

(g
e I

The .01 and .05 control limits could be ascertained by Newton’s method from
this formula. Indeed, if the foregoing probability be represented by P(w), the
Newtonian iteration starting with any value T assumed to correspond to prob-
ability e of being exceeded, may be applied by first calculating

we find also

=1—I,(m—1, n)+ V7=

("“>/2 (m— 1 n+ 1)

T2
= Tn T
then P(w), then
_ (1—-w) ("“‘)/2 m—l n+1
P'(W)——ZC (1+7.O)\”+1)/2 w’ 2 )7
and next the corrected estimate
1 P/ (w) .

When repetitions of this process give adequately stationary values, the final value

L A table of P for values of m and » varying from 1 to 50 is planned for computation on the
ENIAC at Aberdeen Proving Ground under the direction of Dr. Frank E. Grubbs.
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of w is to be substituted in
_ 2nw
T 1w

T2

to give the desired control limit.

Values of T2, T3, etc., may be added together in much the same way as inde-
pendent values of x? to obtain a variate having a distribution of like form, which
may be used for a combined test of significance. The condition for such additivity
is that the several functions 7% added shall be conditionally independent, in the
sense that they shall be mutually independent for each fixed set of values for the
‘“old” sample. To prove this, consider ¢ “new” sample covariance matrices
S1, . . ., S, corresponding respectively to degrees of freedom my, . . . , m, in each
covariance estimate, and to values 7%, ..., T2 In case of independence among
the matrices S;, the matrix

Z m;S;
S —_

R
20 m

has the same distribution as each of the S;, with m = m, + . . . 4+ m, degrees of
freedom. Putting

T:=>"T?
= X mir (5750 = T (7mS) = (573 mis:)

=m tr (5;1S),

we have an expression of the same form as before, and the proposition is proved.

An additional problem of considerable importance is to work out in usable form
the exact distribution of the ratio of two values of 72 which, for a fixed ‘“old”
sample, are independent. This generalization of the F distribution would make it
possible to test with accuracy the effects of differing conditions, such as changed
auxiliary equipment, personnel, type of sight, etc., by comparing the sum of values
of T2 under one set of conditions with the corresponding sum under another set.
Until this important distribution can be studied further, this kind of comparison
can be made only approximately.

7. The general degree of dispersion of a multivariate normal distribution

Suppose that the correlations and the ratios among the variances of a normally
distributed set of variates are known, but that a common factor fixing the values
of the variances remains to be estimated from a sample. Thus if ¢;; denote the
covariance of x; and x;, where ¢ and j take values from 1 to p, the number of vari-
ates, it is supposed that p(p + 1)/2 numbers ¢;;(= ¢;;) are known such that

o5 = viij .

The multiplier ¥ may be called “the general degree of dispersion” of the distribu-
tion. We consider its estimation from a sample. Without loss of generality we shall
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suppose that both v and any estimates of it are positive. Since the matrix ¢ = [o)]
is positive definite, the matrix ¢ = [f;;] must then also be positive definite. |

We consider the case in which the expectations of the variates are all zero. The
general case in which the expectations are unknown may be reduced to this by
methods now familiar. In this more general, and in practice more common, situa-
tion, we should use the estimate of o,

S(x;— %) (x;— %)
N -1

where N is the sample number, S stands for summation over the sample, and %; for
the sample mean of x;. The distribution of these estimates in samples of V from a
population with arbitrary means is exactly the same as the distribution in samples
of n = N — 1 from a population with zero means of the estimates

1
$ij= " Sx;x;.
These estimates are unbiased, that is, Es;; = ¢i;, where E stands for the expec-

tation.
Putting [¢:] = ¢! we may write the element of probability for the p variates

\/[ QL_ e_(l/h)zzqijzizjdxl .

() 4.

The likelihood L is defined, apart from an arbitrary constant factor, as the product
of n such elements of probability with x; replaced in each such element by the
observed value in that individual of the sample corresponding to the particular
element. With a constant factor chosen in the interests of simplicity, and with the
help of the definition of s;; above, this gives

n 1
1ogL=§(log|q| —plog 7—;2 E‘hﬁu)-

Since no function of the observations other than the s;;’s is involved in this ex-
pression, these sample covariances are sufficient statistics. This means essentially
that all the information inherent in the sample and relevant to the estimation of ¥
is contained in these statistics, and that no use of any other statistics can supply
an improvement of a suitable statistic which is a function of the s;’s alone.

A statistic whose variance for large samples, considered asymptotically, is a
minimum, may be obtained as the value of the parameter making the likelihood a
maximum. The asymptotic variance of this statistic is the negative of the reciprocal
of the expectation of the second derivative of log L. We have:

2 E 9ijSii

ologL _ _np "4
22 !

oy 2y
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since [g:] = [¢] and therefore > " gty = p.

From the first of these equations it is evident that the maximum of L will be
obtained if we substitute for v the statistic

i:=%2 D giisii

From the last of the equations it is found that the variance of this statistic, at
least approximately for large samples, is

Turning from approximate large sample theory to exact results, we shall prove
that the exact variance of 2 is given by the formula above. We shall also prove that
no other statistic of a certain class has so small a variance. This class consists of
those unbiased statistics g which are sums over the sample of the values of a quad-
ratic function of the p observations on each individual. We shall assume independ-
ent random sampling of the » individuals from a multivariate normal population
with zero means. The results are directly applicable in a broader class of cases,
provided we use for s;; an unbiased estimate of variance based on deviations from
means, and provided we mean by #, not the sample number, but the number of
degrees of freedom among the deviations in each variate that enter into the sums
of products.

For a multivariate normal distribution of zero means the fourth moments are
given, for example, in [8, section 5], by

Exixjxkxm = G4j0km + TikOjm + Tim0jk .

This formula may be obtained by differentiating the characteristic function. From
it is obtained the exact covariance of two of the sample covariances in the form

1
Eds;idsim= - (cxoim+ 0imoit) ,

where ds;; denotes s;; — ;. In all these formulae the subscripts vary independent-
lyfrom1top.

We shall use the convention that the repetition of any Latin subscript in a term
shall denote summation with respect to that subscript from 1 to p. We shall also
use the Kronecker delta §;; defined as equal to unity if the two subscripts are equal,
and otherwise equal to zero. The matrix relation ¢ = £, or [¢;] = [¢;1, may
thus be written

Qiilix = Ok -

We shall put x,, for the value taken by the ¢-th variate in the a-th individual of
the sample. Repetition of the Greek subscript in any term will denote summation
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with respect to this subscript from 1 to #. Thus we may write the sample covariance
Siji= —7; XiaXja.

The class of statistics g defined above consists of all those given by the formula
8= Uij%iaXja

for arbitrary values of the coefficients. There is, however, no loss of generality in

supposing that these coefficients satisfy #;; = u;;, and this we shall do. Evidently

£ = UijSij .
Furthermore,
- Eg = uijoij,

and since absence of bias in the statistic means that its expectation must equal
the parameter estimated, it follows that

U0 = v, or uiti; = 1.

Subject to this condition, we seek the values of the #;; that will minimize the vari-
ance of g, which is

2
0= UijthgmBE d 5;id Sk

= Wijhkm (60 jm=+ 0imoit)

[X)

=L isttm (tadim+ Lint)
In the last term the indices of summation £ and m may be interchanged, since
Ukm = Umk, and, therefore, '
22
2 4
G0 =~ UiiUhimbiklim .

Differentiating with respect to #,; to obtain the minimum under the assigned con-

dition gives
Ukmliklim = alij,

where ¢ is a Lagrange multiplier. Multiplying by ¢¢;- and summing with respect
to 7 and j gives
UimOnkBmr = @Ohiqjr
that is, )
Uhr = QQGhr -

The condition that g shall be unbiased leads to the evaluation of ¢ as 1/p, whence
#:; = qij/p, and finally

__]_'_ qs— s
g P 139 g'

That this procedure yields an actual minimum follows from the facts that ¢%is a
quadratic form in the variables %;;; and that, because it is a variance, it is essential-
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ly positive, and is, therefore, a positive definite quadratic form, which, with or
without a linear constraint, must necessarily be a minimum where the first order
conditions are satisfied.

The exact result
=2
T np

follows by direct substitution from the formulae just used.

o2
g

8. Efficiency of mean square circular error

The mean square deviation from the target of » bombs yields an estimate g for
which %;; = §;;. The efficiency of any unbiased estimate g is

2
a; 1

73 Pui]'ukmtikljm ’

Putting u;; = 8;; and p = 2 gives for the efficiency of the mean square circular
error
(2t

a quantity which in accordance with the preceding theorem cannot exceed unity.
Since the absence of bias implies that ##;; = 1, we have in this case that 6;;t;; = 1.
Now if we have numbers ¢;; proportional to the covariances, so that t;; = ct;;, it

follows that ¢ = §;jt:; = 2 t:;. Therefore, the efficiency of the mean square cir-

cular error is

. \2
(Z tﬁ) _ (o011t 029) ?
22 zt'_g.— 2 (e} + 20}, +03)

We may estimate the efficiency of the mean square circular error for determining
the general degree of dispersion of bombing by using for the ¢;; the covariance
estimates obtained from the 260 bombs discussed in [11]. Substituting these in the
formula just obtained for efficiency gives .9550. The value .82 given in [11, p. 165]
is an arithmetical error, kindly pointed out by J. W. Tukey.
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