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Abstract. The gravilalional inleraclion of lighl is analyzed considering ils 
dual characlerislic nalure, i.e., as an (eleclromagnelic) wave or as a particle 
(pholon). Considered as an eleclromagnelic wave, the light can be source of 
gravilalional waves belonging Lo the larger class of exacL solutions of Einslein 
field equations which are invariant for a non-Abelian Iwo-dimensional Lie 
algebra of Killing fields. Il is shown thal in the would be quanlum theory of 
gravily Lhey correspond Lo spin—1 massless parlicles.

1. Introduction

As described in Quantum Electrodynamics (QED), pholon-pholon scattering can 
occur through the creation and annihilation of virtual electron-positron pairs and 
may even lead Lo collective photon phenomena. Photons also interact gravitation­
ally but the gravitational scattering of light by light has been much less studied. 
Purely general relativistic treatments of electromagnetic wave interactions have 
been made resulting in exact solutions [12,13], but these calculations are different 
from pure scattering processes and do not address the interaction at single photon 
level. IL is not clear Lo whal extent, calculations of the gravitational cross-section 
using Quantum Filed Theory (QFT) methods are consistent with classical Gen­
eral Relativity (GR). First studies go back Lo Tolman, Ehrenfest and Podolsky
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[25] and, later, to Wheeler [27] who analysed the gravitational field of light beams 
and the corresponding geodesics in the linear approximation of Einstein equations. 
They discovered that null rays behave differently according whether they propa­
gate parallel or antiparallel to a steady, long, straight beam of light, but they did 
not provide a physical explanation of this fact. Later, Barker, Bathia and Gupta 
[2], following a previous analysis of Barker, Gupta and Haracz [4], analyzed in 
QED the photon-photon interaction through the creation and annihilation of a vir­
tual graviton in the center-mass system and they found that the interaction have 
eight times the “Newtonian” value plus a polarization dependent repulsive contact 
interaction and also obtained the gravitational cross sections for various photon 
polarization states. Results of Tolman, Erhenfest, Podolsky (TEP) and Wheeler 
were clarified in part by Faraoni and Dumse [11], in the setting of classical pure 
General Relativity, using an approach based on a generalization to null rays of the 
gravitoelectromagnetic Lorentz force of linearized gravity. They also extended the 
analysis to the realm of exact PP-wave solutions of the Einstein equations. After 
Barker, Bathia and Gupta, photon-photon scattering due to self-induced gravita­
tional perturbations on a Minkowski background has been analyzed by Brodin, 
Eriksson and Marklund [2,4] solving the Einstein-Maxwell system perturbatively 
to third order in the field amplitudes and confirming the dependence of differential 
gravitational cross section on the photon polarizations.
Since the problem of the gravitational interaction of two photons is still unsolved, 
it appears necessary to take into full account the nonlinearity of Einstein’s equa­
tions, just as in the case of gravitational waves generated by strong sources [9,24], 
This is the case, for example, when the source is a coalescing binary from which a 
secondary wave (called the Christhodoulu memory) is generated via the non linear­
ity of Einstein’s field equations. The memory seems to be too weak to be detected 
from the present generation of interferometers (even if the frequency m  is in the 
optimal band for LIGO/VIRGO1 interferometers). However, the Christodoulou 
memory is of the same order as the linear effects related to the same source, thus 
stressing the relevance of the nonlinearity of the Einstein’s equations also from an 
experimental (LIGO/VIRGO) point of view.

2. Linearized Einstein Theory

A gravitational field g =  gßV (x ) d x^d x1* is said to be locally weak if there exists 
a (harmonic) coordinates system and a region M ' c M  of space-time M  in which 
the following conditions hold

9{iv — "I- h fofivl 1 • I hfiv,a I «  1 . ( 1)

* LIGO is the Laser Interferometer Gravitational Wave Observatory (the name of USA Laser Inerter- 
ometer) and VIRGO is the name of Italian Laser Interferometer
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As it is known, in the weak field approximations in a harmonic coordinates system 
the Einstein field equations read

= 0. (2)

The choice of the harmonic gauge plays a key role in deriving equation (2) and 
no other special assumption either on the form or on the analytic properties of 
the perturbation h has been done. For globally square integrable solutions of 
the wave-equation (2) (that is, solutions which are square integrable everywhere 
on M ), with a suitable gauge transformation preserving the harmonicity of the 
coordinate system and the “weak character” of the field, one can always kill the 
“spin-0” and “spin—1” components of the gravitational waves. However, in the 
following we will meet some interesting solutions which do not belong to this

I ooc  vidoL><

2.1. Gravitoelectromagnetism

A slightly different point of view, which is useful in clarifying the nature of spin 
of gravitational waves is provided by the gravitoelectromagnetism (GEM), (see, 
e.g., [14]). In this scheme one tries to exploit as much as possible the similarities 
between the Maxwell and the linearized Einstein equations. To make this analogy 
evident it is enough to write a weak gravitational field fulfilling conditions (1) in 
the GEM form (see, e.g. [14,18])

o o o 4 $ (5)
d s2 =  e2(l +  2—g—)df2 H— (A (g) * dx)d t — (1 — 2—^-)5 ijdx tdxJ (3)

with
4cpd/) 4A--9̂

boo =  — hgi = ------ I—

(in this section the speed of light c will be explicitly written). Hereafter the spatial 
part of four-vectors will be denoted in bold and the standard symbols of three­
dimensional vector calculus will be adopted. In terms of and the har­
monic gauge condition reads

1 i
+  - V  • A {(l) =  0 (4)c Ol

and, once the gravitoelectric and gravitomagnetic fields are defined in terms of 
GEM potentials, as

E (g) =  - V $ (5) -  B (g) =  V A A (5) (5)

one finds that the linearized Einstein equations resemble the Maxwell equations. 
Consequently, being the dynamics fully encoded in Maxwell-like equations, the 
GEM formalism describes the physical effects of the vector part of the gravitational
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field. The situations which are usually described in this formalism are, typically, 
static: in fact, when this assumption is dropped, GEM gravitational waves are also 
possible.
Then, the gravitoelectric and the gravitomagnetic components of the metric are 
given by

p(g)  _  p(g) d (.9)m =  _ F^0aß  p(g) /q
1 ii r  fiO ’ D  r  a ß  > "

where

F $  =  A(f> =  -h o „ /4 =  (-$<«), A<9>)

•  The first order geodesic motion for a massive particle in the light beam 
gravitational field is determined by the force

f(ff) = - 2 E (5) -  4u A B (5)

where u  is the velocity of the particle.
•  The first order geodesic motion for a photon propagating, in the light beam 

gravitational field, parailel(anli) to r-axis (u j =  —ôj-.O is slightly different

f(.g) =  _4 ^E (g) + u  A b (5)) .

3. Strong Gravitational Fields

In previous papers (5-7,19-21]) a family of exact solutions g of Einstein field 
equations, representing the gravitational wave generated by a beam of light, has 
been explicitly written

g =  2 f(d x 2 +  dy2) +  p, [(ic (x , y) — 2q)dp2 +  2dpdq] (6)

where p =  +  B  with A, B  G l , $  (.r. //) is a non constant harmonic function,
/  =  (V $ )2 y/\~p\/p, and w ( x ,y ) is a solution of the Euler-Darboux-Poisson 
equation

A w  +  (dx I n \p\) dxw +  (dy In \p \)dyw =  p

where A is the Laplace operator in the (x, y) —plane and Tßl/ =  pô^sô^s is the 
energy-momentum tensor.
It is invariant for the non Abelian Lie agebra G-i of Killing fields, generated by

d
d p ’

Y exp (p)
d

dq

with [X, Y] =  Y , g (Y, Y )  =  0 and whose orthogonal distribution is integrable.
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In the particular case s =  1» /  =  1/2 and g  =  1» the above metrics are locally 
diffeomorphic [7] to a subclass of the vacuum Peres solutions [16,23] and, by using 
the transformation

p =  In |v/| . q =  itv

can be written in the form
q 9 'LL) 9

g = dx  +  dy +  2dudv H— ^du  . (7)
u z

The above metric is of the Kerr-Schild form

Qfiv “I- V k f jk j j , 0
and represents a perturbation of Minkowski metric y = d x 2 +  dy2 +  2dudv =  
d*2 +  V  +  dz’ - V  where« =  ( z - t ) / ^  v = {z + t ) / ^ ,  w k perturba,™
given by

w
h :=  boo =  h.33 =  — os =  —h-30 =  ---------t, *

(Z - t f

Therefore we have
1 rc . _2 n  1 / rc . _2

E(^) =  ~~ W y, ) lt , 0 {f/) =  t ( wV  ) (/4r ii 4r ii

Thus, gravitational force acting over a massles particle is given by

f(g) =  - K e(1 -  % )i +  Wy(l -  vz )j +  (wxvx +  wyVy)k]/4u2. 

The velocity of photons is determined by the null geodesics equation

(h — 1) — 2hvz +  (h +  l)v 2 =  0

which has two solutions

h — 1 w — u 2

If the photon propagates parallel to the light beam, v =  (0 ,0 ,1), then

f (9) = 0

and there is not attraction or repulsion.
If the photon propagates antiparallel to the light beam v =  (0, 0, (h — 1)/{h  +  1)) 
with

f(5) =  —V w /2  (w +  ti2) 

the force turns out to be attractive.
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4.1. Wave Character

Is the Light too Light? 217

The wave character and the polarization of these gravitational fields can be ana­
lyzed in many ways. For example, we could use the Zel’manov criterion [28] to 
show that these are gravitational waves and the Landau-Lifshitz pseudo-tensor to 
find their propagation direction [5,6], However, the algebraic Pirani criterion is 
easier to handle since it determines the wave character of the solutions and the 
propagation direction both at once. Moreover, it has been shown that, in the vac­
uum case, the two methods agree [6]. To use this criterion the Weyl scalars must 
be evaluated according to the Petrov-Penrose classification [15,17].
To perform the Petrov-Penrose classification, one has to choose a tetrad basis 
with two real null vector fields and two real spacelike (or two complex null) vector 
fields. Then, according to the Pirani’s criterion, if the metric belongs to type N of 
the Petrov classification, it is a gravitational wave propagating along one of the two 
real null vector fields. Since du and dv are null real vector fields and dx and dy are 
spacelike real vector fields, the above set of coordinates is the right one to apply 
for the Pirani’s criterion.
Since the only nonvanishing components of the Riemann tensor, corresponding to 
the metric (7), are

Riuju = -dfjduip, i . j  = x, y
this gravitational fields belong to Petrov type N [8,28], Then, according to the 
Pirani’s criterion, the metric (7) does indeed represent a gravitational wave propa­
gating along the null vector field du.
It is well known that linearized gravitational waves can be characterized entirely in 
terms of the linearized and gauge invariant Weyl scalars. The non vanishing Weyl 
scalar of a typical spin—2 gravitational wave is The metrics (7) also have as 
non vanishing Weyl scalar

4.2. Spin

A transparent method to determine the spin of a gravitational wave is to look at 
its physical degrees of freedom, i.e., the components which contribute to the en­
ergy [10]. One should use the Landau-Lifshitz (pseudo)-tensor t„ which, in the 
asymptotically flat case, agrees with the Bondi flux at infinity [6].
It is worth to remark that the canonical and the Landau Lifchitz energy-momentum 
pseudo-tensors are tensors for Lorentz transformations. Thus, any Lorentz trans­
formation will preserve the form of these tensor and this allows to perform the 
analysis according to the Dirac procedure. A globally square integrable solution 
h^v of the wave equation is a function of r = k^x^1 with =  0. With the choice
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kp =  (1 , 0, 0, —1), we get for the energy density J and the energy momentum t \] 
the following result

167Ttg =  i  ( u n  -  U 22Ÿ  +  u \ 2 , tg =  tg

where =  d h ^ /d r .  Thus, the physical components which contribute to the 
energy density are h \\ — h22 and h±2. Following the analysis of [10], we see that 
they are eigenvectors of the infinitesimal rotation generator 71, in the plane x  — y, 
belonging to the eigenvalues ±2i. The components of h^v which contribute to the 
energy thus correspond to spin—2.
In the case of the prototype of spin—1 gravitational waves (7), we have

Tg -  C i ( h g XjX)2 +  C2 (hgyjX) 2 , tg =  tg

where c\ e C2 constants, so that the physical components of the metric are hgx and 
hgy. Following the previous analysis one can see that these two components are 
eigenvectors of Ï7Z belonging to the eigenvalues ±1. In other words, metrics like
(7), which are not pure gauge since the Riemann tensor is not vanishing, represent 
spin—1 gravitational waves propagating along the r —axis at light velocity. 
Summarizing: globally square integrable spin— 1 gravitational waves propagating 
on a flat background are always pure gauge. Spin— 1 gravitational waves which 
are not globally square integrable are not pure gauge.
What truly distinguishes spin—1 from spin—2 gravitational waves is the fact that 
in the spin—1 case the Weyl scalar has a non trivial dependence on the transverse 
coordinates (x, y ) due to the presence of the harmonic function. This could led 
to observable effects on length scales larger than the characteristic length scale 
where the harmonic function changes significantly. Indeed, the Weyl scalar enters 
in the geodesic deviation equation implying a non standard deformation of a ring 
of test particles breaking the invariance under rotation of 7r around the propagation 
direction. Eventually, one can say that there should be distinguishable effects of 
spin—1 waves on suitably large length scales.
It is also worth to stress that the results of [1] suggest that the sources of asymptot­
ically flat PP-waves (which have been interpreted as spin— 1 gravitational waves 
[5, 6]) repel each other. Thus, in a field theoretical perspective, “PP-gravitons” 
must have spin—1 .

5. Quantum  Field Theory

Quantum Field Theory is needed when we confront simultaneously two great physics 
innovations of the last century of the previous millennium: special relativity and 
quantum mechanics. A fast moving rocket ship, close to light velocity, needs spe­
cial relativity, not quantum mechanics! A slow moving electron scattering on a
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proton needs quantum mechanics, not special relativity! Particles can come to life 
and particles can die. It is this matter of birth, life and death that requires the devel­
opment of a so called quantum field theory. In quantum mechanics the uncertainty 
principle tells us that energy can fluctuate wildly over a small interval of time. 
According to special relativity, energy can be converted into mass and viceversa. 
With quantum mechanics and special relativity, the wildly fluctuating energy can 
metamorphose into mass, that is in new particles not previously present.

5.1. The Partition Function

It is known from Quantum Field Theory that a consequence of spin—1 messengers 
is that particles with the same orientation repel and particles with opposite orien­
tation attract. Indeed, path integral formalism describing a massive vector field 
theory A fl makes use of the partition function defined by

where h is the Planck constant, H  the Hamiltonian, J  the source and T  the inter­
action time.
It can be represented by using the Feynman path integral

Z  (J )  = <  0| exp[
h

H ( J ) T ]|0 >

where

S ( A , J ) J d4x  (Am [(<92 +  m 2 ) g»v -  d^ dv] A„ +  J^Af j )

is the classical action. 
We also have

Z  (J) = e x p [ -W  (J)]
n

with

where D,,\ (x ) is the Green function defined by

[(<92 +  to2) g^  -  d ^d v] D vX (x) =  5^5(4) (x ) .

Taking the Fourier transform, we get

where
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is called the propagator fo r the massive vector field A ß.
A simple calculation shows that the potential energy between like charges is given 
by

W  exp (—m r )
T  4ni-

so that dU/d r  < 0 and the force between like charges turns out to be repulsive, as 
we already know from electrodynamics.

Conclusions

Thus, the apparent lacking of attraction found by TEP and Faraoni-Dunse must 
be ascribed to the linear approximation since, according to our results, photons 
generate spin—1 gravitational waves and, as a consequence, two photons with same 
helicity must repel one another. This repulsion turns out to be very weak and cannot 
be certainly observed in the Laboratory but it could play a relevant at cosmic scale.
Therefore, one may postulate the existence, together with gravitons, of spin-1 grav- 
itophotons and spin-0 graviscalar. Through coupling to fermions, they might give 
forces depending on the barion number. These fields might give two (or more) 
Yukawa type terms of different signs [22], corresponding to repulsive gravitopho- 
ton exchange and attractive graviscalar exchange (range » 200m).
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