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1. Summary and introduction
In 1945 and 1946, Cram6r [1] and Rao [21 independently investigated the prob-

lem of obtaining a simple lower bound to the variance of point estimates. In 1947
Wolfowitz [3] simplified the conditions under which Cram6r had obtained this
bound and extended the result to sequential estimates. In the present paper, use
is made of the Cramer-Rao result, in Wolfowitz's form, to investigate some prob-
lems of the minimax theory of estimation.

The Bayes method for obtaining minimax estimates developed by Wald since
1939 [4], [5], is completely satisfactory whenever the minimax estimate is the
Bayes solution for some a priori distribution of the parameter. However, fre-
quently minimax estimates are not Bayes solutions, but only limits of Bayes solu-
tions. When this occurs, the possibility is left open that the minimax estimate is
not admissible; that is, that there exists some other minimax estimate whose risk
is never greater and is for some parameter value less than that of the given esti-
mate.

In section 2 we consider certain estimation problems in which the loss is propor-
tional to the square of the error of estimate, and use the Cramer-Rao bound to
establish directly that certain estimates, which can be shown to be minimax by
the Bayes method, are in addition admissible. In section 3 we consider several prob-
lems of sequential estimation, for some of which previously no minimax estimates
have been known. In all of these cases it turns out that there are minimax estimates
based on samples of fixed size.

Problems similar to those treated in the present paper were considered simul-
taneously by Girshick and Savage [6], the scope of whose work is much larger than
ours. Portions of both papers were presented at the joint colloquium of the
Stanford and California statistical groups, resulting in a fruitful exchange of ideas.
The method introduced here has been employed in [6] to obtain extensions of some
of our results.

2. Estimates based on samples of fixed size
Let X be a random variable with distribution Pe, 0 ED, so that the proba-

bility that X falls in a set A is given by

(2.1) Pe (A) fpo (x) dy (x).
A
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Let f(X) be any estimate of 0 and let bf(0) = Eo[f(X)] - 0 be its bias. Then
the Cramer-Rao inequality states that the variance o-j(0) of f(X) satisfies

(2.2) 2()> [1+b;() 2
Eo[( log Po (X))]

We shall now prove a theorem which will essentially reduce the problem of
proving that certain estimates are admissible and minimax, to proving that there
is a unique solution to a differential inequality related to (2.2). It will be con-
venient to associate with each bias function b(0) the function Cb(0) defined by

(2.3) Cb (0) = b2 (0) + [1 + b' (0) ]2
Eo >#9 log Pe (X) ]

If the loss is defined to be the square of the error of estimation, (2.3) has the
significance of a lower bound on the risk of an estimate whose bias function is b(0).
Suppose now that g(X) is an estimate for which the risk everywhere attains this
lower bound. We may then substitute, in a proof of the admissibility of g(X), the
bound (2.3) for the actual risk.
THEOREM 1. If the loss is squared error, if g(X) is an estimate for which (2.2) be-

comes an equality, if the inequality (2.2) is satisfied for all estimates, and if, for every
bias function b(0),

(2.4) Cb(0) _ Cb0(0)

for all 0ED implies b(0) =b(0), then g(X) is admissible.
PROOF. Since loss is squared error, Rf(0) = b2 (0)+ -2 (0) > Cb,(0). Supposeforsome

estimate f(X), Rg(O) _ Rf(0) for all 0 CD. Since by assumption Cb,(0) = R,(O), we
have Gb,(0) >-Cbf(0) and from (2.4) conclude b,(0) = bf(o). From this follows
b'(0) = bf(0),Cb,,(0) = Cb,(0),Rf(0) _ Cbf (0) = Cb,,(0) = R0(0), and henceRf(0) =
Rg(0).

COROLLARY 1. Theorem 1 remains valid if the lossfunction is squared error divided
by a function q(0) which is everywhere positive and finite.

PROOF. Admissibility is not affected when the risk function is divided by such a
function.

COROLLARY 2. If in addition to the assumptions of theorem 1 we assume that g(X) is
a constant risk estimate, then g(X) is an admissible minimax estimate.

PROOF. Any constant risk admissible estimate is minimax.
Remarks. (i) A statistical problem is not completely specified until the loss

function has been stated. Squared error is the classical loss function for estimation,
primarily for reasons of convenience [7, p. 516]. An alternative loss function is ob-
tained if we divide squared error by the variance of X, thus measuring the serious-
ness of errors in terms of the difficulty of estimation as reflected by ax as a func-
tion of 0. This alternative approach is particularly desirable in those problems for
which, when the loss function is squared error itself, the minimax risk is infinite.
For, when this happens, every estimate is minimax and the minimax principle
provides no basis for choice.
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Those loss functions obtained by dividing squared error by a function of 0 have
been termed "quadratic loss functions" by Girshick and Savage [6].

(ii) In all of the problems considered below, the family of distributions is com-
plete in the sense of [8], and hence every estimate is uniquely determined by its
bias function. Since in the proof of theorem 1 we have established the uniqueness
of the admissible minimax bias function, it follows that the estimates shown below
to be admissible minimax estimates are in fact the unique minimax estimates.

(iii) In the statistical applications which we shall make of this theorem, we
sometimes replace a sample Xi, X2, . . . , X. by a single sufficient statistic, say X.
It is known that nothing is lost by this simplification, since from the risk point
of view one may restrict oneself to estimates which are nonrandomized functions
of a sufficient statistic [9].

Actually, it is not necessary to work with the single sufficient statistic, since
the Cramer-Rao inequality may be applied directly to a sample, but the regularity
conditions are easier to check when dealing with a single variable.

As an application of theorem 1 we shall now consider five specific problems,
showing in each case that a given estimate is admissible and minimax. To apply
theorem 1 we must check the validity of (2.2) for all estimates. By the method of
proof given by Wolfowitz [3], (2.2) can be shown to be valid under the following
assumptions:

(i) The parameter 0 lies in an open interval D of the real line, which may be
infinite or semi-infinite;

(ii) For almost all x, ape(X) exists for all 0 ED;
(iii) The expression fpe (x) d1. (x) may be differentiated under the integral

sign;
(iv) For every OED,Ee[I a

(X) ] >0;

(v) The expression ff (x) pe (x) dA (x) may be differentiated under the
integral sign.

The problems we treat concern the binomial, Poisson, normal, and chi-square
distributions, and we now check the validity of (2.2) for these distributions.
LEMMA 1. If p@(X) is any of the following:

(a) ( ) O. (1_ 0) n-, x = 0, 1, .. ., n; 0<0< 1; IA = counting measure;

(b) -!e ,X = O, 1, . . .; 0<0< IA; = counting measure;

(C)--_e -1/2(X-)2 - x ;- < 0,< ;A = Lebesgue measure;

X^/2 -1e-x/29
(d) 20/2r Y

) V/2 0 < x < o; 0 <0< co; A = Lebesgue measure;

then (2.2) is satisfied.
PROOF. Conditions (i)-(iv), none of which involve the estimate f(X), are

obviously satisfied. In checking condition (v), there is no loss of generality in
assuming that f(X) has finite variance, since otherwise (2.2) certainly holds.
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For distribution (a), condition (v) is obvious, since we are dealing with a finite
sum. In cases (c) and (d) the result follows immediately from well known
properties of the bilateral and unilateral Laplace transform, respectively. In
case (b) our assumption guarantees the absolute convergence of the power series

S f (x) Oz/ x! in the open interval 0 < 0 < c, and hence the series may be
z-o

differentiated term by term in that interval.
In the examples below we need in each case only check (2.4), the remaining

conditions of theorem 1 obviously being satisfied.
Problem 1. Let Xi, X2, . .. , X. be a sample from the normal distribution with

unknown expectation 0 and known variance which we may without loss of gen-
erality take to be 1. Let the loss be squared error. It has been known for some time
that X = S Xi/n is a minimax estimate for 0. This result was obtained by
Stein and Wald [10] for a different loss function for the much harder sequential
problem, and was proved explicitly for the loss function here employed by Wolfo-
witz [11]. We shall now use theorem 1 to prove both the admissibility and mini-
maxity of X.

Since X is sufficient we need only consider estimates of the form f(X), and since
X is normally distributed we may apply (c) of lemma 1. We need only check (2.4)
which now becomes

(2.5) b2(0) + 1[1+ b' (0) 1 2< 1
n n

for every 0ED implies b(0) = 0. Since neither term on left side of (2.5) can be
negative, b(0) I is bounded and b'(0) is never positive. Consequently there exists
a sequence {[o} for which b'(0i) approaches 0 as Iji0 approaches -, and hence by
the hypothesis of (2.5), b(0i) does likewise. But since b(0) is monotone, it must
always be 0.

It is interesting to observe that if we assume certain additional information
about 0, the estimate X may continue to be minimax without any longer being
admissible. This is the case, for example, if we assume it known that 0 > Go. For,
b2(0) + [1 + b'(0)12/n is still a lower bound for the risk, and by an argument
analogous to the one just given it is easily seen that sup b2(0) + [1 + b'(0)12/n _

0>00

l/n. Hence the minimax risk is still 1 and X is minimax; its inadmissibility follows
from the fact that P(X < Oo) > 0, [9].

Problem 2. Let X1, . . ., X. be a sample from a Poisson distribution with un-
known mean 0. For the loss we take squared error divided by 0; see remark (i)

n

above. Since X = E Xi is sufficient for 0 we may restrict consideration to esti-
i-i

mates f(X). Taking g(X) = X/n, we shall prove admissibility of X/n by check-
ing (2.4), which now becomes the condition

(2.6) nb2()+ [1 + b' (a) ]2< for all OED

implies b(0) = 0 for all ED.
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Since neither term on the left can be negative, b(0) is bounded by VO/In and
b'(0) satisfies the inequality

b' (0) < '1 nb2(0) 1 < nb2()
0 2 0

Thus lim b(0) = 0, b'(0) < 0, and hence b(O) _ 0 for all 0. But if for some Go, b(0o)

were negative, it would thereafter always be less than or equal to the function
c(@) for which c'(0) = -nc2(0)/(20) and c(Oo) = b(0o). This latter function may
be obtained explicitly by solving the differential equation, and is easily seen not
to be absolutely bounded by VO/In.
We justified the choice of loss functions for the present problem in part by the

remark that there exists no estimate with bounded risk function when the loss is
squared error. That this is so is easily seen. For letf(X) be such an estimate. Then

cbf (0) =b() +- [l + bf (0)2

is bounded. But boundedness of the second term of Cbf(0) implies that bf (0) .
-1 + E for all sufficiently large 0, and hence the unboundedness of the first term.
An analogous remark applies to the x2-problem which we treat next and, in general,

whenever the range of 0 and the function Eo[Iao log Pe (X) ] are both unbounded
and (2.2) holds for all estimates.

Problem 3. We next consider the estimation of the parameter in the chi-square
distribution. This problem arises, for example, if we have a sample X1, X2, . . *, X"
from a normal distribution of known expectation but unknown variance. Then the

n

statistic [Xi-E (Xi) ]2 is sufficient for the variance and has a chi-square

distribution. Suppose now that X has a chi-square distribution of n degrees of
freedom with expectation 0, and take the loss to be squared error divided by 02.
This loss function is chosen according to the principle discussed in remark (i)
above. We shall now show, by means of theorem 1, that the estimate g(X) =
X/(n + 2) is the unique admissible minimax estimate for 0. It is interesting that
this estimate is biassed, while the minimum variance unbiassed estimate has
constant risk but is neither minimax nor admissible.

Condition (2.4) of theorem 1 now becomes the condition
b2 (0) 2

2 2(2.7) 02 +-[1+ b'(0) 2<+2 forevery OED

implies b() =-20/(n + 2).
Since neither term on the left of the hypothesis of (2.7) can be negative, we

have b'(0) < 0 and Ib(0)I < 0. It follows that b(0+) = 0. If for any 0, b'(0) =
b(0)/0, their common value must be -2/(n + 2), since the expression
r2 + 2[1 + n]2/n has a minimum of 2/(n + 2) when r = -2/(n + 2).
We next observe that b'(0) < b(V)/0. For, suppose that for some 0, b'(0) >

b(0)/0. Then we should have
[b(a]2±n[1 + b' (0)] 2> [b Qi]2+21 + b (0) ]2



i8 SECOND BERKELEY SYMPOSIUM: HODGES AND LEHMANN

which, by the previous paragraph, is not less than 2/(n + 2). But this contra-
dicts (2.7). Observing 02[b()/0]' = 0b'[0 - b(0)], we conclude that b(0)/0 is a
nonincreasing function of 0.
We shall now prove that b'(0) is not bounded away from b(0)/0 for large 0. For

suppose b'(0) < b(0)/0 - E for all 0 > 0. Then for 0 . 0, b(0) will lie below
that function c(@) for which c(0o) = b(0o) and c'(0) = c(8)/@- e. But c(8) =
e-0 log 6 + k-0, which violates -0 < b(0) < c(0). Analogously, b'(0) cannot be
bounded away from b(0)/0 as 0 -* 0. For otherwise b(0)/0 : c(@)/@ > 0 for 0 suffi-
ciently small, while we know that b(0) _ 0.
We next see that if for some sequence I Oi}, b'(0) - b(0i)/10, - 0 then b(0,)/10

-2/(n + 2). For, the hypothesis of (2.7) may be written

(28 b (0) ]2+ 2[1 + b (e) ] + 2[b b) (0) ]2(2.8) ( b(0)][ - )]-

and our hypothesis implies that the second term on the left side of (2.8) approaches
0; consequently the first term must approach its minimum which implies our state-
ment.

Combining the results of the two preceding paragraphs, and using the monotone-
ness of b(0)/0, we see that b(0)/0 - 2/(n + 2) as 0 -4 0 or o , whence our re-
sult (2.7) follows.

Problem 4. Suppose that X has the binomial distribution (a) of lemma 1, and
that the loss is squared error divided by 0(1 - 0). Condition (2.4) now becomes
the condition

(2.9) b2(0) + 0(1 ) [+ b'()] (I--0) implies b(O)30.
n n

Letting 0 tend to 0 and 1 yields b(0) = b(1) = 0, while b'(0) < 0 since b2(0) is
nonnegative.

Problem 5. As a final example, we consider the previous problem, using however
the classical squared error loss function. It is already known [9] that in this case

v; ( v/ + yy + 2 + j-) is an admissible minimax estimate for 0, but we

shall now establish this fact as a consequence of theorem 1. The verification of
(2.4) involved will in any case be needed when considering the sequential problem
in the next section.

Condition (2.4) now becomes

(2.10) b2 (0) + @ (L ) [1I + b' () ]_2

4 (Vf+l)2implies b (0) =
2

PROOF. Since the second term on the left side of the hypothesis of (2.10) cannot

be negative, we have I b (0) < 2 We next observe that b(0) _

-=_-1for ' < 0 < 1. For if on the contrary we had, for some 2 < Oo < 1,
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b(0o) < -2 , we should be able to find a point 0o < 01 < 1 at which b'(01)

=b(1) -b(- ) 1
and at which b (01) < It is clear

10
from the identical satisfaction of (2.10) by b (0) = 2 that this would im-
ply the violation of (2.10) at 0,.
By the symmetrical argument in the interval 0 < 0 . A, we find that in that

interval b (0) < 2 I and hence that b(A) = 0. It also follows that b'(1) >

-+/-+ 1; but on substituting 2 for 0 in the hypothesis of (2.10) and using
b(l) = 0, we find b' () = - v1+i
We can now conclude that (2.10) is satisfied. For suppose b(0) satisfies the hy-

pothesis of (2.10). By symmetry we need only consider the interval 2 < 0 < 1

and need only show that b ( 0) > -- 0 for 2 < 0o < 1 leads to a contra-

diction. Consider the function c ( 0) = b ( - V +1 . c(8) is continuous and

has a continuous derivative, is nonnegative for A < 0 < 1, and c(2) = c'(1) = 0.
Hence for every E > 0 and every k > 0 we can find A < 01 < Oo for which
|c'(01) < e and c'(01) > kc(01). This is easily seen by considering [log c(e)]' =
c'(0)/c(0), and using the continuity of c'(0).

Since b(0) is assumed to satisfy the hypothesis of (2.10) we can subtract to ob-

tain c ( 0) [b ( 0) + v/n ]+ -] + c' (0) [2+b'() + 1 .

2 _ -n_ __
Take now e < 2 - =+ and k > 2- - to obtain a contra-
diction.

3. Estimates based on sequential procedures
In the previous section we have considered only the class of estimates based on

a sample of fixed size, and have shown that certain estimates are optimum within
this class. However, as is well known [12], the efficiency of statistical procedures
can often be improved by taking the observations sequentially. Various definitions
of optimum sequential procedures are possible within the minimax theory. For ex-
ample, one may try to minimize the maximum expectation of a linear combination
of loss and cost, measuring the latter by the number of observations. Alternatively,
one may place a bound on the expected number of observations and try to minimize
the maximum expected loss. Both of these formulations have been considered in
the literature [5], [10], [11]. We have applied the method of the present paper to
obtain optimum sequential procedures only under the second definition; it seems
doubtful that our method would give easy results under the first definition. Al-
though the first definition of an optimum estimate has theoretical advantages, in
practical applications the second is sometimes more reasonable. This may happen,
for example, when cost and loss cannot be measured on a common scale of value, or
when budgetary considerations compel one to place a separate bound on the aver-
age cost of experimentation.
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It is interesting that in a number of problems it turns out that a procedure of
fixed sample size n is optimum among all sequential procedures for which the ex-
pected value of the number of observations N never exceeds n. For example, this is
the case in problems treated by Stein and Wald and by Wolfowitz. We shall now
show that the same holds true for the five problems treated in section 2.

The basis of our results in the present section is the extention by Wolfowitz [3]
of the Cramer-Rao inequality to the sequential case. Wolfowitz proved under cer-
tain regularity conditions that

(3.1) 2(f ) 21b()2 _

Ee (N)E9[a0 log Pe (X)

where pe(x) is the density of an individual observation and N is the (random) num-
ber of observations taken.

It is clear that theorem 1, with the obvious modifications, remains valid for the
class of all sequential estimates, if we replace inequality (2.2) by inequality (3.1).
Further, if we consider only those sequential procedures for which, for some in-
teger n,
(3.2) Ee(N)_ n forall OED,
theorem 1 will be valid if in (3.1) we replace Ee(N) by n. To extend the results of
section 2 to the sequential case, we must verify the satisfaction of (2.4) and of the
regularity conditions under which Wolfowitz proved (3.1). We carry out these
checks not for all sequential procedures satisfying (3.2), but only for bounded
procedures; that is, for procedures such that

(3.3) P(N _ m) = 1 for all OGED
for some finite number m.

Since our results will be independent of the value of the bound m, provided
only that it is sufficiently large, the restriction (3.3) is not serious from a practical
point of view: any actual experiment does have a bound on the number of observa-
tions. However, the restriction is theoretically undesirable. We shall show below
that the solutions obtained retain their minimax character when the restriction is
removed. On the other hand, our argument does not establish the admissibility
of the estimate within the unrestricted class of sequential procedures.

The Wolfowitz regularity conditions are contained in section 3 of his paper [3].
If the sequential procedure is bounded, and if the density is one of those con-
sidered in our lemma 1, all of these conditions are trivial, except for his (3.4). An
examination of the proof shows that this condition is used only to permit a cer-
tain differentiation under the integral sign. We shall assure the applicability of the
inequality by checking this differentiability directly.
LEMMA 3. If the sequential procedure is bounded, and if the density is one of those

considered in lemma 1, then (3.1) holds.
PROOF. Let R, be the set of points (xl, x2,... , x,) for which N = j. Then

(3.4) Ee f (X1, X2, ... , XN)] = f (X1, X2, * *,) PO (XI) PO (X2) ...

X pe (xj) d,U (x1) d,U (X2) ... d,U (Xi).
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In view of the remarks just made we need only check that the right side of (3.4)
may be differentiated under the integral sign. For density (a) of lemma 1 there is
no difficulty, since we have simply a polynomial in 0. With (b) we have a conver-
gent multiple series of nonnegative terms. This can be rearranged as a convergent
series of powers of 0, which may be differentiated termwise. The normal cases
are somewhat more involved. We may assume E9 If(X1, X2, . . ., XN) <
for all 0 ED, and hence the finiteness of each integral on the right of (3.4). Let
0#(x1, X2, ... , xi) be the characteristic function on Rj; we must show the differ-
entiability under the integral of

(3.5) L . . (xl, x2, . . .X,x) f (x1, x2, . ..., x) Pe (X1) PO (X2) ..

XPe(xj) d (X) d (X2)... d(xj).
Recalling pe (x) = e -1/2(Z- )', collecting the exponents, and making an

orthogonal transformation with yi = x1 + x2 + . . . + xj, we see that (3.5) may
be rewritten as

(3.6) e-(i/2)e0.f'.fK (yi, Y2, , yj) e°O`dyidY2 ... dyj-

Using the Fubini theorem, we see that the integral in (3.6) is a convergent Laplace
transform and may therefore be differentiated.
A similar argument applies to the chi-square situation, using a unilateral instead

of a bilateral Laplace transform.
We can now conclude that the estimates found to be admissible minimax esti-

mates in problems 1-5 of the preceding section continue to have this property in
the class of all estimates based on sequential procedures satisfying (3.2) and (3.3).
We shall not have to recheck the differential inequalities which result from (2.4),
since they are in each case unchanged.

Finally, we observe that condition (3.3) may be removed in all of these problems
without effecting the conclusion that all estimates considered are minimax. For, if
there were a sequential estimate a not satisfying (3.3) having a maximum risk r less
by e > 0 than the minimax risk for bounded sequential procedures, then we could
construct a bounded sequential estimate with maximum risk < r + 2. To see

this, notice that in each of the cases treated there exists an estimate Bo of 0, based
on a single observation, whose risk is bounded, say by a constant k. Since E(N) 5
n, PO(Na > m) -O 0 uniformly in 0. Let the estimate abe defined as follows. If
Na < m, let 5' agree with 6. If NA > m, take an (m + 1)-st observation and
let 5' agree with bo(xn+1). It is clear that P(ANa1 < m + 1) = 1, that E(Na) < n

and that sup Re ( 5') can be made less than r+ 2 by taking m sufficiently large.
OD
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