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Abstract. The multi-component nonlinear Schrödinger equations related to 
C .I ~  Sp(2p)/U(p) and D .I I I  ~  SO(2p)/U(p)-type symmetric spaces 
with non-vanishing boundary conditions are solvable by the inverse scatter­
ing method (ISM). We focus our attention on the single threshold case. We 
formulate the spectral properties of the Lax operator L, which is the gener­
alized Zakharov-Shabat operator. Next we construct the corresponding fun­
damental analytic solutions (FAS) and adapt the Wronskian relations for the 
constant boundary conditions. They allow one to analyze the mapping from 
the class of allowed potentials M  to each of the minimal sets of scattering 
data Tj, i =  1, 2. The ISM for the Lax operator L is interpreted as a nonlin­
ear analog of the Fourier-transform method. As appropriate generalizations 
of the usual exponential functions we use the so-called ‘squared solutions’, 
which are constructed in terms of the FAS x*!*'3’, V  ° f L and the Cartan- 
Weyl basis of the Lie algebra, relevant to the symmetric space. Finally we 
derive the completeness relation for the “squared solution” which turns out 
to provide the map from M  to each (I), i =  1, 2. Such decompositions allow 
one to derive all fundamental properties of the multi-component nonlinear 
Schrödinger equations.

CONTENTS

1. Introduction.......................................................................................................  43
2. Spectral Properties of the Lax Operator L. The Single Threshold C ase ... 46

2.1. The f-dependence of the Scattering D a ta ..............................................  49

‘Reprinted from JGSP 19 (2010) 1-28.

42



Multi-component Nonlinear Schrödinger Equation on Symmetric Spaces ... 43

2.2. The FAS and the R H P..............................................................................  50
2.3. Constructing Singular Solutions of the R H P ........................................  54
2.4. The Resolvent of the Lax Operator.......................................................... 55

3. Wronskian Relations........................................................................................  58
4. Generalized Fourier Transforms and Higher M NLS....................................  60
5. Discussions and Conclusions........................................................................... 62

Appendix...............................................................................................................  65
Acknowledgements.............................................................................................. 65

References.................................................................................................................  65

1. Introduction

The integrability of the scalar nonlinear Schrödinger equation (NLS) with van­
ishing boundary conditions (v.b.c.)

m  + Qxx + ^\q(x,t)\2q(x,t) = o (l)

was discovered by Zakharov and Shabat in their pioneer work [29]. Soon after [30] 
Zakharov and Shabat proved the integrability and the physical importance of the 
NLS with constant boundary conditions (c.b.c.)

iqi +  2qxx -  2(\q(x,t,)\2 -  p2)q(x, t) = 0, lim q(x, t )  = q± (2)
x —>dzoc

where the asymptotic values q± satisfy \q±\2 =  p2. Notice the sign difference in 
the cubic nonlinearity as well as the additional term with the chemical potential 
P-
Both versions of NLS equation served as models on which generalizations were 
made. The simplest non-trivial multicomponent generalization of NLS is the vector 
NLS known as the Manakov model [22]

i q t + q xx + 2(qJ q ix i t yq ix^ t )  = 0 (3)

where q(x,  t) is an n-component complex-valued vector vanishing fast enough for 
x  —¥ ±oo. The c.b.c. version of vector NLS

iQl +  Qxx -  ( 2(qJq{x , t ) )  -  P2) q (x , t )  +  ( q lq ( x , t , ) ) q ± = 0 (4)

where lim ^^-tœ  q i x -, L =  q±  and q _ =  Uoq+ where Uq is a constant unitary 
matrix also finds applications. Here p2 =  q±q±-
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Equations (1) and (3) are particular cases of matrix NLS which is obtained from 
the system

iq* +  q** +  2qrq(x, t) =  0 
—irt +  rxx +  2rqr(rc, t) = 0

after imposing an appropriate involution (reduction) compatible with the evolution 
of (5). Here q and rT can be rectangular n x p matrix-valued functions of x  and t. 
One such involution is

r = B _ q ^ B + 1, B + =  diag e+), =  diag (ej- , e~) (6)

where (Vy )2 =  1, and the corresponding MNLS acquires the form

iqt + q ^ + 2qß - q T ß +1q = 0 (?)

For n =  m  =  1 and r = q* the system goes into the scalar NLS (1). For m  = 1 and 
n > 1 and with appropriate choice of involution (6) the system is transformed into 
the Manakov model (3). All these versions are solvable with the ISM. The ISM is 
applicable to nonlinear evolution equations (NLEE) if they can be represented as 
compatibility condition of two linear problems [1,3,16,25,28]

[L(A), M(A)] =  0 (8)

which holds identically with respect to the spectral parameter A.
The two linear operators L ( A) and M ( A) in the Zakharov-Shabat system (Z-Sh) 
for the MNLS on symmetric spaces associated with the simple Lie algebra q ~  Cr 
and q ~  D r with v.b.c. are

Lip

Mip

Q(x , t )

( i j r r  +  -  ^  ^) =  0

^ i ^  +  V2(x, t )  +  AVi(x, t )  -  2A2J ^  ip(x,t ,  A) 

ip(x, t , A)C*(A)

(  o qOM) ^ j _  ( 11 o ^
\ r ( x , t )  0 y ’

(9)

( 10)

(11)

where C(A) is for now an arbitrary matrix-valued function which may depend only 
on A and will be fixed up below. The potential Q(x,  t) and J  are 2r x 2r matrices 
with compatible block structure. Here

\' i(x,t)  =  2 Q(x,t),  V2(x,t) =  [ad j 1Q ,Q ] +  2ia,dj1Qx (x,t) (12)

and ad y1 is the inverse of the adjoint action ad j  with respect to the element J ,
ad j Y  =  [J, Y],
An effective tool to obtain new versions of multi-component nonlinear Schrô­
dinger equation (MNLS) is the reduction group introduced by Mikhailov [23], It



Multi-component Nonlinear Schrödinger Equation on Symmetric Spaces ... 45

allows one to impose algebraic constraints on the potential Q(x , t )  which are au­
tomatically compatible with the evolution. For example, the involution (6), which 
leads to MNLS with v.b.c. (7) is known as Z^-reduction and can be written as [13]

B W ( x ,  t, Aw) ß _1 =  U(x, t ,  A) (13)

where B  is an automorphism of g matrix such that B 2 =  11, [J, B] =  0, and

U(x, t ,  A) =  Q(x, t )  -  A J. (14)

Below we analyze the MNLS

iq t +  qxx -  2qqT q + q ß +  ß q  = 0 (15)

with constant boundary conditions (c.b.c.) a t x  —»■ ±oo

lim q (x, t )  =  q± , ß  = q+ q+ =  q_ql_ , ß  =  q+q+ =  q^q_ (16)<£.) nt OO

where q(x, t )  in general can be a rectangular n x p matrix-valued function if we 
consider the symmetric spaces of class A . I l l  [15]. Below we concentrate on the 
MNLS (15) related to the C .I  and D .Ill-ty p e  symmetric spaces and therefore 
q(x , t )  will be a square r x r matrix-valued function.
Its Lax pair is obtained from (9)-(12) by replacing Vo{x, t) with

Vo(x,t)  =  [ a d j ^ Q ]  +  2iad j 1Qx (x, t )  -  [ad j 1Q ±,Q ±]. (17)

Here we have also imposed the additional condition =  Q2_. It ensures that 
the two asymptotic Lax operators L±  =  idx +  Q±  — A J  have the same spectrum. 
It also ensures that the potential Vo(x,t)  in the second operator 37(A) vanish for 
x  ±oo. As a result the solutions of the MNLS equation (15) q(x , t )  do not 
undergo strong oscillations with respect to time, see [11,15].
Lax operators of the form (9) can be associated with each of the symmetric spaces 
listed below (for the definition see [18] and the Appendix). They are defined by 
specifying the simple Lie algebra g, having typical representation in 2r x 2r ma­
trices and the Cartan subalgebra element J

•  C .I: g ~  Cr ~  sp(2r), J  =  Hg, where the vector a in the root space Er 
dual to J  is given by a = Y^k=i ek

•  D .I I I  : g ~  D r ~  so(2r), J  =  Hg, where the vector a in the root space 
Er dual to J  is given by a = Y2k= l ek-

Here the orthonormal vectors span the root space Er of both types of algebras. 
The element J  belongs to the Cartan subalgebra t) and is dual to a. Using J  we 
can split the set of positive roots into two two subsets A + =  A q"U A f .  These sets, 
for the algebras that we are working with, are composed of the following roots

A + =  {e,i -  e y}, A f  =  { 2 e*, e,i +  ey}, 1 < i  < j  < r  (18)
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for 0 ~  sp(2r) and

A + =  {ei -  e j} , A f  =  {ei +  ey}, 1 < i  < j  < r  (19) 

for 0 ~  so(2r).

The root vectors of the algebra are denoted by E a where ct is the corresponding
i

root. We will need also the projector P j  =  ad y ad j  onto the co-adjoint orbit O j  
of the element J. Here the inverse of the adjoint action is ad =  ^ J Y .  The 
generic element of X  6 O j  is the one that satisfies the relation X  =  P j  X .  Obvi­
ously the potential of the Z-Sh system Q ( x , t) and its variation SQ(x , t) belong to 
Oj .
This paper extends the results of [11,12,15] and [4], In Section 2 we analyze 
the spectral properties of the generalized Z-Sh operator with c.b.c. We start with 
the single threshold case for which =  Q2_ =  p2l .  First we construct the 
fundamental analytic solutions FAS and formulate the corresponding Riemann- 
Hilbert problem (RHP) on a Riemannian surface. We also derive the time evolution 
of the scattering matrix. Next we briefly analyze the construction of singular so­
lutions for the RHP and then propose an explicit formula for the kernel of the 
resolvent i?± (rc,y, A) of L  in terms of the FAS. Then we apply the contour in­
tegration method and derive the spectral decomposition for L.  In Section 3 we 
derive the Wronskian relations which are the basic tool for analyzing the mapping 
fl* : M  —>■ fl);. We also introduce minimal sets of scattering data Xi, i =  1,2. In 
Section 4 we derive the completeness relation for the “squared solutions” of the 
Lax operator generalizing the results of [20,21], Thus we prove that the ISM is 
equivalent to a generalized Fourier transform also for the Lax operators with c.b.c. 
Thus we have shown that the nonlinear evolution of equation (15) transforms into 
linear one in terms of the scattering data of L. In the last Section 5 we briefly 
consider the generic multi-threshold case when =  Q2_ have 2r different eigen­
values ± p 2 and draw some conclusions.

2. Spectral Properties of the Lax Operator L. The Single Threshold 
Case

The spectrum of the asymptotic operators L±  is purely continuous and is deter­
mined by the eigenvalues of Q±  which generically may be arbitrary complex num­
bers. However, here we consider only the case when L  becomes self-adjoint. As a 
result its potential Q(x,  t.) acquires the form

Q(x,t) = - Q J(x,t), Q(x,t) =  ̂_ qt^T ÿ   ̂ • (20)
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For simplicity reasons we will consider only the case when all of the eigenvalues 
of the asymptotic matrices Q±  are real and equal

p l  = P2 = • • • = Pr = P > 0  (21)

where p is real parameter. It determines the threshold, or equivalently, the chemical 
potential of the MNLS. As a result we have the following condition on the eigen­
values of the asymptotic matrices [15] q±q±(tc,£) =  p2H and the correspondence 
with the isotropic problem is obvious: p  =  p  =  p2H.
The requirement that the potentials of the Z-Sh system belong to g can be formu­
lated as a reduction condition [7,23]

S p U T ( x , t ,X ) S 0 = - U ( x , t , \ ) ,
1 71 1 (22) 

S p V T ( x , t , \ ) S 0 =  -V '( .M ,A ) ,  S p J S o  =  - J

which has trivial action on A. The matrix S q is the one which realizes the definition 
of the algebras Cr ~  sp(2r) or D r ~  so(2r) in the typical representation [7,18] . 
In what follows we will define the Lie algebra g by

g =  { X  ; X  +  SV71-X LSa =  0} (23)

where

for g ~  sp(2r) and

r

S — l

T

s 'o =  H ( - l ) s+1(£«» +  B a )
S = 1

for g ~  so(2r). Here s =  2r — s +  1 and E^s are 2r x 2r matrices, defined by
(Eks)ij  =  hvißsj- Note that Sq =  eoÜ» where êq =  — 1 for sp(2r) and êq =  1 for 
so(2r).
The reduction (22) imposes restrictions only on the coefficients of Q ( x , t ) such 
that for Cr ~  sp(2r) we can put

Q(x,t) 53
i<j

+e.j QjiE - ■ j) +  5 3  -  Q Ï E - 2 e.i (24)

while in the D r ~  so(2r)-case we have

Q(x , t )  = 53 {<lijE e.i+e..j -  (25)
i<j

where the * means a complex conjugation. The definitions of the root vectors E a 
can be found in the Appendix. In the typical representations of Cr and Dr these
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choices for Q(x,  t) have always the block structure shown in (20). For example, in 
the case of g ~  sp(4) the block q is parametrized by three functions

q(x, f) (  Q12 V%qi \  
V V 2© — Ç12 /

(26)

The corresponding sets of MNLS for these choices of Q(x,t .) and v.b.c. were 
first derived in [7], For c.b.c. with r =  —qt MNLS take the form (15) with the 
additional linear in q terms ensuring regular behavior of the solutions for t  ±oo.
Let us outline the construction of the FAS. In the particular case that we are con­
sidering - the isotropic problem - the Jost solutions are defined as fundamental 
solutions with fixed asymptotic for x  ±oo

lim 7p(x,X)eifl[X)Jx =  0>O(A), lim <j>(x, X)eifl{X)Jx = <j>a( \ )  (27)
x —>OC X —>—oc

where 2r x 2r matrices ipoW  and 0o(^) take value in the corresponding group S 
and diagonalize the potential of the Lax operator L

(Q -  -  A J)<p0(A) =  - 0 „ W ß W J  28>

where /r(A) =  a/A 2 — m 2. They have the block structure

^o(A) (  A  S ’l  B\ 
\BSi A J  ’

0o (A) Vo (  A S1B\ 
\B_S1 A J '

The r x r matrices A, B and S’i are given by

A B s 'i =  £ : s ,r—s + 1
s=l

(29)

(30)

where epq are r x r matrices such that {epq)ij =  àtp 6jq and the phase factor Vq is 
2r x 2r diagonal and unitary matrix of the form Vo =  exp(iipQj).
Given the potential Q(x)  one can obtain the Jost solutions uniquely. The Jost so­
lutions in turn determine uniquely the scattering matrix T(A) and its inverse T(A). 
Q(x)  contains at most |A ^ | independent complex-valued functions of x. Thus 
it is natural to expect that at most |A]*"| of the coefficients of T(A) for A 6 R m, 
instead of (2 r)2, will be independent. Here |A f | is the number of roots in A ^ , 
i.e. |A f  I =  r(r  +  l ) /2  for Cr and |A f  | =  r(r  — l ) /2  for D r. The continuous 
spectrum R m =  (—oo, —m)  U (m, oo) is determined by the condition | A| > m.  
The two Jost solutions are fundamental solutions and must be linearly dependent. 
This means that there exists a matrix T(t ,  A), called scattering matrix, which con­
nects them and has an appropriate block structure.

T ( t , X ) = ,ip 1(.t , t, A) cj)(x, t, A). (31)
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2.1. The ^-dependence of the Scattering Data

A direct consequence of the Lax representation is the evolution law for the scat­
tering matrix. Indeed, let us consider the regularized M -operator (i.e. M  defined 
by equation (10) but with Vo given by equation (17)) acting on the Jost solution 
cp(x, t, A). First we will define the function C(A) by requesting that the asymptotic 
of cj)(x, t, A) for x  — oo (see equation (27) holds true for any t. Taking in it the 
x  — oo limit and taking into account that lim ^ -to c  V2 (x, t )  =  0 (see equation 
(17)) we get:

2A(Q_ -  ÀJ)<p„Y)eif4À)Jx = <fi0(A)eiflW JxC(A)  (32)

which combined with equation (28) means that

C(A) =  -2A/x(A) J. (33)

Taking the limit to x  —¥ oo we obtain
Arp
—— +  2A(Q+ -  A J ) ^ 0(A)eiM^ J;rT(L A)
Lit/

=  iJ}o(\)elflW JxT ( t , \ ) C ( \ )  (34) 

i.e. the f-dependence of the scattering matrix is given by

dT
i — -2A/x(A)[J,T(*,A)] =  0. (35)

Thus we find that the MNLS with c.b.c. in the case of single threshold has the same 
dispersion law /(A ) =  2Xp(X) as the scalar NLS with c.b.c., see [25].
We can use for the scattering matrix the same block-matrix structure as in v.b.c. 
case [15]

q>(x, A) =  ij)(x, A)T(A),

T (  A)
f a+(A) - b - ( A ) \  
\  b+ (A) a-(A ) J

c (A) d (A) \  
-d + (A) c+ (A) J  ‘

(36)

The block matrices of the inverse matrix are defined as follows 

c_ (A) =  a + (A)(ll +  p~ p+y x =  (H +  r + T_ )_1a + (A) 

d_ (A) =  a + (A)p~(A) (H +  p+p ^ Y 1 =  (H +  T+ T~)_1T+ (A)a~(A) 

c+ (A) =  a _ (A)(H +  p+ p ^ Y 1 =  (H +  T+ r _ )_1a _ (A) 

d+ (A) =  a~(A )p+ (A) (H +  p~p+ )_1 =  (H +  T~T+ )_ 1T~(A)a + (A)

where
p± ( A) =  b± (A)a± (A) =  c± (A)d± (A) 

r ± (A) =  a ± (A)bT(A) =  dT(A)c± (A)
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are the multicomponent generalizations of the reflection p*, r *  coefficients for the 
scalar case, see [27,29,30],
From equation (35) there follows that the diagonal blocks of T( t ,  A) and its inverse 
are time independent

, d a *  
d t

, dc* 
d t

0. (39)

In other words these blocks can be used as generating functionals of the conserva­
tion laws of the MNLS. The off-diagonal blocks of T( t ,  A) and its inverse evolve 
in time according to

. db ±

2A/x(A)b± . dd±

2A/x(A)d±

d t  d t
As a consequence for the reflection coefficients p* and r *  we get

d r*

0.

i ““ j“T ~  2A/x(A)p* =  0, ±  2Ap,(A) t *  =  0
d t

(40)

(41)

2.2. The FAS and the RHP

First we will write down the integral equations which are satisfied by the Jost so­
lutions. It will be more convenient to introduce

X +(x,  A) =  \ ) e lJ° W x

X - ( x , \ )  =  cpQ1(p(x, X)elJ° ^ x
(42)

which satisfy lim ^-to c  X±{x ,  A) =  11. It is not difficult to show that they must 
satisfy the following integral equations

px
X+(x ,  A) =  H +  i / dy e ^ x^ y - ^ U + ( : x ,  A)X+(y,  A (43)

J  oo

and

X _(x,A )

where

l + i /  dy  (44)

U- {x , A) =  -  Q - ) 0oO ).

Below we will use the following block structure for X±{x ,  A), each block being 
r x r matrix

X±,i(z,A)> {  -^±,11 
V -^±,21

*± ,2 (® ,A )) (  -^±,12 \
V -^±,22 J

(46)
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Then from equation (43) we obtain the following integral equations for the func­
tions A)) and \X+g(x i A)}

X+,i(x,A)>

W ,2 (z ,A)>

(  (U+(x, A).Y+(>/, A ))n A
V e - 2i" 'A )( ! '-) (L r+(rr, A)X+(y, A))21 ,

(  (e2WA>(»-*)[r+(x, A)X+(;y, A))12 A
V {ï7+(.t , \ ) X +(y, A))22 J

(47)

These are Volterra-type integral equations. It is well known that such equations 
allow solutions if one can prove that the integral is convergent. For Im/r(A) < 0 
the convergence of the integral in equation (47) follows from the following facts: 
i) Q(x)  — Q+ tends to zero fast enough for x  oo; ii) the exponential factor 
exp(—2i/r(A) (y — x))  decreases exponentially. Thus we have outlined the proof of 
the fact that |X + ii (.t , A)) is an analytic function of A for Im/r(A) < 0. Similarly, 
one can prove that \X+^(x i A)) is an analytic function of A for Im p ( \ )  > 0.
The same ideas can be applied also to the integral equations for X - ( x ,  A).
From the above arguments it is also obvious that the analyticity properties hold 
true on one of the sheets of the two-sheeted Riemannian surface S

S = S 1 U S 2

associated with the square root /r(A). The relevant cut is

Cp =  [—oo < JRA < —p\ U [p < ?RA < oo]. (48)

Each sheet of this surface is determined by the sign of p ( \ ) ,  i.e.,

S i: Im/x(A) > 0, S2 : Im/x(A) < 0. (49)

From equations (29)-(30) it follows that ^o(A) and <po(A) are also analytic on both 
sheets Sj  having singularities only on the end-points of the cuts.
As a consequence we can formulate the analyticity properties of the Jost solutions 
as follows

ip (x , \ )  = (\ip (x, A)), \ip+(x, A))), <p(x, A) =  (|<p+ (.T, A)), \(p (a;, A))) (50)

where l ^ )  and l ^ )  denote a r x 2r matrix composed of the corresponding r 
columns of the Jost solutions. The superscript +  (respectively —) means analyticity 
on the first sheet Si  (respectively on the second sheet So). We will use similar 
representations for their inverse

A) <ÿ+(a;,A )|\
$ - ( x , \ ) \ )

(51)

where again the superscripts +  and — refer to the analyticity properties.
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Next, we can construct FAS on each of the sheets by simply combining the blocks 
of the Jost solutions with the same analyticity properties

X+(x,X) = (\(j)+),\'ip+)) (x,X),  X~(x ,X)  =  ( |^ ) , |< j r ) )  (x,X).  (52)

They are related to the Jost solutions by upper- (respectively lower-) block-triangular 
functions S* and T* (see [10] for similar decompositions in the v.b.c. case)

X^ ix ,  X) = ip(x, A)Tt  =  cp(x, A)S± (53)

where

S+ =

S" =

k d~ \
0 c+ )

c~ 0 
—d+ 11

T -  =

r+ —

a+ O'
b+ k,
11 —b 
0 a ~~

(54)

These triangular factors are directly related to the generalized Gauss decomposi­
tions of the T(A). Indeed they satisfy

ï+T(X)  =  T"(A )S (A) =  T + (A)S (A) (55)

Here and after the hat means taking the inverse matrix.
The proper generalized Gauss decompositions involve block-triangular factors that 
have unit elements on the diagonal. Simple rearrangements do the job as follows

2+ - l ’

T+ =

S î  =
11 T +  N 

0 11 ,
11 - p ­
0 11

5 7  =

TJ  =

k o
~T~ 11

ii oA 
p +  k

(56)

The block-diagonal matrices D f  (respectively D a ), j  =  1,2, are given by

=

®r =

k o
o c+ 

c~ 0
o k =

’ a+ 0
o k 

k o
0 a -

(57)

Therefore the proper generalized Gauss decomposition takes the form

T ( \ )  =  T J D + S j  =  T + V j S j

where

a+ 0 
0 c+ D j  — D 1 D 2 — c 0

0 a~

(58)

(59)
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Using the properties of the symmetric spaces and the Cartan-Weyl basis one can 
write down the triangular factors also as

S’f  (A) =  exp I ±  T< t W E ±c 
a£Af

77(A ) = exp ( ± p± (A)£±t

ttgAj"

1 +  £  T ± ( \ ) E ± a
aeAf

1 + E
aeAf

(60)

Now we redefine the FAS A) from equation (53) by

y f ix ,  A) =  <p(x, A )Sf =  ÿ (.t, » T f  p A ) . (61)

After this redefinition A) take values in the corresponding Lie group.
We also introduce the FAS ^ ( x ,  A) of the related linear problem

‘7 Ê  +  (QM -  A -m fi*, A) +  A)p(A) J =  0 (62)

which are expressed in terms of the Jost solutions by

A) =  <p{x, A )T j(A )£  J (A )e^ (A)J* (63>

for A 6 93. These FAS satisfy the following RHP

£+(x, A) =  C f a  \ )G (x ,  A), G(x,  A) =  e - iflW JxS ~ S +( \ ) e iflW Jx (64)

on the Riemannian surface S. Of course reducing the ISP for the Lax operator L  to 
an RHP allows one to apply the dressing Zakharov-Shabat method. Of course, in 
order to render the problem uniquely solvable we need to specify also the normal­
ization condition for ^  (x, A) which takes the form

lim £+ (.t , A) =  11. (65)
À—î̂QO , Àêïl&i

The possibility to reduce the inverse scattering problem to an RHP allows one 
to apply the dressing Zakharov-Shabat method [31,32] for evaluating the soliton 
solutions, for A.III-type symmetric spaces see [15].
We will say that ^ ( x ,  A) are regular solutions of the RHP (64) if £+ (x, A) has no 
singularities for any A 6 01+ and £~(x,  A) has no singularities for any A 6 IP-. 
The character of these singularities in terms of A may be rather involved. The 
problem simplifies if we introduce the uniformizing variable z on the surface 01

z =
1 =  A -  y/A2 -  P2 
z 2 p

(66)

The change of variables from A to z is a conformal transformation which maps 
the sheets Ol\ and Ol\ into z 6 C+ and z 6 C _. The advantage of this change
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of variables is that it becomes easier to treat the singularities of ^ ( x ,  A). A more 
thorough analysis of the structure of the zeroes of a*  and c* shows that, like in the 
scalar NLS case [25], the FAS ^ ( x ,  A) as functions of z allow pole singularities 
in z. In what follows we assume that these poles are simple, which means that

t ± (x , z )  = ^ l + i t ( x )  + 0 ( z - z £ ) ,  k = l , . . . , N  (67)
z - z k

in the neighborhood of z f .  The RHP (64) and the normalization condition (65) 
can be reformulated on the complex z-plane as follows

£+ (.t , z) =  £- (rc, z )G{x , z), lim z) =  II
S- o c  ( 6 8 )

G{x, z)  = <r*z- Z )pJxS ~ S +{ A)el(c"c )pJx.

2.3. Constructing Singular Solutions of the RHP

The singularities of the FAS are directly related to the discrete eigenvalues of L. Of 
course we have to remember that the Lax operator L  is equivalent to a self-adjoint 
eigenvalue problem. Therefore its eigenvalues on the complex A-plane must be 
real and lie in the lacuna, i.e., —p < A*. < p. Going to the uniformizing variable 
we find that A*, is mapped on the unit circle of the complex z-plane

so that z ^  6 C±. Therefore it will be convenient to write down the anzats for the 
dressing factor as rational function of z as follows

uk(x, z) =  11 +  (cfc(z) -  1 )Pk +  (cfr 1 -  1 )Pfc, Ck(z) = - ---- ^  (70)
z - zk

where Pk is a projector onto the corresponding eigen-subspace of L  and Pk =  
SqPjFSq. This last condition ensures that u k(x, z) is an element of the corre­
sponding Lie group. It remains to introduce the asymptotic expansion of FAS over 
the negative powers of z

^ ( .T , z) =  11 +  Z k^ k ( X) (71)
k=l

and to replace in equation (62) A and /r(A) by p(z  +  z ^ 1) and p(z  — z ^ 1) respec­
tively. The corresponding equation

+  (Q(x) ~ ( z  + z ^ 1)p.J)^± (x, z) +  ^ ( x ,  z ) (z  -  z _1)pJ  =  0 (72)
CLX
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allows one to relate the potential Q(x)  with the first coefficient ^ ( tc )  in the ex­
pansion (71). Indeed, taking the limit z —>■ oo in equation (72) we get

Q(x)  =  lim zp (.J -  £±(x,  z ) J ^ ( x ,  z ) )  = [J ,£ f  (a;)]. (73)

Let us assume that we have solved the RHP (68) and know one of its regular solu­
tions £^(rc, z). Then equation (73) allows us to evaluate the corresponding regular 
potential Qo(x).  Next we apply N  times the dressing procedure by acting with 
ui (x ,  z), . . . ,  uj\r(x, z), adding 2N  discrete eigenvalues to the spectrum of L. 
Then the resulting potential Q(x)  will be related to the regular one Qo(x) by

N

Q(x ) = Qo(x ) -  ^ 2 ( 4  -  zk) l J i p k -  p k)

fe=1 (74)

=  Q„(x) -  -  -  [j- Pk -  A ].
P k= 1

These expressions allow us to evaluate the N -soliton solutions of the MNLS equa­
tion with c.b.c. The explicit construction of the projectors Pk(x)  in terms of the 
regular solutions yÿj1 (x, A) will be presented elsewhere.

2.4. The Resolvent of the Lax Operator

The FAS can be used to construct the resolvent of the Lax operator, much in the 
same way as it has been done for the v.b.c. case. Let us define the kernel of the 
resolvent of L  by

A)

0 + (x -  y) 

(~ r(x -  y )

A )0± (a; -  y ) x ^ (?/, A)

f - H Ö ( y - x )  0 \
\  0 M (x  -  y) )

(  &Hx -y)  0 A
V 0 - h 9 { y - x ) ) '

\  Çz Cp

(75)

where A) are given by equation (61).

Theorem 1. Let Q(x) is a function such that lim.r _>-j-rx; (Q(x) -  Q±)  =  0 fast 
enough. Let —p < X j  < p be the simple zeroes o f  det a± (A). Then

1. R ^ (x , y, A) is an analytic function o f  A fo r  A 6 “dlip having pole singular­
ities at Â 1 6 [—p, p)

2. R ^  (x, y, A) is a kernel o f a bounded integral operator fo r  Im /r(A) 0
3. RP (:n, y , A) is uniformly bounded function fo r  A 6 ‘dlip and provides a 

kernel o f an unbounded integral operator
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4. R ^  (x , y . A) satisfy the equation

L(X)R± (x, y, A) =  H S ( x - y ) (76)

Proof: Idea of the proof.

1. This is obvious from the fact that A) are the FAS of L( A).
2. Assume that Im/r(A) > 0 and consider the asymptotic of R +( x , y , A) for

x,  y  oo. From equations (27) and (63) we find that for x, y  — oo the 
(l,l)-block of 'ip()R+ (x, y, X)ipQ behaves like

( f y i ( \ )R+(x,y ,  A)^0(A))ii ~  i 0(y _  iT) (77)

i.e., it decreases exponentially for all x  — oo and arbitrary choice of
y. Similar analysis applies also for the other blocks of R +(x,y ,  A). All 
other possibilities are treated analogously. In doing this it is important that 
X+ (.t , A) has triangular asymptotics for x  ±oo and also of the correct 
choice of 0 + (.t — y) (75). To conclude the proof we also use the fact that 
ipo(\) and ipo(\) are singular only at the end-points of the cut Cp.

3. For A 6 Cp the arguments of 2) can not be applied because the exponentials 
in the right hand side of (77) Im A =  0 only oscillate. Thus we conclude 
that R ^ ( x ,  y, A) for A 6 Cp is only a bounded function and thus the corre­
sponding operator R ( A) is an unbounded integral operator.

4. The proof of equation (76) follows from the fact that L(X)x+(x, A) =  0 
and

= (78)

The theorem is proved. □

Using the kernel of the resolvent R^ { x ,  y, A) one can derive the spectral decom­
position of L.
To do this we apply the contour integration method to the integral

1 f  AHA
^  — r R +( x , y , \ )  (79)
27T1 J c  m (A)

where the contour is shown on the figure below.
According to Cauchy theorem

N A

k=1
(80)

We can also calculate J r by integrating along the contour. We split this integral 
into two and first evaluate the integral along Cp. Doing this we have to determine
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Figure 1. The contour along which we integrate lies completely on the 
first sheet of the 2-sheeted spectral surface associated with the square 
root /i(A) =  \ /X 2 — p2

the jump of R +(x, y , A) along the cut

A,/x(A)) -  R +(x,y ,  A, -/x(A))
=  R +(x,y ,  A,/x(A)) -  R ~ ( x , y ,  A,/x(A)) (81)

=  y (l<P+ ( ^ ) ) a + {^+ (?/, A)| -  \(p-{x,X))aT{ip-{y,  A)|) .

The integration along the infinite semi-arcs can be done explicitly using the asymp­
totic of x + (ar, A) for large A. Note that the asymptotic is different for the upper and 
lower complex half-planes

Y+ (x, A) =  ^o(A)(H +  z (x) +  • • • )

—¥ e
A—>oc

-iA Jx (H +  0(A-

-4 elÄJX(iS +
A—>oc

for A G C+

for A € C_

(82)

where

S’ 0 S’l 
Si 0 (83)

As a result the integration over C± x  can be performed explicitly with the result

27ri C + .o o U C -

AdA
/r(A)

R +(x,y ,  A) = S ( x -  y)J. (84)
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It remains to equate the two answers for the integral Jn(x , y)  in order to get the 
spectral decomposition for L  in the form

S ( x - y ) J
AdA

J c 0 K x)
<p+ (x,A)}a+ {^+ (|/, A)| -  |0  (x,A))a {ip (?/, A)

N A

T . t l x » R+(x’y ’x) 'k= 1
(85)

We recall that the r x 2r blocks |<p± (rc, A)) and \ip^{x, A)) are defined by equation
(50) while the r x 2r blocks { ^ ( x ,  A)| and {ip^(x,  A)| are introduced in equation
(51) .
In deriving equation (85) we have assumed in addition that i?± (.T,7y, A) has no 
singularities at the end points of the spectrum.

3. Wronskian Relations

Let the class of allowed potentials M  be a slice of O j  determined by additional 
constraints: i) any generic element F(x)  =  P jF ( x )  of M  is matrix-valued func­
tion such that lima;_»±oc(Q(aO — Q±) =  0 and ii) the phase factor V  =  exp(i^o«0 
which connect the asymptotic values of the potential Q+ =  V ^ Q - V  and y-o is an 
integral of motion. The derivative of the potential Qx (x, t) belongs to the class of 
allowed potentials. The variation of the potential 5Q(x,  t) is an allowed potential 
provided it satisfies the second additional condition. The mapping 3* : M  —>■ L  be­
tween the class of allowed potentials M  and the scattering data L of L is analyzed 
by means of Wronskian relations [5,6]. These relations allow us to formulate the 
main result of this work, i.e., that the ISM is a generalized Fourier transform in 
the case of C.I and D.III-type symmetric spaces. They also serve to introduce the 
skew-scalar product

A(x),  B{x) I  d.T ( A ( x ) , [ J  , B(x)  ] ) ( 86)

which is non-degenerate for A ( x ) ,B (x )  6 M  and provides it with symplectic 
structure. We start with the identity

(A (Q(x , t) -  A J)  x(x, A ), E± IOO
OL ! \x =  — oo

cLt J , J Q x ]  , P j  X E±a x(x ,  A)
(87)

where \ ( x i can be any fundamental solution of L. For convenience we choose 
them to be the FAS introduced above. The left hand side of (87) can be calculated 
explicitly by using the asymptotics of FAS for x  ±oo. It would be expressed
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by the matrix elements of the scattering matrix T(A), i.e., by the scattering data of 
L  as follows

P j X +( x , \ ) E a x  + , J Q 4  = - p ( \ ) ( T  J T
+

) E a

[[P ,Y + (.t , A) J Q j ]  = m(A )(S  J S + , E _ a

[ P ,  x--(x, A) Ea \ ~ ,  J  Qx]\ =  71(A) ( § "  JS

P . , X - ( x , X ) E - a x - ' J Q 1
;+

) Ea

p ( \ )  ( T ' J T + , E

=  2/x(A)bJ 

= 2/x(A)dIQ 

2/x(A)d+

= 2/x(A)b

(88)

where a  6 A ^ .
The second set of Wronskian relations which we consider relate the variation of 
the potential ÔQ to the corresponding variations of the scattering data Sp and Sr. 
For this purpose we use the identity

( x 5 x ( x , X ) , E ± OO
Qtf \x=  — 00 dx ([ J , J SQ ] , P j  x (x ,  A) E ± a x ) . (89)

If we assume that the variation of the phase factor 5 V  vanishes we arrive at

[P,7 X'+ (•"=, A) E ay + , J  d'Q]] = - i ( - r < S T - ,  Ea)

[[P.7 (•"=, A) B - t> Y + , J  ÄQ]] =  i ( s +ÄS+, E . a )  = i ( i r + c + ) _ t>

i { S ÄS'

i ( T + tST+ ,

) Ea i (St  c ) l

(90)

i (Sp a"

[ P j *  (x,A) E a xVÄQ]]

[[P.7:T(:r,A) E - c  X~,J ÄQ]] 

where a  6 A ^ .
These relations are basic for the analysis of the related NLEE and their Hamilton­
ian structures. The above identities also allow us to introduce the proper gener­
alizations of the usual Fourier exponential functions. Let us introduce the set of
squared solutions”

K (x, A) = Pj A '* )A) a;)E±a\ ± {[x, A), for Ct E *1
q/±.Ct (x, A) = P j A ^ lA) a;)ETaX± {[x, A), for Q' E

e * (x, A) = Pj % a;)E±aX± {%  A), for Q' E A t

'^a (x, A) = Pj A ^ lA) a;)ETaXi {[x, A), for Q' E

(x, A) = Pj A) a;)Hkx ± (x, A), for k = i , .

(91)

,r.

These are the “squared solutions” of the Lax operator L  connected with simple Lie 
algebra g. They are constructed by means of FAS A) and the Cartan-Weyl
basis of the algebra and are analytic functions of A on the corresponding sheets of
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the spectral surface. The equations that an satisfy are a direct consequence 
of the fact that FAS and their inverse satisfy the Z-Sh system system

+  [Q(x ) -  A A)] =  0, +  \Q(x)  -  A J, * ± ( x ,  A)] =  0.CLX J CLX
The “squared solutions” serve as building blocks of the Green function [8-10]

G ± (a;,?/, A) =  G f ( x , y ,  A)9(y -  x) -  G%(x,y,  A)0(x -  y) (92) 

which allows one to derive their completeness relation. Here

G f ( x , y ,  A) =  ^  (h J (x ,A )® ^ J ( |/ ,A )  (93)
a€ AJ

G%(x, y , A) = (x >A) ® f a  A) +  S  (x ' A) ® 0 « fa ’ A)

1 0 1  (94)

+  E t * (* ,A )® T ± (!;,A)
fc=1

and 9(x) is the usual step function.

4. Generalized Fourier Transforms and Higher MNLS

The main result in this section is that the sets } and } form complete sets 
of functions in M. The idea of the proof is simple. Apply the contour integration 
method along a proper contour (see Fig.l) to a conveniently chosen Green function 
(92). From the Cauchy theorem we have

1
27Û M A )G + ( jv ; ' ’ a ) '

(95)

Integrating along the contours we treat separately the contribution from the infinite 
semi-arcs and the ones from the continuous spectrum R m =  C\  U Co which is 
composed of the cuts C i =  (—oo, —m)  and Co =  (m, oo). Special care must be 
taken for the end points A =  ± m  of the spectrum. Assuming that the end points of 
the spectrum give no contribution we obtain the following completeness relation

S(x -  y )U j  
1 ^ —>

ogA ; v‘

AdA
M(A)

x, A) ® V + (?/, A) -  $ a (x, A) ® V a (?/, A)}

N

£
«eA l fc=i

d A
dA /q-A)

(96)
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Here n ,/ =  ® E _ a — E _ a ® E a], The assumption that we have made
is that A 4 are simple poles of the “squared solutions” (I>+ and 
Using the completeness relation one can expand any generic element of the phase 
space M  over each of the complete sets of “squared solutions” and This 
relation is utilized with the help of the following the trick

- h n  {([J, F(.t)] 8  1)11./} =  h r  2 { n .;( l  8  (J, F{ i)])}  =  F(x)  (97)

where tr i (and tr 2) mean taking the trace of the elements in the first (or in the 
second) position of the tensor product.
The completeness relation (96) allows to establish one-to-one correspondence be­
tween the elements of M, such as Qx and Q {, and its expansion coefficients. It 
is also directly related to the spectral decompositions of the generating (recur­
sion) operators A±. These operators are the ones whose eigenfunctions are the 
“squared solutions” [8], For an alternative method of constructing recursion oper­
ators see [17], There the derivation starts by introducing the splitting of the object 
e± _  ^ ± (iT) A)E ±a x i:(x, A) into block diagonal and block off-diagonal parts

e j(x , A) =  e ^ ( x ,  A) +  A), e ^ ( x ,  A) =  (1 -  Pj)  e±(x,  A) (98)

and making use of the equation

.d  ej£
dir

[Q(x) -  A J ,e j ( i r ,  A)] =  0.

The last equation splits into
1 A, ±. d ea ' 

dx
[Q (x),(hJ(x , A)] =  0

and
dffi*a

dir
Q(x) ,efy'± (x, A) =  A [J, $ J ( ir , A)] . 

Further, equation (100) can be integrated formally which gives

e ^ ( X, A) =  C * ± (  A) +  i dy [Q(y), A)]
J  too

Ci \ i ( X) =  lim e ^ f o A ) ,  e =  ±1.

Next insert (102) into (101) and act on both sides by ad y 1. This gives us 

(A± -  A) $>±(x, A) =  i (A), ad Ÿ Q { X) 

where the generating operators A± are given by

d~
A ±^(ir) =  a d J j i ^  +  i Q(x) ,  f dy [ Q ( y ) , ^ ( y ) }

A i o c

(99)

(100)

(101)

(102)

(103)

(104)

(105)
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Thus ^  (respectively (I>* ) will be eigenfunctions of A+ (respectively A_) if and 
only if C a;^(A) =  0. Evaluating the limit of (103) for all a  we find

(A+ -  A ) ^ ( . t ,A) = 0,

(A_ -  A) (I>*(.t , A) =  0,

where a  6 A]1". This result can be generalized for arbitrary /(A ± )

( /(A +)-/(A ))> P ± (:r ,A ) =  0,

( / ( A _ ) - / ( A ) ) $ ± ( z , A ) = 0 ,

The class of higher MNLS on symmetric spaces of C.I and D.III-type and with 
c.b.c. can be put down in terms of the derivative of the potential Q{. with respect to 
the evolution parameter and the dispersion law — 2/r(A)/(A) [10,25] as follows

iad j 1 +  /(A ) ad ^ Q x =  0. (108)

Substituting the objects in this formula with their expansions over the “squared 
solutions” we obtain equations for the evolution of the scattering data. The expan­
sion coefficients of ad j Q i  and ad j Q x on the continuous spectrum turn out to 
be exactly the minimal set of scattering data. The evolution for the reflection and 
transition coefficients is provided by

i ^ T  =  /(A) ß(X)p± (t, A) =  0, i ^ - ± f ( \ ) f j . ( \ ) T ± ( t , \ )  = 0 (109)

for A 6 Rrri-
The observation that the scattering data evolves trivially is visible from the equation 
depicting the evolution of the scattering matrix T { A). This equation is a result of 
the compatibility condition (8) and the fact that the two Jost solutions ip and cp are 
solutions of the second operator of the Lax pair in the Z-Sh system (9). Acting 
with i d /d t  on T(A) (31), we recover equation (35).
We end this Section by the principal series of local integrals of motion A  which is 
generated by

ÖG
lnde t a± (A) =  A_fc/fc. (110)

k=l

/(A + ) -  / (A±)  ..(x) = 0
; (io 7 )

/ ( A - )  -  /(A * ))  < ., .(* )  =  0.

5. Discussions and Conclusions

Here we first briefly consider a more difficult problem: the spectral properties of 
the Lax operator L  with multiple thresholds. In order to deal with it we need to
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evaluate the asymptotic behavior of the Jost solutions for x  —¥ ±oo. To this end 
we need to calculate the eigenvalues and eigenvectors of Q±  — A J

( Q + - A J ) V 'o(A) = - * ( A ) J o(A)

(Q- - A J )  0n (A) = —0o(A) Jo(A) (1U )

which have the form

PoPO =  ip%U0(X), (p 0(A) =  ^ C ro(A

r
Uq(X) =  ^  (Ak(Ek,k +  -Epfc

0
0 p>±

fc=l

4̂fc Bk

2

+  B k(E h%k +  E h%k) )

k  =  2r +  1 — k

( 112)

dz 2
p

where p =  diag ( p i , . . ., pr) is the set of threshold values. In what follows we 
assume that they are ordered by p\  >  po > • • • > pr > 0. We shall see that these 
eigenvalues determine the thresholds of continuous spectrum of L.
The first difficulty in solving the problem is that the multiplicity of the continuous 
spectrum varies, which reflects on the definition of the Jost solutions

cp(x, A) — > cpQ( \ ) e - UxP ( \ )ip(x,X)  — > iPQ(X)e,-UxP(X),
x —too

T
M *) =  X>fc(A)fffc, A)

fc=l

W,(A) =  \ / a2 - p i  Pk(A)

x—y—oo 
r

Y .  P kW (E k , k  +  E K%k) (113)
fc=l

0 ( | » A | -p fe)

where k  =  2 r +  1 — k.
We introduce X ^ ( x ,  A) =  A) exp(iJo(^)^) which satisfy the following
integral equations

X +( x , A) =  H +  i
px

dy eïJo^ - ^ U + ( x ,  X)X+(y,  X)e,-iJ° W v ~ x)
' oc

(114)

X ~ ( x ,  A) =  H +  i j
fX

d y eUo{X){y- x)U- (x ,  X )X~( y ,  A)e^iJo{A){' ^ ;r)
— DO

(115)

or in components

X+(x,A)  =  5m + i
px

dy  e H « { A ) - W {A)){ÿ - x )  ^ j +{x, X)X+(y,  A))fr/
J oo

(116)

X - ( x , X )  = SM + i j
px
1 dy e i{r t { A ) -Â {A)){ÿ - x )  X)X~(y ,  A))fr/.
= o o

(117)
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The second difficulty is that with each thresholds value p̂ , one relates a Riemannian 
surface k  =  1, . . . ,  r with two leafs defined by the sign of Im y x f c ? thus we 
have a total of 2r leafs. Below we define %i by

and %i by

Im /ri (A) > Im/i2(A) > • • • > Im p r (X) > 0

Im/ii(A) < Im/i2(A) < • • • < Im pr (A) < 0.

(118)

(119)

Now only the first column of ip(x, A) and the last column of cp(x, A) (respectively 
the last column of ip(x, A) and the first column of cp(x, A)) have analyticity prop­
erties in A on %i (respectively on &i). Nevertheless using the methods proposed 
in [24] we will be able to construct fundamental analytic solutions as follows

X+(x,X) = i j}(x,X)T~D+(X) = (f>(x,X)S+(X)

\ ~ ( x ,  A) =  i ) { x , \ ) T + D-{X)  = cp(x,X)S-(X)  (120)

and show that x +(x j A) (respectively x  (x j A)) is analytic1 in A on the sheet 911 
(respectively IKi). In (120) S +, T + (respectively S~,  T~ )  are the upper- (respec­
tively the lower-) triangular matrices, related to the scattering matrix T(A) by the 
Gauss factorization condition

T (  A) =  T ~ D + (A)S’+ (A) =  T + D - S + (  A). (121)

More detailed analysis, including the the proof of the above facts will be given 
elsewhere.
The result of this work is that the interpretation of the ISM as a generalized Fourier 
transformation holds true in the case of Lax operators with constant boundary con­
ditions on symmetric spaces connected with the Lie algebras Cr ~  sp(2r) and 
D r ~  so(2r). The completeness relation of the “squared solutions” of the gen­
eralized Z-Sh system in the case when the Lax operator L  becomes self-adjoint is 
derived. The “squared solutions” turn out to be generalizations of the usual Fourier 
exponential function and eigenfunctions of the recursion operators A±. This result 
allows one to prove that the corresponding NLEE results in linear evolution for the 
scattering data. The recursion operators [8,17] A± open the path towards the con­
struction of action-angle variables for the NLEE solvable with this generalization 
of the Z-Sh system and from there the Hamiltonian formulation of these equations 
and their hierarchies connected with A±. Similar constructions can be developed 
also for systems with deep reductions, see [26].

^ o r e  precisely, analytic functions in A are not y*  and y A  but y*  exp(i Jx)  and y*  exp(i Jx)  
respectively.



Multi-component Nonlinear Schrödinger Equation on Symmetric Spaces ... 65

The physical applications of the NLS equation both kind, i.e., with vanishing and 
non-vanishing boundary conditions is well known, the same holds true for the Man- 
akov system as well as for the sp(4) MNLS with v.b.c., see [19]. It will be inter­
esting to find new physical applications also for the MNLS with c.b.c.

Appendix

The above definition of g (23) satisfies the requirement that the Cartan subalgebra 
t} will be made up of diagonal matrices. The Cartan generators H k, dual to ek, 
are given by

H k = E kk -  Epp  (122)

The element J  =  Y2k=i belongs to t} and is dual to a.
The root vectors in the typical representation are given by

E * - *  =  %  -  ( - 1 ) ^ % ,  = %  -  ea( - l f + l E f i  (123)

where 1 < i < j  < r and cq =  ±1. Since cq =  1 for g ~  so(2r) equation (123) 
gives vanishing result for i =  j  which is compatible with the fact that 2er are not 
roots of so(2r);  for g ~  sp(2r) cq =  — 1 and equation (123) by putting i =  j  
provides also an expression for ■ However this expression is not normed with 
respect to the Killing form {Ea , E - a ) =  2 . The Weyl generators associated with 
the root 2e./ that we will use are given by [18]

E s* =  V 2 % .  (124)
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