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Abstract. Il is shown that the Bohm equations for the phase S  and squared 
modulus p of the quantum mechanical wave function can be derived from 
the classical ensemble equations admiting an aditional momentum ps of the 
form proportional to the osmotic velocity in the Nelson stochastic mechanics 
and using the variational principle with appropriate change of variables. The 
possibility to treat gradS1 and ps as two parts of the momentum of quantum 
ensemble particles is considered from the view point of uncertainty relations 
of Robertson - Schrôdinger type on the examples of the stochastic image of 
quantum mechanical canonical coherent and squeezed states.

1. Introduction

The uncertainly (indeterminacy) principle in quantum physics, which quantita­
tively is expressed in the form of uncertainly relations (URs) [13, 14, 24, 25] is 
commonly regarded as the most radical departure from the classical physics. 
However in the recent decades publications have appeared [5, 11,12, 21,23] in 
which inequalities are introduced in Nelson stochastic mechanics (SM) [19] and 
discussed as Heisenberg-type URs. The equations of motion in this mechan­
ics coincide with the David Bohm equations [1] (the continuity equation and the
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modified Hamilton-Jacobi equation, the latter known also as Hamilton-Jacobi- 
Madelung (HJM) equation) for the phase S  and squared modulus \ip\2 = p of the 
Schrôdinger wave function \(). Bohm equations for S  and p have been later derived 
from ‘the stochastic variational principles of control theory’ by Guerra and Marra 
[9], and by Reginatto [23], using the ‘principle of minimum Fisher information’ 
[6],

Hall and Reginatto [12] introduced the so called ‘exact UR’ and showed that it 
‘leads from classical equations of motion to the Schrôdinger equation’ and to un­
certainty inequality of the form of Heisenberg UR. They derived the continuity 
equation and the modified HJ equation from a variational principle, introducing 
into the Lagrangian of the HJ equation an additional momentum p N of the classi­
cal particle assuming that its first moment and its covariance with the ‘classical’ 
moment V S  are universally vanishing.

From some general consideration they ‘derived’ that the variance of this extra mo­
mentum should be proportional to the Fisher information of the coordinate prob­
ability density p. As a result their Lagrangian takes the form of Reginatto’ La­
grangian, wherefrom the Bohm equations are derived [23] and the product of coor­
dinate and p N variances equals constant for any p (which in fact is a minimization 
of the Cramer-Rao inequality). This equality and the related uncertainty principle 
are called ‘exact’ UR and ‘exact’ uncertainty principle. The system described by 
the so derived Bohm equations is interpreted in [12] as ‘quantum ensemble’. If 
V S / m  and the variance of p N/m  are identified with the current velocity and the 
mean squared osmotic velocity the formal connection to the Nelson SM is estab­
lished [12].

However no particular underlying physical model was assumed for the fluctuations 
of the momentum p N - they were regarded as fundamentally nonanalyzable [12]. 
Having no model for p N one has to postulate infinitely many constraints in order 
to recover the statistical properties of quantum mechanical momentum p. The 
two constraints postulated in [12] (namely p V  =  0 and V S  • p N =  0) ensure the 
coinsidence only of the first two moments of V S  +  p N and p.

It is our aim here to introduce a model for such additional momentum to account 
partially for the quantum fluctuations and to examin its properties and consistency. 
(‘Partially’, because no classical model, we believe, could provide the ‘full’ ac­
count). Another our aim is to briefly review the URs in the Nelson stochastic me­
chanics (SM) from the point of view of the more precise Robertson-Schrödinger 
(R-S) inequality. Unlike the Heisenberg UR the R-S UR in quantum mechanics 
involves all the three second moments of the two quantum observables Â  and Ê, 
the variances (A.4 )2, (AB)2 and the squared covariance (Aa b )2- If the covariance 
is vanishing then the R-S UR recovers the Heisenberg UR.
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In the next section we briefly review the Heisenberg and Robertson-Schrödinger 
URs (R-S UR). In the third section we recall the main features of the Hall and 
Reginatto ‘quantum ensemble’ approach and Nelson SM. A model of additional 
momentum ps is introduced, its potential Ss being interpreted as the intensity de­
pendent part of the quantum wave function phase S. It is shown that Bohm equa­
tions for S  and p can be derived from the Reginatto variational principle consid­
ering the probability density p and S -  =  S  — Ss as new independent variables. 
In Section 4 the stochastic analogues of the R-S URs are reviewed and discussed 
in connection with the introduced auxilliary momentum model ps and on the ex­
ample of S  and p corresponding to canonical coherent and squeezed states. In 
Section 5 the first and second moments of coordinate and the related momenta and 
URs are calculated on the example of stochastic images of canonical coherent and 
squeezed states (CS and SS) and compared with the corresponding moments and 
URs in quantum mechanics. Nelson SM images of canonical CS and SS have been 
discussed previously in several papers: of CS in [10,16-18,22] and of SS and CS 
- in [16-18,22] in the context of ‘stochastic mechanics and control theory’.

2. Robertson-Schrödinger UR in Quantum M echanics

The indeterminacy principle was introduced in 1927 by Heisenberg [13] who demon­
strated the impossibility of simultaneous precise measurement of the canonical 
quantum observables x  and p (the particles coordinate and momentum) by posit­
ing an approximate relation 5p 5x ~  h, where h is the Plank constant.
Heisenberg considered this inequality as the “direct descriptive interpretation” of 
the canonical commutation relation between the operators of the coordinate and 
momentum: [x,p] =  ih, [x,p\ =  xp — px. A rigorous proof of the Heisenberg 
relation was soon published by Kennard and Weyl [14] who established the in­
equality

(Ap)2(A x )2 > lif4 (1)

where (Ap)2 and (A x )2 are the variances (dispersions) of p and x, defined by 
Weyl for every quantum state pp) via the formula (Ap)2 := pp\(p -  {'p\p\'p))2\'p), 
and similarly (A x )2 is defined. In correspondence with the classical probability 
theory the standard deviation AÂ  is considered as a measure for the uncertainty 
(indeterminacy) of the quantum observable Â  in the corresponding state pp). The 
inequality (1) became known as the Heisenberg UR.
The extension of (1) to the case of two arbitrary quantum observables (Hermitian 
operators Â  and B) was made by Robertson and Schrödinger [24,25], who estab­
lished more precise inequality, that involves all the three second moments of the
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two observables,

(A.4)2(A B )2 -  (Aa b )2 > \  \(\Â,B]) (2)

where A a b  is the covariance (which in mathematical literature is denoted usually 
as Co y (AB) ) of Â  and Ê, A ab := (1/2) ( i ß  +  ÈÂ) -  (Â)(B).
In the case of coordinate and momentum observables relation (2) takes the shorter 
form

The inequality (2) is referred either as Schrôdinger or Robertson-Schrödinger UR 
(R-S UR). In states with vanishing covariance the R-S UR (3) recovers the Heisen­
berg’s one, equation (1). The minimization of (1), i.e., the equality in (1), means 
the equality in (3), the inverse being not true. Thus the R-S UR provides a more 
stringent limitation (from below) to the product of two variances. Besides the R-S 
UR is more symmetric than the Heisenberg UR: the equality in it is invariant under 
nondegenerate linear transformations of the two observables (in the case of x  and 
p R-S UR is invariant under linear canonical transformations) [26], Despite these 
advantages the relation (3) and/or (2) are lacking in almost all quantum mechanics 
text books. The interest in R-S relation has been renewed in the last three decades 
[2,4,27] (50 years after its discovery) in connection with the description and ex­
perimental realization of the squeezed states of the electromagnetic radiation (see 
the ‘squeezed review’ [4,26]).

3. ‘Quantum Ensem ble’ and Stochastic Mechanics

The quantum-classical relations are subject of a host of publications, which started 
from the early days of quantum mechanics. Aiming to provide an alternative in­
terpretation of quantum mechanics in terms of ‘hidden variables’ David Bohm 
[1] noted that the phase S  =  h arg and the squared modulus \îp\2 =  p of the 
quantum-mechanical particle wave function if) obeys a system of classical-type 
equations, namely the probability conservation equation and a modified Hamilton- 
Jacobi equation

where V  is the external particle potential, and Vq (the so called ‘quantum potential’ 
[1]) is given by

( A x f ( A p ) 2 -  (Axpf  > h2/4. (3)

%  +  - r t i v  (pVS)  =  0, / /  +  2 _  (V S)2 +  V (x ,  t) + Vq = 0 (4)
ot m  ot 2m
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Pursuing the classical interpretation and derivation of the Schrôdinger equation 
Nelson [19] had derived equations for the velocity fields in the forward and back­
ward Fokker-Planck equations of a diffusion process and, noting that the ‘osmotic’ 
velocity it is a gradient (u  =  D V  In p, p being the probability density of the pro­
cess, D  - the diffusion coefficient) and supposing that the current velocity v  is also 
a gradient, v  =  ( l/m )V 5 , he had established that with D  =  Ii/2m the probabil­
ity density p and the current velocity potential S  satisfy the Bohm equations (4), 
i.e., tp := s/pexp(i,S/ h) obey the Schrôdinger equation. This theory is known as 
Nelson SM.
Reginatto [23] noted that the Bohm equations (and thereby the Schrôdinger equa­
tion) can be obtained from the variational principle and the principle of minimum 
Fisher information [6] applied to the ‘classical ensemble of particles’. In this 
derivation Reginatto started from the classical Hamilton-Jacobi (HJ) equation (we 
consider the case of n =  1, and external potential V)

B s' 1
_  +  _ (V^  +  V ^ i )  =  0. (5)

Supposing that the coordinates are subject to fluctuations described by the prob­
ability density p he had postulated the validity of the continuity equation of the 
same form as in (4)

Bo 1
-77- H-----div (pVS)  =  0 (6)
Bt m

and noted that it can be derived from the functional

* ^ j P U s  + l v S . V S  + v ) ^ At (7)

as extremal equation with respect to variation of the classical action S. (As noted in 
[23] the variation with respect to p trivially results into HJ equation (5)). Physical 
system which motion is described by the equations (5) and (6) is called classical 
ensemble of particles [12,23],
To obtain the second of the Bohm equations (4) the principle of minimal Fisher 
information was applied by adding to 4»  ̂the term [23]

f - V p - V p d 3x  (8)
J P

where JF is the Fisher information of the probability density p(x, t ), and the mul­
tiplier A is put equal to h2/8m.  Thus the Bohm equations (4) are derived from the 
action functional

A / .Zp(p)dt,
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dtS  +  — V 5 - V S  + V
2m +

h2 1
8 m  p

V p • V p
o

& xdt

(9)

by independent variation of p and S. In fact Bohm equations have been derived 
previously from the same action functional (9) by Guerra and Moratto [9] but with 
no reference to Fisher information.
By different argumentation the same action functional (9) has been derived and 
used later in [12], where the term 2mXIF is interpreting as a variance (<tPn)2 of an 
additional momentum p N, subjected to the constraints (of vanishing first moment 
and vanishing covariance with V S )

(Pn ) =  0, (Pn * VS) =  0. (10)
This variance obeys the inequality (in the one-dimensional case)

( ^ ) 2( ^ n )2 > à2ß  (11)
which directly stems from well known Cramer-Rao inequality (<tx)2If > 1, where 
(fTr)2 is the variance (the squared uncertainty) of x. The authors of [12] consider 
the total momentum of the particle p as a sum of dxS  and pjsj. Then, in view of 
(10) and (11), one gets

(Vx)2(crp)2 > (rir)2(PpN)2 > h2/ 4' (!2)
The authors argue that this is a derivation of Heisenberg UR.
However no particular underlying physical model was assumed for the fluctuations 
of the momentum p N - they were regarded as ‘fundamentally nonanalyzable’. De­
spite the proclaimed ‘nonanalizability’ of p N the authors of [12] succeeded to find 
that its variance should be proportional to the Fisher information of p, resorting in 
this way to the Reginatto functional (9), wherefrom they derive the Bohm equa­
tions for p and S. The so derived equations (4) are referred to as equations of 
motion of quantum ensemble [12,23].
We note that in fact the second constraint in (10) simply reduces the functional 
(6) in [12] to Reginatto functional (9), which ensures the variational derivation of 
the Bohm equations for p and S. Retaining the idea of introducing an additional 
stochastic momentum however there is an alternative way to derive variationally 
the Bohm equations, namely the change the independent variables. In this way one 
may expect to introduce a model of an analizable additional stochastic momentum 
p s to account partially for the quantum momentum fluctuations.
We consider the total momentum p  of the particle as a sum of two parts
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P = P c+ Ps  (13)
supposing that the first one stems from the deterministic classical motion and the 
second one is induced by the coordinate randomization. We suppose further that 
both p c and p s are gradients of corresponding potentials (actions)

Pc =  V5, p s =  V 5S (14)
where the momentum potential 5  originates from the classical HJ equation, and the 
potential 5S - from the coordinate stochasticity. In the absence of stochasticity 5  is 
the classical particle action that obey the HJ equation. We make the natural anzatz 
that the potential 5 S depends on x  and t via the coordinate probability distribution 
p(x, t) only: 5S = Ss{p{x, t)).
Supposing that coordinate stochasticity induces new momentum part it is then nat­
ural to expect that the latter in turn will affect the particle action 5. The simplest 
way to take into account this ‘feed back’ is to suppose that part of 5  becomes 
p-dependent. We suppose that this part is proportional to 5S, and denote the differ­
ence by 5 - .  So that we put

5  =  5^ +  5s(p) (15)
and treat 5 -  and p as independent fields. Next we put 5  =  5 - +  5 s(p) into the 
Reginatto action functional (9) and apply the variational principle to the resulting 
functional

$ B' = M 
+ / p (

d t(S -  + S„) +  + V ( S _  +  & ) ■ V(S_ +  Ss) ) d3z d t
2 in } (16)

H +
/+ 1
8 m  p2

V p • V p I dt

treating 5 5 - and 5p as independent variations, vanishing at the end points. The 
resulting equations of the extremals read

dp 1 , (  dS, \- y  H-----div ( p V 5_ +  Vp ) =  0
ot m  \  op J

(17)

d- w + L ( v ( s - +Ss))2 -  S  ^  -v s - + ^v 2 s - )
1 dSr ( ,  2 ,2, 9 5 s — , , a 2Ss \  „

“  + V P + (V P )  ) - W  + piVp) W J  =  (18)
Putting here 5 -  =  5  — 5 S and using again the continuity equation we obtain the 
Bohm equations (4) for p and 5, as desired. Taking into account that <Jp exp(i5/ h)
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satisfies the Schrôdinger equation we see that the p s-potential Ss has the meaning 
of p dependent part of the wave function phase.
We note that this result is valid for any differential function Ss(p) (but not if S s de­
pends on Vp). One can use this freadom to subject Ss to some desired constraints. 
One natural constraint is the vanishing average of p s, fTT =  0. This can be satisfied 
with S s =  A In(l3p), where l is a length parameter (so that l3p be dimensionless), 
i.e.,

Ps = - ^ P -  (19)
P

This ensures the coincidence of total momentum average p  := f  p ( x , t ) p d 3x, 
with the average (p)  of quantum momentum p  in the corresponding state tp =  
yfp exp(iS/ h) (using the known equality (p) =  pp [17]). Furthemore we fix the 
parameter A as k/2,  i.e., we use p s =  h{Vp)/2p.  Formally the quantities p s/m, 
V S f m  and p  =  (ps +  V S ) f m  coincide with the osmotic, current and forward 
velocities u, v, v+ in the Nelson SM, where many of their properties are thoroughly 
examined (see for example [16-18,22] and references there in).
To shorten the notation herefrom we consider the one-dimensional motion only and 
respectively the boldface vectors will be replaced by ordinary letters. Our interest 
here is focused on the properties related to the possibility ps to describe (at least 
partially) nonclassical fluctuations of the quantum-mechanical momentum p. In 
this aim we compare statistical properties of ps with those of ‘nonclassical part’ 
Pnc °f P [11], Pnc := p — Pc» Pc =  d S /d x .  Hall [11] found the first two moments 
of Pnc as

(Pnc) =  0, (Pnc) =  (P2) -  (Pi) =  O p ) 2 -  (Apc)2 (20)

(öx)2(A  pnc)2 =  — (21)

where 5x is the Fisher length, (öx)2 =  1 / / F, the equality (21) being refered as 
‘exact’ UR. The above three properties are shared by ps too (established in terms 
of the osmotic momentum m u  earlier, see e.g. [5,17] and references their in)

(p»> =  0, <Ps> =  <p2> -  {pi) = ( A p f  -  {op,? (22)

( 6 x ) \ a pf  = (23)

where aPs, aPc are variances of ps, pc: (opc)2 := p^ — p^:2. Further common
properties of pnc and ps could be revieled on examples of some specific states 
only.
We however have to note here an important difference in the properties of pnc and 
ps: the linear correlation between pc and ps (i.e., the covariance CPsPc may not 
vanish, while the covariance A PncPc of pnc andpc vanishes in all states [11]. CPsPc
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may vanish in some specific families of states only, e.g. in p corresponding to 
the cannonical CS. (It is not vanishing e.g. in squeezed states - see Section 5). 
When CPsPc 0 the total second moment p =  pc +  ps is not equal to that of p. 
With nonvanishing ps-pc covariance the Hall and Reginatto scheme of derivation 
of “quantum ensemble” equations (i.e., Bohm equations (4)), is not applicable. 
Therefore if  ensemble interpretation is applied to our scheme (with ps) of deriva­
tion of Schrôdinger equation, the resulting nonclassical ensemble could be called 
semi-quantum or, more briefly ps-ensemble. And if one interprètes pc/m  and 
Ps/m  as current and osmotic velocities respectively then Nelson SM scheme is 
applicable.

4. R-S Type URs for Stochastic System

Inequalities of the type of Robertson-Schrôdinger UR (R-S URs) can be naturally 
and easily constructed for classical stochastic systems using the semi-definiteness 
of the covariance matrix (the matrix of dispersions [8]) of two random quantities. 
Gnedenko [8] proved that all principal minors of the matrix of dispersions of any 
n  random quantities are nonnegative. For n  =  2 this means that the product of 
the two variances is greater or equal to their squared covariance. Thus for any two 
random observables £, p the following inequality is valid

cr| > C l  (24)

where <r| is the variances of £, =  £2— £ 2, and CVf/ is the covariance, C\rj =  £p—
£ p. Here £ is the mean value of £. If the random quantity £ admits a probability 
density p(£, t) one has £ =  /  p(£, £)£ d£. The inequality (24) is minimized iff £ 
and p are linearly dependent [8], For brevity the stochastic quantity and its values 
are denoted with the same letter.
We see that the inequality (24) is of almost the same form as the R-S UR (2) in 
quantum mechanics, the mean commutator of the two observables being missing 
only. Therefore the inequalities of the form (24) in stochastic mechanics and in 
any probability theory could be naturally called the R-S type URs. For given two 
quantities £, p such inequality should briefly be referred to as £-p UR.
Next we construct and discuss the R-S type URs for the coordinate and momen- 
tums of the stochastic particle. In the ’semi-quantum ensemble’ interpretation we 
have to treat ps +  pc = p as total particle momentum and compare the x-p UR with 
x-p UR in quantum mechanics. Similarly URs between any other pair of the set 
(x, pc, ps, p) is to be compared with UR of the corresponding quantum pair from 
(x, pc, pnc, p). In the stochastic mechanics interpretation the set (x, pc, ps, p) 
coinsides with (x, mv, mu, m v +), where v, u, v+ are current, osmotic and for­
ward velocities.
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In stochastic mechanics x-mu  UR (the osmotic UR) was established in [21] and 
[5] in the ‘Heisenberg form’ (<j x)2(<j m«)2 > h2/4, which we rewrite as

> h 2! 4. (25)

In [16,17] the osmotic inequality was extended to the processes with non constant 
diffusion coefficient i/(x,t) in the form ((Jx)2((tu)2 > V 2. Comparing (25) with 
(24) we see that the squared x-ps covariance is universally constant and equaled to 
h2/4. The covariance itself is

Cxps = - h i  2. (26)

In Heisenberg UR in quantum mechanics the universal term h2/4  comes from the 
nonvanishing commutator of coordinate and momentum operators. We now see 
that in SM and in ‘quantum ensemble’ aproach this term comes from the x-ps co­
variance. The constancy of the covariance Cxps is, in fact, due to the vanishing 
first moment of our ps. Due to this property the variance of ps is proportional to 
the Fisher information (as required in [12] for the variance of their ‘nonanalyz- 
able’ p N), and the x-ps UR (25) coincides with the known Cramer-Rao inequality 
a 2 Ip > 1. For Gaussian p ( x , t ) one has If (p) =  l/er^i [20], Therefore for Gauss 
distribution the UR (25) is minimized along with the Cramer-Rao inequality. The 
UR (25) is to be compared with the x-pnc UR ( A x )2(Apnc)2 > h2/4  [11] and 
with the chain inequalities (12).
Unlike CxPs the covariances of other pairs of the set {x ,p c,ps,p}, though having 
to obey the R-S type URs (24), do not take universally fixed values. In the next 
section we shall discuss this on the (one-dimensional) examples, comparing the 
calculated moments with the corresponding ones in quantum mechanics.

5. Examples: Coherent States and Squeezed States

In these section we calculate the first and second moments of x, ps, pc and p =  
ps+pc and the related R-S types of URs in ‘stochastic states’ p(x, t) corresponding 
to the Glauber CS and canonical SS in quantum mechanics, and compare them 
with the related quantum moments. Nelson stochastic mechanics (SM) images of 
CS and SS have been discussed previously in several papers: of CS in [10-18] 
and of SS and CS - in [16-18,22] in the context of ‘stochastic mechanics and 
control theory’. Here we write these images and the related moments and URs 
in more standard quantum optical and quantum mechanical parameters (see e.g. 
[2,4,26-28]).
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a) Glauber coherent states. Glauber CS [7] are defined as eigenstates |a) of the 
boson annihilation operator â,

d la ) =  a la ) ,  â =  __  ( x\fmü H-----p ) (27)
y  2/r \  s/mu  /

where x  and p are coordinate and momentum operators, and m  and u  are pa­
rameters of dimension of mass and frequency correspondingly. For the harmonic 
oscillator m  is the mass of the particle, and u  is the oscillator frequency. These CS 
have been introduced by Glauber in 1963 [7] and are known as the most classical 
quantum states. In | a) the first and second moments of x  and p read

(a|Æ|a 5? a, a |p |a vlhiuio  S  a (28)

j2
{A x)2 = —, (A p f  = —g , A xp = 0. (29)

Li L ib

where l2 =  Tifmu (the length parameter). We see that the moments minimize R-S 
UR (3) on the lowest possible level (which is the equality in the Heisenberg UR): 
(A x )2(Ap)2 = h/4.
To perform the comparison with the moments in ‘semiclassical ensemble’ and in 
SM we need the time-dependent CS, i.e., eigenstates of â that obey the Schrôdinger 
equation. The first requirement can be met if the CS wave function depends, 
up to a ^-independent phase factor, on t through the eigenvalue a: i:'n (x. l) =  
exp(i<p{t))ipa^ { x ) , mpa (x,t)  =  a(t)ipa (x,t) .  Such stable CS ipa {x , t ) exist for
the stationary harmonic oscillator Hamiltonian, H  =  —(li2/2m )dxx + ( m u 2/2 )x 2 
with a(t) =  a e x p (—iut) ,  ip(t) =  —u t f  2 and

'tpa(t) (
1

X
Til2

exp
1

a ( t ) V 2^
\ 2 1

H—  (a 2(t) — |a(f)| (30)

where l =  y^Ti/mu (the length parameter). For the stable CS /ipa(t)(x ) the first 
and the second moments of x  and p are given by the same formulas (28), (29) but 
with the time-dependent eigenvalue apt).
Next we put \̂ pa(t)(x )\2 =  Pcs(x , t) and calculate the stochastic moments of x  and 
ps. Formula in (30) readily shows that (we put a\  =  9?a, a<i =  A a)

l2
x  =  ls/2a2(t) and a 2 =  — (31)

Lt

and provides ps =  —h (x — x) / l 2, wherefrom

Ps h- and
h2
2J2 '

(32)
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We see that x-ps UR (25) is minimized [16]: <j x<jPs =  h2/4.
To find the first and second moments of pc and the ‘total momentum’ p =  pc +  ps 
we need the action S(x,  t),

S { x , t ) =  —a2(t)V 2x  — h a i( t )a 2{t) — h — - (33)
L lL

Then we get pc =  hs/2a2(t) and

P — Pc r'V'j A  /  r p  -r  I /H  rpPc Pcs  ̂ L \Ploi<2 (t) (34)

verifying the known coincidence of x  and p with quantum means (x) and (p) [5, 
16].
Next we calculate the second moments of pc and p and the related covariances. The 
covariance CxPs, as noted in the previous section, is universally equal to —h/2. The 
correlation between pc and ps in pcs turned out to be vanishing:

CPcPs — PcPs — o. (35)
Thus the required in [12] properties (10) of the ‘nonanalyzable’ momentum p N are 
satisfied by ps in pcs and the first two moments of ps and p lK. and that of p and 
p do coincide. The third and higher moments of ps and pnc, however are found 
to coinside at all times in the ground state only. For example (pf) =  0, while
(Pnc)  =  (p )3 +  (p)/2 — (p)2, ip) =  \/2 ^sa(t).
For the rest two variances and covariances in pcs we get

Cxpc = 0,

Gpc =  0,

Note the vanishing variance of the momentum pc := d S /d x  in pcs. As we shall 
see below this is again a particular property of pcs.
Now one can easily check that the R-S type URs (11) for all the coordinate- 
momentum pairs x-pc, x-ps and x-p are minimized in pcs. In particular the chain 
inequalities [5,21]

(A f)2(Ap)2 > a2xa2ps > h2/4  (37)

are also minimized. These minimizations follow from the fact that in pcs all quanti­
ties x, ps, pc are linearly dependent [8], We note that in terms of the SM velocities 
u =  ps/ra , v =  gr&dS/m all the above CS-related moments and URs (25), (37) 
were considered previously [5,21] [16,18].

=  c w  +  CX p c 'XPs -h/2
(36)

o. (J,P s

h2
2P



194 Dimitar A. Trifonov, Blagovest A. Nikolov and Iva'flo M. Mladenov

In quantum mechanics CS |a) are regarded as the ‘most classical’ states. They can 
be uniquely determined as states minimizing the inequality [26]

(A f)2 +  (Aß)2 > 1 (38)

where x  and p are dimensionless coordinate and momentum. One can see that 
in pcs the sum <r| +  <rj also equals unity. However in other states the inequality 
a 2 +  Op > 1 may be violated, as we shall see on the example of squeezed states.

b)Squeezed States. Squeezed states (SS) are defined as quantum states in which 
the variance (uncertainty) of coordinate or the variance of the momentum is less 
than its value in the ground state of the oscillator. The SS are known as nonclassical 
states since they exhibit many nonclassical properties. The famous example of 
SS are the eigenstates of the linear combination of Bose creation and annihilation 
operators ü à + va^ =  A  [28], which we rewrite in terms of x  andp as f i x / l+ w lp /h  
(p = (iÏ + v ) f a/ 2, v = (ü — v ) f a/ 2),

(fixfl  +  h/lp/h)\a; p, v) =  a \a ; p, v) (39)

where a  is a complex number, l is the length parameter, and

\u\2 -  \v\2 = 2 ^ (p V ) = 1 (40)

which are to ensure [.4, Jk] =  1. It was noted in [27] that SS \a; p, v) are states 
that minimize the R-S UR and coincide with the ‘correlated CS’ of ref. [2], That is 
why they are also called generalized intelligent states or R-S intelligent states [27], 
In the coordinate representation the SS wave functions take the form of exponen­
tial of a quadratic. These states are time-stable for any quadratic in x  and p Hamil­
tonian, in particular for the harmonic oscillator with constant or time-dependent 
frequency u(t). The normalized time-dependent wave function of an initial SS 
I a; po, i/q) reads

ï/j.OtflQUQ, «X*. t) =  (li /(t)V2tt) 2 exp
p(t)

2 l2v(t) fi(t)
a

(41)

x exp
fl(t)

-a

where a  is constant, and p(t), v(t) (p(0) =  po, v(0) =  i/q) satisfy certain first 
order equations, which can be reduced to the classical harmonic oscillator equation 
ë +  cj(t)2e =  0 through the substitutions p(t) =  —ié/s/2ujQ, u(t) =  e^Juq/2, cjq 
being constant of inverse time dimension [3,26], With such p(f), v(t) the operator 
A  is a dynamical invariant of the nonstationary oscillator, i.e., dÂ/dt =  0. The 
family of stable SS includes the family of CS as a subset: If e(0) =  1 / s/ lüq and
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2(0) =  i f̂uüQ (that is po =  p(0) =  I / a/2 , i/q =  z/(0) =  1/ a/ 2) then the wave 
function (41) represents the time-evolution of an initial Glauber CS |a). In fact, in 
terms of e, è the wave functions (41) have been constructed and discussed earlier 
in [15] as time evolved CS for quadratic systems.
The first and the second moments of x  and p in SS (41) read [3,26]

(.x ) =  2 PR(a(t)i/*(t)),

(A x l2\v{t) I

To calculate the stochastic moments in 
momentum potentials S  and Ss =  (h/2) kp 
t of a(t),  p(£) and v{t))

S (x , t )=  k  ~ °
21?

Pss (■*'• t )
1

1\/2tt
exp

\v
1

21? v\

) =  2y  ̂ s(a(t)p*(t))
L

(42)

=  l £ s { f  {t)v{t)) (43)

)-
(x ) f)I2 we have to find the 

s (furthermore we skip the argument

/ot\ . . 
y S  (^yj T +  5l(f) (44)

[2: — 21M(oa/*)]2 +  52(f) (45)

where the terms g\ (t ), 52 (f) are ^-independent

5 1 (f) = 1
1 1 /  a 2 ii*
-a rg  (1/) +  -  A ------

\pz/ /  2 2 \  p

52(f) 1/
; U 2 (ais*)  +  SR ( a 2 / p t / )  +  SR ( p * a 2 / f i )  -  | a |2 .

The first moments of 2: and p in pss coincide with the quantum means (x), (p), 
equations (42). For the second moments of x, pc, ps, p =  ps +  pc we find

CX p c

a xp

-nxs{p,i/  ) ,

-h +  ^(pif*

a
/f2

P s P c 2 l 2 W\2

£ jZ I(T = I \V21,, 12 h2 1
(7

p l2\i/\2 \  2
h2
¥°Pc = shi (5p),

+  2s (p

h2

v

Ps 4l2\u\2

(46)

(47)
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where ö<p =  arg p, — arg v. From (46) and (47) it follows that the R-S URs for all 
pairs of observables x, pc, ps, p are minimized in pss,

=  C** =  =  =  +  (48)

O a i  o'* Ps
fi2

rY»Y"S'* Ps
fi2
^PcPs

h l
4 l l\u

(49)

as expected due to the linearity of pc, ps, p in terms of x.
In pss however, unlike the case of pcs, the dimensionless variances of x  and mo­
mentum p (or ps) are no more equal and none of the stochastic momentum un­
certainties coincides identically with the quantum uncertainty A p. These second 
moment’s differences could be interpreted as due to the ‘nonclassicality ’ of the 
SS. The calculations shows that the variance of ‘semi-quantum ensembe’ moment 
p = ps +  pc can be greater or less than (Ap)2. The ratio

rp =  [(Ap)2 -  <r2] / (Ap)2

could be used to described the deviation of momentum fluctuations in ps-ensemble 
state pp from quantum fluctuations in ip. For SS ipa^v it takes the form

T r.
A(pz/*)

\p v \2
(50)

and its value is oscillating between ±1. It shows that the two variances coinside 
in states with p  and v  phase difference equal to 2mr. Due to the nonvanishing 
covariance CPcPs the variance of p may vanish for certain values of p, v. In such 
states the variances <r2 and <r2 could not preserve the inequalities (1) and (38).

Conclusion

It has been shown that the Bohm equations, which are equivalent to the Schrödinger 
equations, can be derived from the classical Hamilton-Jacobi equation admiting an 
additional particle momentum ps of the form of stochastic mechanics osmotic mo­
mentum and using the variational principle with appropriate change of variables. 
The variational functional is similar to that of Reginatto and Hall [11,23] which 
incorporates Frieden [6] principle of minimal Fisher information. The fluctua­
tions of ps, classical momentum d S /d x  =  pc and the ‘total particle momentum’ 
P =  Ps+Pc and the related Robertson-Schrödinger type uncertainty relations (URs) 
are examined and compared with the corresponding quantum ones on the example 
of canonical coherent and squeezed states (CS and SS). In CS the uncertainties (the 
variances) of p and quantum p and the related URs coincide, while in SS they reveal 
differences. The latter are due to the nonvanishing ps-pc correlations. The normal­
ized deviation of variance of p from that of p however is bounded between ±1.
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Thus in the ensemble interpretaion, our ‘ps-ensemble’ can only approximately and 
partially reproduce statistical properties of ‘quantum ensemble’. The correspon­
dence with the Nelson stochastic mechanics is obtained via the identification of 
Psjm, Pc/m  and p / m  with the osmotic, current and forward particle velocities.
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