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Abstract. In these notes of the mini-course given by the author at the Xl-th 
Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 
2009 after the introduction of the toric Kahler geometry, we present Calabi’s 
family of U(?t)-invariant extremal Kahler metrics in symplectic action-angle 
coordinates and show that it actually contains, as particular cases, many in­
teresting cohomogeneity one examples of constant scalar curvature.
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1. Introduction

In 1982 Calabi [7] constructed, using local complex coordinates, a general four- 
parameter family of U (n)-invariant extremal Kahler metrics, which he used to put 
an extremal Kahler metric on

H *  :=  V ( ö ( - m )  © C) P”“ 1

for all m , n  e  N and any possible Kahler cohomology class. In particular, when 
n  = 2, on all Hirzebruch surfaces.
The main goal of these notes is to present Calabi’s general family in local symplec­
tic action-angle coordinates, using the set-up of [1,2] for toric Kahler geometry, 
and show that it actually contains other interesting cohomogeneity one Kahler met­
rics as particular cases (see also [22]). These include:

- the Fubini-Study, flat and Bergman Kähler-Einstein metrics of constant 
holomorphic sectional curvature (positive, zero and negative, respectively).

- the complete Ricci flat Kahler metric on the total space of

O (-n )  P ” “ 1
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for all n  e  N and any possible Kahler cohomology class, constructed by 
Calabi [6] in 1979.

- the complete scalar flat Kahler metric on the total space of

O (-m )  P ” “ 1

for all m ,n  e  N and any possible Kahler cohomology class, constructed 
for n  =  2 by LeBrun [18] in 1988 and for n  >  2 by Pedersen & Poon [21] 
in 1991 (see also Simanca [24]).

- the complete Kähler-Einstein metric with negative scalar curvature on the 
total space of the open disc bundle

V { - m )  c O ( - m )  —► P” “ 1

for all n  <  m  e  N and any possible Kahler cohomology class, constructed 
by Pedersen & Poon [21],

- the complete constant negative scalar curvature Kahler metric on the total 
space of the open disc bundle

V ( —m )  C  0 ( —m )  — > P n_1

for all m ,n  e  N and any possible Kahler cohomology class, also con­
structed by Pedersen & Poon [21].

Calabi’s general family contains many other interesting cohomogeneity one special 
Kahler metrics. Besides the Bochner-Kähler orbifold examples presented in [3], it 
contains for example a family of singular Kähler-Einstein metrics on certain 
that are directly related to the Sasaki-Einstein metrics constructed by Gauntlett- 
Martelli-Sparks-Waldram [13,14] in 2004 - see [4],
These notes are organized as follows. In Section 2 we give a basic introduction 
to symplectic geometry and discuss some fundamental features of toric symplectic 
manifolds. Section 3 is devoted to the toric Kahler metrics. After some relevant lin­
ear algebra prelimaries, we explain how these can be parametrized in action-angle 
coordinates via symplectic potentials for the associated toric compatible complex 
structures and discuss some important properties of these symplectic potentials. 
In Section 4 we write down the symplectic potentials that give rise to the toric 
constant (scalar) curvature metrics on real two dimensional manifold and identify 
the underlying toric symplectic surfaces. This is a warm-up for Section 5 where 
we discuss in detail the above higher dimensional examples that arise in Calabi’s 
general family of local U (n) -invariant extremal Kahler metrics.

2. Toric Sym plectic M anifolds

In this section we give a basic introduction to symplectic geometry and discuss 
some fundamental features of toric symplectic manifolds.
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2.1. Symplectic Manifolds

Definition 1. A symplectic manifold is a pair (B , uj) where B  is a smooth manifold 
and lü is a closed and non-degenerate two-form, i.e.,

ii) fo r  any p  € B  and O ^ X e  TpB, there exists Y  € TpB  such thatujp{ X , Y )  ^

The non-degeneracy condition ii) implies that a symplectic manifold is always even 
dimensional. If B  has dimension 2n, the non-degeneracy condition ii) is equivalent 
to requiring that

Hence, a symplectic manifold (B , uj) is always oriented.

Example 1. The most basic example is M2n with linear coordinates ( « i , . . . ,  un , 
u i , . . . ,  vn ) and symplectic form

Example 2. Any two-dimensional surface equipped with an area form is a sym­
plectic manifold. For example, the sphere S 2 or any other compact orientable 
surface E s of genus g.

Example 3. If (B i , uji) and (B 2 , ujf) are symplectic manifolds, then

is also a symplectic manifold. Here, u>i x uj2 means the sum of the pullbacks of 
the symplectic forms u>i and uj2 from the factors B i  and B 2.

Example 4. The imaginary part of the Hermitean metric on any Kahler manifold 
is a symplectic form. Hence, any Kahler manifold is a symplectic manifold. In 
particular, the complex projective space Pn equipped with its Fubini-Study form 
ujfs is a symplectic manifold.

When (B , uj) is a compact symplectic manifold we have that

uon =  volume form => 0 =£ [uf1] e  H 2n(B , R) => 0 ^  [eu] e  H 2(B , R). 

In particular, the spheres S2n have no symplectic form when n  >  1, since

i) u  e  n 2{B) is such that dec =  0 and

0.

ujn = ùü A * * * A uj E 0 2n(B ) is a volume form.

n

(B  =  B \ X B ‘2 , Lü = Lü 1 X ÜJ2 )

H 2{ S2n,M) 0 when n  >  1.
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2.2. Symplectomorphisms and D arboux’s Theorem

Definition 2. Let (B,cu) be a symplectic manifold. A symplectomorphism o f B  is 
a diffeomorphism ip : B  ^  B  such that p*(cu) = to. These form  the symplecto­
morphism group, a subgroup o fD iE (B ) that will be denoted by Diff(B, cu).

Example 5. Consider the symplectic manifold (B,cu) and let h : B  —$■ R  be a 
smooth function on B . The non-degeneracy of cu implies that there exists a unique 
vector field e  X ( B )  such that X ^jcu  =  dh. This vector field Xh  is called 
the Ham iltonian vector field of the function h and has the following fundamental 
property:

the flow <pt =  (X h)t ■ B  B  consists of symplectomorphisms of B.

This can be proved by using Cartan’s formula to compute

£-xhu  =  Xh-\ dcu +  d(Xft j  cu) =  X h j  0 +  d(dh) =  0.

Hence, on a symplectic manifold (B,cu) any smooth function h e  C °°(B ) gives 
rise, through the flow of the corresponding Hamiltonian vector field X ^  e  X{ B) ,  
to a local one-parameter group of symplectomorphisms.

One can use the symplectomorphisms constructed in the previous example to prove 
that

i) the symplectomorphism group Diff(B, cu) is always infinite-dimensional
ii) the action of Diff(B, ùü) on the manifold B  is always fc-transitive, for any

fee N
iii) in particular, any point of a symplectic manifold (B,  ùü) looks locally like 

any other point of (B,  cu).

This last statement is made more precise in the following

Theorem  1 (Darboux). Let (B , cu) be a symplectic manifold o f dimension 2n. 
Then, any point p  6  B  has a neighborhood U C B  symplectomorphic to a neigh­
borhood V  o f the origin in (R2n, cust), i.e., there exists a diffeomorphism

(j) : U C B  — V  C R 2” such that 4>(p) =  0 and 4>*(cust) =  cu.

In other words,

there are no local invariants in symplectic geometry

which is in sharp contrast with what happens, for example, in Riemannian geome­
try.
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2.3. Sympleetie and Ham iltonian Vector Fields

The Lie algebra of the symplectomorphism group Diff(B, cu), viewed as an infinite­
dimensional Lie group, is naturally identified with the vector space X(B,cu)  of 
symplectic vector fields, i.e., vector fields X  e  X ( B )  such that £xco  =  0, with 
Lie bracket [•, •] given by the usual Lie bracket of vector fields. As before, we can 
use Cartan’s formula to obtain

£ x ^  =  X j  den +  d(X jcu) =  X j  0 +  d (X j eu) = d (X j cu).

Hence, the vector space of symplectic vector fields is given by

X (B, eu) =  {X  e  X (B ) ; the one-form X  j  cu is closed}

while its subspace of Hamiltonian vector fields is given by

X h (B,  cu) =  {X  6 X ( B )  ; the one-form X j  cu is exact} .

In fact, as the following theorem shows, X jj (B , cu) is a Lie subalgebra of X ( B ,  cu).

Theorem  2. If X , Y  e  X(B,cu)  are symplectic vector fields, then [X, Y] is the 
Hamiltonian vector field o f the function cu(Y, X )  : B  ^  R, i.e.,

[X, Y] =  X ^ ^ x )  £ X h ( B , lu).

Proof; It suffices to compute [X, Y) jcu, using the standard formulas from differ­
ential geometry and the defining properties of X , Y  and cu

[X, Y]j to  = £ x ( Y j t o )  - Y j  ( £ x u )

=  d (X j  (V jcü)) +  X j  (d(V jcü)) — Y j  (d(X jcu)) — Y j  (X jdcu)

=  d (cu(Y,X)).  D

R em ark 1. X jj(B,  to) is the Lie algebra o f the fundamental subgroup o f the sym­
plectomorphism group, namely the subgroup H am (ß , to) C D iff(ß , to) o f  Hamil­
tonian symplectomorphisms o f ( B ,  cu). It follows from  Theorem 2 that this Lie al­
gebra can be naturally identified with the vector space C°° (B ) /R , i.e., the smooth 
functions on B  modulo constants, equipped with a bracket {•, •} known as the Pois­
son bracket

{/,«} = - ^ X f , X g).
Note also that when H 1(B,  R) =  0 we have that X jj(B,  cu) =  X ( B ,  cu).

2.4. Ham iltonian Torus Actions

Let (B,cu) be a symplectic manifold equipped with a symplectic action of 

T m _  R™/27rZm =  R /2 ttZ x ••• x R /2 ttZ =  S1 x • • • x S1
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Le., with a homomorphism Tm — DiS ( B , üü). Let X \ , . . . ,  X m e  X ( B )  be the 
vector fields generating the action of each individual S1-factor. Then, since the 
action is symplectic, we have that

Xjç 6 X ( B , uj) for all fc e  { 1 , . . . ,  m} .

Definition 3. A symplectic T m-action on a symplectic manifold (B , uj) is said to 
be Ham iltonian i f  fo r  every k  6 { 1 , . . . ,  to} there exists a function : B  —ï R 
such that X ^ j  uj =  dh^, Le., X ^  =  X h k € X jj(B,  to) is the Hamiltonian vector 
field ofhj,. In this case, the map p  : B  Rm defined by

p(p) = ( h i ( p ) , . . . , h m (p)) for all p e B

which will be called a moment map fo r  the action.

R em ark 2. Suppose p  : B  Rm is a moment map fo r  a Hamiltonian T m-action 
on (B , to). Then p  +  c, fo r  any given constant c 6 Rm, is also a moment map fo r  
that same action.

R em ark 3. The orbits o f a Hamiltonian T 771-action on a symplectic manifold 
(B , üj) are always isotropic, i.e.,

In fact, the tangent space to an orbit is generated by the Hamiltonian vector fields 
X h k, k  G m}. Using Theorem 2 and the fact that the torus Tm is abelian,
we have that

Xuj(xhk,xhl) =  ~~ [Xhk, X h t\ =  0 => ^(Xhb^Xhf i  =  const, k , l  e  { 1 , . . . , to}.

Since Tm is compact, there is fo r  each k  € { 1 , . . . ,  to} and on each T 771-orbit a 
point pk where the function h,ju|orbit attains its maximum. Then

Hence, the above constant is actually zero and each T m-orbit is indeed isotropic. 
This fact will be used below, in the proof o f  Proposition 1.

Example 6. Consider (R2n, ujst), where

C \ k jv =  0 <£=>• Xjujdcü +  d(Xjujcü) =  0 <£=>• d(Xjujcü) =  0

i.e.,

(orbit — 0 .

^ { X h k i Xh[ ) — (dhf)pk (Xf ll ) — 0.

n

3=1
as in Example 1, and its usual identification with Cn given by

Zj =  Uj +  lVj , j  =  1 . . . . .  TO (1)
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The standard Tn- action r st on R 2n given by

{ y i , - - - , y n) • =  (e~1Vlz1, . . . , e ~ 1Vnzn )

is Hamiltonian with a moment map p st : R 2n —̂ Rn given by

Pst(«i 1 • • • 1 wn , i? i,. . . ,  vn ) =  - ( « i  d- rq , . . . ,  iin +  r;n ).

Example 7. Consider the projective space (Pn ,cüpg) equipped with the homoge­
neous coordinates [zQ; zn}.
The T n-action rpg on Pn given by

[Vi , - - - , y n) • [z0; z i , . . .  ; zn] =  [z0;e“ lÿlz i ; . . .  ;e “ lÿ"zn] 

is Hamiltonian, with a moment map /q?g : Pn —»■ Rn given by

Mf s [^o;^ i ; •• • ;zn] =  Ik„ ||2).
If II

Note that the image of p-ps is the convex hull of the images of the n  +  1 fixed points 
of the action, i.e., the standard simplex in Rn.

Atiyah [5] and Guillemin-Stemberg [16] proved in 1982 the following Convexity 
Theorem.

Theorem  3. Let (B , lo) be a compact, connected, symplectic manifold, equipped 
with a Hamiltonian T rn-action with a moment map p  : B  R m. Then

i) the level sets p ^ 1(X) o f the moment map are connected (for any X € Rm)
ii) the image p ( B )  C R m o f the moment map is the convex hull o f the images 

o f the fixed points o f  the action.

2.5. Toric Symplectic Manifolds

The following proposition motivates the definition of a toric symplectic manifold.

Proposition 1. I f  a symplectic manifold (B , to) has an effective Hamiltonian Tm- 
action, then m  < (dim B)f2.

Proof;

Effective action => there exist m-dimensional orbits 

Hamiltonian T m-action => orbits are isotropic (see Remark 3)

Linear Algebra => dim(isotropic orbit) <  |  dim B.
□
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Definition 4. A toric symplectic manifold is a connected symplectic manifold 
( B 2n , to), equipped with an effective Hamiltonian action o f the n-torus

t  : Tn =  Rn/2?rZn ^  Ham  (B , w)

such that the corresponding moment map

P : B  -> R n

which is well-defined up to a constant, is proper onto its convex image P  =  
p (B)  C R n.

R em ark 4. The requirement that the moment map be “proper onto its convex im­
age ”, something that is automatic fo r  compact manifolds, makes the theory o f non­
compact toric symplectic manifolds analogous to the compact one (see [17]).

Example 8. (R2n,cüst), equipped with the standard Hamiltonian T n-action de­
scribed in Example 6, is a non-compact toric symplectic manifold.

Example 9. (Pn , copg), equipped with the Hamiltonian Tn-action described in Ex­
ample 7, is a compact toric symplectic manifold.

2.6. Classification Theorem  and Action-Angle Coordinates

Any toric symplectic manifold has an associated convex set, the image of the mo­
ment map of the torus action. The convex sets that arise in this way are character­
ized in the following definition.

Definition 5. A convex polyhedral set P  in R n is called simple and integral i f

1) there are n  edges meeting at each vertex p
2) the edges meeting at the vertex p are rational, i.e., each edge is o f  the form  

p  +  tvi, 0 <  t  <  oo, where Vi 6 Zn
3) the v i , . . .  ,v n in (2) can be chosen to be a "L-basis o f  the lattice IP .

A facet is a face o f P  o f codimension one.
A Delzant set is a simple and integral convex polyhedral set P  C R n. A Delzant
poly tope is a compact Delzant set.
Two Delzant sets are termed to be isomorphic i f  one can be mapped to the other by 
a translation.

In 1988 Delzant [10] showed that any Delzant polytope determines a unique com­
pact toric symplectic manifold. More precisely, if two compact toric symplectic 
manifolds have the same Delzant polytope, then there exists an equivariant sym- 
plectomorphism between them. This result can be generalized to the possibly non­
compact setting of Definition 4 (see [17]).
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Theorem  4. Let (B , lü, t ) be a toric symplectic manifold, with a moment map 
p  : B  Rn. Then P  = p ( B )  is a Delzant set.

Two toric symplectic manifolds are equivariant symplectomorphic (with respect to 
a fixed torus acting on both) i f  and only i f  their associated Delzant sets are isomor­
phic. Moreover, every Delzant set arises from some toric symplectic manifold.

R em ark 5. One can use the results o f  Lerman and Tolman [19] in order to gen­
eralize Theorem 4 to orbifolds. The outcome is a classification o f symplectic toric 
orbifolds via labeled Delzant sets, i.e., convex polyhedral sets, as in Definition 5, 
with “h-basis” in (3) replaced by “Q -basis” and with a positive integer label at­
tached to each facet.

Each facet F  o f a labeled Delzant set P  C R n determines a unique lattice vector 
uF 6 IP', the primitive inward pointing normal lattice vector. A convenient way o f  
thinking about a positive integer label m p  € N associated to F  is by dropping the 
primitive requirement from this lattice vector, consider mpUp instead o f up.

In other words, a labeled Delzant set can be defined as a rational simple polyhedral 
set P  C Rn with an inward pointing normal lattice vector associated to each o f its 
facets.

The proof gives an explicit symplectic reduction construction of a canonical model 
for each toric symplectic manifold, i.e., it associates to each Delzant set P  an 
explicit toric symplectic manifold (B p , i v p , r p ) with moment map p p  : B p  —$■ P.  
One can use these canonical models to derive general properties of toric symplectic 
manifolds. For example, let P  denote the interior of P,  and consider B p  c  B p  
defined by B p  =  p f } ( P ) .  One easily checks that B p  is an open dense subset of 
Bp,  consisting of all points where the T n-action is free. It can be described as

Hence, one has a global equivariant Darboux’s Theorem in the toric context. Note 
that in these action-angle coordinates the moment map is given simply by

B p  9* P  X Tn =  I (a;, y) ; x  e  P  C Rn , y e  Mn/2?rZn }

where (x , y) are symplectic action-angle coordinates for cup, i.e.,

n

T p ( x , y )  =  x

i.e., projection in the action coordinates.
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3. Toric K ähler M etrics

3.1. L inear Compatible Complex Structures

Definition 6. A compatible complex structure on the symplectic vector space 
(V, to) is a complex structure J  on V, Le., J  6 End(V )) with J 2 =  — Id, such 
that

( ', '}./ :=  'W  , J-)
is an inner product on V. This is equivalent to

ou(J-, J-) = cü(- , •) and ou(v ,Jv)>  0 , for all v f  0 € V.

The set o f all compatible complex structures on a symplectic vector space {V, to) 
will be denoted by J (V , to).

The symplectic linear group Sp(Vr, cu) acts on J ( V ,  cu) by conjugation

S p ( V » x  J ( V , u ) - >  J ( V , ùü)

(# , J)

This action can be easily seen to be transitive and, if we fix J q e  J {V \ cu) and 
corresponding inner product {•, -}0, we have that

^ (V ,a ;) =  Sp(V ;a;)/U (V ;a;,{.,.)o)

where U(Vr, cu, {■, -}0) =  Sp(F, cu) n  0 (V , {■, -}o) is the unitary group. J (V , cu) is 
a symmetric space and admits a beautiful explicit description due to Siegel [23].

Definition 7. The Siegel upper half space S n is the open contractible subset o f the 
complex vector space o f complex symmetric matrices defined by

S n :=  { Z  =  R  + iS  ; R  and S  are real symmetric (n  x n) matrices 

and S  is positive definite}.

Choose a symplectic basis for (V, cu), i.e., an isomorphism (V, cu) =  (R2n, ccst), 
and identify the symplectic linear group Sp(Vr, cu) with the matrix group Sp(2n, R) 
consisting of (2n  x 2n) real matrices #  such that

* CUq • #  =  CUq

where

0 : Id

■Id : 0
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is the matrix form of cust written in (n  x n) blocks. We will also write any sym- 
plectic matrix #  6 Sp(2n, R) in (n  x n) blocks

$

C  : D

The following proposition is proved in [23].

Proposition 2. Sp(2n, R) acts on S n by linear fractional transformations

Sp(2n, R) x S n —>■ S n

(# , Z)  ^  # (Z ) :=  (A Z  +  B ) ■ (C Z  +  D f r 1.

This action is transitive and the isotropy group o f i ld  €  S n is U (n) C Sp(2n, R) 

U (n) =  Sp(2n, R) n  0 (2 n) =  { #  e  Sp(2n,R ) ; • #  =  Id} .

Hence,
S n =  S p (2n ,R )/U (n ).

Given Z  =  R  +  iS  € S n , define

S 1/ 2 \ R S - 1/ 2
6 Sp(2n,

o ; s - 1/ 2

Under the action of Sp(2n, R) on S n, we have that

M i l d )  =  Z.
Let J q € v7(R2n, cüst) be given by

Jo
0 : - I d

Id : 0

For each Z  e  S n , define J z  € ff(M.2n, cust) by

J z  '•= (Jq • $ z )  • Jq • (Jq * ®z)~l =

_1 j-j

R S ^ R  + S

- s - 1

R g - l

(2)

This defines a bijection

S n — f f  (R2n, cust )

Z  ^  Jz
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which, up to Jo-conjugation, is equivariant with respect to the Sp(2n, R)-action on 
both spaces. More precisely, if $  e  Sp(2n, R) then

$  ■ J z  ■ =  J 7l, <#Z '  = ( J o 1 ■ î> ■ J0)(Z).

In particular, J ^ R 2” , ^ )  is a contractible space and, for any symmetric (n x n) 
real matrix U,  we have that

I  : 0
€ Sp(2n, R) and $  $  1 =  J {Z- u y (3)

U : I

This will be relevant below.

3.2. Toric Com patible Complex Structures

Definition 8. A  compatible almost complex structure on a symplectic manifold 
(B , to) is an almost complex structure J  on B, i.e., J  € T (E n d (T ß )) with J 2 =  
— Id, such that

is a Riemannian metric on B. This is equivalent to lü(J-, J-) =  cü(-, •) and 
ùü(X, J X )  >  0 , for all X  ^  0, X  e  T B .
The space o f all compatible almost complex structures on a symplectic manifold 
(B , uj) will be denoted by J (B , uj).

R em ark 6.

i) The fact that J (R2n, ccst) is contractible implies that f f {B ,  to) is a non­
empty, infinite-dimensional and contractible, fo r  any symplectic manifold
(B , oj).

ii) A  Kahler manifold is a symplectic manifold (B , uj) with an integrable com­
patible complex structure J, i.e., one that is locally isomorphic to the stan­
dard complex structure J q on R 2n. Note that (1) gives the standard isomor­
phism  (R2n, J 0) =  Cn.

iii) The space o f integrable compatible complex structures on the symplectic 
manifold (B , to) will be denoted by T { B , to) C J { B , to).

iv) In general, T ( B , to) can be empty.

Definition 9. A  toric compatible complex structure on a toric symplectic manifold 
( B 2n , ce, t ) is a Tn-invariant J  € I ( B , lü) C J { B , uj). The space of all such 
structures will be denoted by ZT" (B , lü) C (B , to).

R em ark 7. It follows from the classification in Theorem 4, more precisely from the 
explicit symplectic reduction construction o f the canonical model fo r  any compact 
toric symplectic manifold (B 2n, ùü, t ), that ZT" (B , ùü) is always non-empty.



24 Miguel Abreu

3.3. Local Form  of Toric Compatible Complex Structures

It follows from the above bijection between J ^ R 2", cust) and the Siegel upper half 
space S n that any J  e  J Tn(B,oo\^)  can be written in action-angle coordinates 
(x, y)  on B  =  P  x T n as

J
—S ~ 1R  : - S - 1

R S ^ R  + S  : R S - 1

where R  =  R(x)  and S  =  S(x)  are real symmetric (n x n)  matrices, with S  
positive definite.
For integrable toric compatible complex structures we have that

J e r  c j 1
dz ,
d x k

d Z lk
d x j

and there exists f  : P  —¥ C , f ( x )  =  r(x)  +  is (a;), such that

^  ozf  d zr  . o zs „
ZjA = ----------= ------------- b i ----------=  Rj-i + 1 S aa.

OX i OX j  OX i OX j  OX i OX j

Any real function h : P  —$■ R  is the Hamiltonian of one-parameter family

4>t : B  —ï B

of Tn-equivariant symplectomorphisms. These are given in action-angle coordi­
nates (x, y) on B  =  P  x Tn by

, z . . d h
m x >y) =  { x , y  -  t — ).

Hence, it follows from (3) that the natural action of 4>t on V7 T” , given by

<j>t' J  = (d (j>t) o J  o (d

corresponds in the Siegel upper half space parametrization to

(f>t • (Z  = R  +  iS ) = (R  +  tH )  +  iS

where

*  ■  4 Ä )  ■
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npTt
This implies that, for any intégrable J  € Z , there exist action-angle coordinates 
(x, y) on ë  = P  x T n such that R  = 0, i.e.,

J
o : - s -  

5  : o

with

5  =  S (x)  = (sl3(x))
d 2t

dx idx j

for some real potential function s : P  R.
The holomorphic coordinates for J  are given in this case by

ds
z ( x , y) =  u ( x , y) +  iv(x,  y) = —  (x) +  iy

and the corresponding Riemannian (Kahler) metric

(., -)j := cü(*, J-)

on B  =  P  x Tn can the be written in matrix form as

CÜQ * J
0 : Id 0 : - S ' - 1 s  : o

— Id : 0 s  : 0 o : s - 1

with

5
dx idx j

Definition 10. We will call such a potential function

s : P  R

(4)

(5)

the symplectic potential o f both the complex structure J  and the metric {•, -)j.

R em ark 8. This particular way to arrive at the above local form  fo r  any compat­
ible structure J  € ZT" is due to Donaldson [12], and illustrates a small part o f  
his formal general framework fo r  the action o f the symplectomorphism group o f a 
symplectic manifold on its space o f compatible complex structures (cf. [11]).

Example 10. Consider the standard linear complex structure J q € ZT"(R 2n,cüst) 
given by (2). In action-angle coordinates (x, y) on

i 2n =  (R2 \  {(o, 0)})n =  (R+ )n X r  =  P  x Tn
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its symplectic potential is given by

s : P  = (R+ )n — > R

i=1

Hence, in these action-angle coordinates, the standard complex structure has the 
matrix form

3.4. Symplectic Potentials for Compact Toric Symplectic Manifolds

The proof of Theorem 4 associates to each Delzant set P  c  Rn, via an explicit 
symplectic reduction construction, a canonical Kahler toric manifold

In [15] Guillemin gave an explicit formula for the symplectic potential of this 
canonical Kahler metric. To write it down one needs some simple combinatorial 
data that can be easily obtained directly from the poly tope P.
Let F'i denote the Fth facet (codimension-one face) of the polytope P. The affine 
defining function of F* is the function

where vi e Zn is a primitive inward pointing normal to F'i and \  e R is such that 
i i \F. =  0. Note that f \ p  > 0.

Theorem 5. In appropriate action-angle coordinates (x, y ), the canonical sym-

0 : d ia g ( -2 ^ )
Jo=  .................................................................................

d ia g (l/2 Xi)  : 0
while the standard flat Euclidean metric becomes

diag(l/2:Cj) : 0

0 : d iag (2^)

{BfV.ujp, rp,  (ip, Jp)  suchthat p p ( B p )  = P.

£i : R n — > R

x  I—> £i{x) = {x, Vi) -  Xi

plecticpotential sp  : P  ~BLfor Jp \p  is given by

i= 1
where d is the number o f the facets o f  P.
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Example 11. The symplectic potential presented in Example 10 for the standard 
flat Euclidean metric on R2n is the canonical symplectic potential of the corre­
sponding Delzant set P  =  (Rq )n c  Rn.

Example 12. For projective space Pn the polytope P  c  Rn can be taken to be the 
standard simplex, with defining affine functions

£i(x) = X i , i = and £n+1(x) = l  - r

where r  =  J f i  x %-
The canonical symplectic potential sp  : P  —$■ R, given by

defines the standard complex structure J p s  and Fubini-Study metric on Pn.

Theorem 6 below provides the symplectic version of the öö-lemma in the toric 
context, characterizing the symplectic potentials that correspond to the toric com­
patible complex structures on a toric symplectic manifold. It is an immediate ex­
tension to our possibly non-compact setting of the compact version proved in [2], 
To properly state it we need the following definition.

Definition 11. Let (B,  tu, r )  be a symplectic toric manifold and let us denote by

Yi, ■ ■ ■ ,Yn  e  X h ( B , lo)
the Hamiltonian vector fields generating the torus action. A toric compatible com­
plex structure J  6 T 1' (B , u>) is said to be complete if  the J-holomorphic vector 
fields

J Y 1, . . . , J Y n e X ( B )
are complete. The space o f all complete toric compatible complex structures on 
(B , ùü, t ) will be denoted by 2 J ”(B , ùü).

Theorem 6. Let J  be any complete compatible toric complex structure on the 
symplectic toric manifold {Bp,  top, t p ). Then, in suitable action-angle (x, y)- 
coordinates on B p  = P  x Tn, J  is given by a symplectic potential s 6 C°°{P) o f  
the form

s(x) = sp{x)  +  h(x)
where sp  is given by Theorem 5, h is smooth on the whole P, and the matrix 
S  =  H esses) is positive definite on P  and has determinant o f  the form

i =  1

with Ô being a smooth and strictly positive function on the whole P.
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Conversely, any such potential s determines a {not necessarily complete) complex 
structure on B p  =  P  x Tn, that extends uniquely to a well-defined compatible 
toric complex structure J  on the toric symplectic manifold (Bp,  u j p , T p ) .

Remark 9. I f  one takes into account Remark 5, the word “manifold” can be re­
placed by “orbifold” in Theorem 5 and Theorem 6 (see [3]).

Remark 10. There is no immediate relation between completeness o f a toric com­
patible complex structure and completeness o f the associated toric Kahler metric.

See also Remark 11.

3.5. Scalar Curvature

We now recall from [1] a particular formula for the scalar curvature in action-angle 
(x, y )-coordinates. A Kahler metric of the form (5) has scalar curvature Sc  given 
by1

5c
9 log P e t ( S ) \  

d x k )

which after some algebraic manipulations becomes more compact

5c y
j,k

g2sjk

d x j d x k (6)

where the s^k, 1 < j ,  k < n, are the entries of the inverse of the matrix 5  =  
H esses), s =  symplectic potential. See [11] for an appropriate interpretation of 
this formula for the scalar curvature.

3.6. Symplectic Potentials and Affine Transformations

Because the Delzant set P  c  1 "  of a symplectic toric manifold is well defined 
up to translations (i.e., additions of constants to the moment map) and SL(n, Z) 
transformations (i.e., changes of basis of the torus T n =  Rn/27rZn), symplectic 
potentials should transform naturally under these type of maps. While the effect 
of translations is trivial to analyse, the effect of SL(n, Z) transformations is more 
interesting. In fact

symplectic potentials transform quite naturally 
under any GL (n, R) linear transformation.

1The normalization for the value o f the scalar curvature we are using here differs from the one used 
in [1,2] by a factor o f 1 /2 .
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Let T  e  GL(n, R) and consider the linear symplectic change of action-angle co­
ordinates

x  :=  T ~ 1x ' and y  :=  T ly ' .

Then
d

p ’ = n  e ®n ; :=  + a * ^
a= 1

becomes

d
P  :=  T - ^ P ')  =  f | { i  6 K "; := { x , v a) +  A„ > 0}

£1=1

with

ua = T tvfa and Aa =  X'a 

and symplectic potentials transform by

s =  s' o T  (in particular, sP =  s'P o T ). 

The corresponding Hessians are related by

S  = T* (S ' o T ) T

and

5c  =  Sc'  o T.

Example 13. Fig.l illustrates two equivalent descriptions of a toric symplectic 
rational ruled four-manifold or, equivalently, of a Hirzebruch surface

H 2m :=  F ( 0 ( - m )  © C) P 1 , m e  N.

The linear map T  e  GL(2, R) relating the two is given by

[to - 1
[0  1 ‘

The inward pointing normal that should be considered for each facet is specified. 
The polytope on the right is a standard Delzant polytope for the Hirzebruch surface 
H^n. The polytope on the left is very useful for the Kahler metric constructions of 
Section 5 and was implicitly used by Calabi in [7],
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(1/m,1/rr

( 1,0)

( - 1,0)

( 0 , 1) (0 , 1)

Figure 1. Hirzebrach surfaces.

4. Toric C onstant C urvature M etrics on the R eal Two D im ensional 
M anifolds

Any real two-dimensional orientable Riemannian manifold is Kahler since its area 
form is a symplectic form and oriented rotation by 7t / 2  on each tangent plane 
is a compatible complex structure. In this section we write down the symplec­
tic potentials that give rise to toric constant (scalar) curvature metrics of real two 
dimensional manifold and identify the underlying toric symplectic manifolds B.  
This will be a warm-up for the higher dimensional examples that will be presented 
in Section 5.
According to the formula (6) for the scalar curvature, we are looking for symplectic 
potentials s : P  c l - > l  such that s" > 0 and

where f e e l  denotes the Gauss curvature. This implies that

where x  e  P  C M is such that s"(x)  >  0.

4.1. Cylinders

Suppose that k =  b =  0. Then

s"(x)  =  -  >  0 => c >  0 and i 6 K .
c

This means that P  =  K and s : P  =  K —»■ K can be written as
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Hence

B  = B  = P  x  T 1 =  l x 5 1 =  { ( a ; , ÿ ) ; a : 6 l ,  y E R/27tZ}

and the metric is given in matrix form by

' l / c  O'
0 c

i.e., we get a flat cylinder of radius v/c.

4.2. Cones

Suppose that k  =  0 and 5 ^ 0 .  Then, modulo a translation and possible sign 
change in the action variable 37, we can assume that c =  0, b >  0 and

s"(x)  =  >  0 and therefore 37 >  0.
2 bx

This means that P  =  [0, +oo[ and s : P  =  ]0, +oo[ o  R  can be written as

s(x)  =  — * —37 l o g  37.
K ’ b 2 6

If b =  1 this is the canonical symplectic potential giving the flat Euclidean metric 
on R 2 (cf. Example 10). In general, as explained in [3], this is the symplectic 
potential of a cone metric of angle wb on R 2, given in matrix form by

2K 0 
0 2bx

When b =  1/p  with p e N, this corresponds to an orbifold flat metric on R 2/Z p 
(see [3]).

4.3. Footballs

Suppose that k  >  0. Then, modulo a translation in the action variable x,  we can 
assume that b =  0 and

1
8 ( x ) = k x 2

> 0 = ^ c >  0 and — c j k  < x  < -\fcjk.

This means that P  =  
be written as

1 1 r

-y/cjk,  y f c j k and s : P  = - \ / c /k ,  y / c f k -¥ R  can

5(37) =  —=  ' -  {y j c jk  +  37) \og(y/cJk  +  37) +  {y / c jk  — x)  log (y /c / k  — x)
\/c k  2 L

If c =  1 j k  this is the canonical symplectic potential giving the smooth round 
european football metric of total area 47r/fc and constant Gauss curvature k  on
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P1 =  S2 (cf. Example 12). In general, this is the symplectic potential of a singular 
american football metric of angle n s/ck  at the “poles”.

4.4. Hyperbolic Metrics

Suppose that k < 0. Then, modulo a translation in the action variable x , we can 
assume that b =  0 and

*"<*)
1

c —k x 2

If c >  0 then s"(x)  >  0, for all x  e  R, which means that P  =  R and s : P  =  
R —»■ R can be written as

s (x ) arctan

This is the symplectic potential of a metric of constant Gauss curvature fc <  0 on 
the manifold

B =  B =  P x T 1 = l x 5 1 =  { ( a ; , ÿ ) ; a ; € l ,  y  6 R/27tZ}

which is obviously the standart hyperboloid. 
If c <  0 then

s”(x)  >  o => x  e -oo, - \ / c / k  U \ / c / k , +oo

Hence, up to a sign change in the action variable æ, we may assume that P  =
y f c j k ,  +OG and s : P  = •y/c/fe, +00 —»■ R can be written as

s(x) =
1 1 - 

s/ck  2 -
(x  -  Vc/fe) log(a; -  ^ /c jk )  -  (x + \ f c f k )  log (a; +  \ f c f k )

If c =  1 j k  this is the symplectic potential of the hyperbolic metric of constant 
Gauss curvature fc <  0 on R 2. In other words, in the action-angle coordinates 
( x , y )  of this symplectic model, the hyperbolic metric is given in matrix form by

-fc n
u

0  { k x f - l  *
L u - f c  J

More generally, i.e., when c ^  1/fc, we get singular hyperbolic metrics on R 2, with 
a cone singularity of angle irs/ck  at the origin.

Remark 11. This case illustrates the fact that there is no immediate relation be­
tween completeness o f a toric compatible complex structure and completeness o f  
the associated toric Köhler metric. Here the metric is complete but the complex 
structure is not. In fact, it easily follows from  (4) that R 2 with this complex struc­
ture is biholomorphic to an open bounded disc D  c C .
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If c =  0 we have that

*"<*) = k x 2
> 0 , for all x  ^  0

and s : P  =  ]0, +oo[ —>■ R can be written as

s(x)  =  — log(a;).
k

This is the symplectic potential of a complete hyperbolic cusp metric on B  = 
]0, +oo[ x S'1, given in matrix form by

i
kx2 
0

0
-k x 2

5. C alab i’s Fam ily o f Extrem al K ähler M etrics

In [7], Calabi introduced the notion of extremal Kähler metrics. These are defined, 
for a fixed closed complex manifold (M, J) ,  as critical points of the square of 
the L2-norm of the scalar curvature, considered as a functional on the space of all 
symplectic Kähler forms tv in a fixed Kähler class O e  H 2(M,  R). The extremal 
Euler-Lagrange equation is equivalent to the gradient of the scalar curvature being 
a holomorphic vector field (see [6]), and so these metrics generalize constant scalar 
curvature Kähler metrics. Moreover, Calabi showed in [8] that extremal Kähler 
metrics are always invariant under a maximal compact subgroup of the group of 
holomorphic transformations of (M , J ). Hence, on a toric manifold, extremal 
Kähler metrics are automatically toric Kähler metrics, and one should be able to 
write them down using the previous action-angle coordinates framework.
In this section, following [1], we will do that for the four-parameter family of 
U(n)-invariant extremal Kähler metrics constructed by Calabi in [7], Calabi used 
this family to put extremal Kähler metrics on

F ( ö ( —m)  0  C) — > Pn _ 1 , m, n  e  N

for any Kähler class. In particular, when n  = 2, on all Hirzebruch surfaces (cf. 
Example 13). As we will see here, this family can be used to write down many 
other interesting extremal Kähler metrics, including the non-compact, cohomo­
geneity one, constant scalar curvature examples that were later constructed by 
LeBrun [18], Pedersen-Poon [21] and Simanca [24], Using the action-angle co­
ordinates set-up for toric Sasaki geometry developed in [20], one can show [4] that 
Calabi’s family also contains a family of Kähler-Einstein metrics directly related 
to the Sasaki-Einstein metrics constructed in 2004 by Gauntlett-Martelli-Sparks- 
Waldram [13,14].
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5.1. Calabi’s Family in Action-Angle Coordinates

Let us take symplectic potentials s : P  c  (R+)n —̂ R of the form

where

1 / n

s(x)  =  -  I 2_^ Xi l°g x i +  H r ) 
\ i =1

(7)

r = xx H----- x n
and P  will be determined in each of the particular cases that we will consider. A 
simple computation shows that

Det(S') =  —---------------  and S ^ 1 = (slj = 2 (SijXi -  XiXj f(r)) )
4 X i ...... x n

where f  =  h" /(1  +  rh").  Then, (6) implies that the scalar curvature of the corre­
sponding tone Kahler metric is given by

Sc(x)  =  Sc(r)  =  2 r 2f " ( r )  +  4 (n +  1 ) r f ( r )  +  2 n (n  +  l ) / ( r ) .  (8)

The Euler-Lagrange equation defining an extremal Kahler metric can be shown to 
be equivalent to

dSc
——  =  constant, j  = 1 . . . . .  n (9)
OXj

i.e., the metric is extremal if and only if its scalar curvature Sc  is an affine function 
of x  (see [1]).
Requiring that the scalar curvature Sc  =  Sc(r) ,  given by (8), is an affine function 
of r  is easily seen to be equivalent to

h"(r)
1 | rn 1 
r rn _ _ (Jfn+l  _ JJr n+2 (10)

where A, B , C , D  e  M are the four parameters describing the family.
As shown by Calabi in [7], one can determine explicit values for the constants 
A, B , C , D  e  M so that the corresponding symplectic potential, given by (7), gives 
rise to an extremal Kahler metric on

F ” :=  P ( 0 ( - m )  © C) — > P ”“ 1 , m, n  e  N.

In our framework, this can be seen as follows. Up to a GL(n,  R) transformation, 
generalizing to higher dimensions the one considered in Example 13, is deter­
mined by a moment polytope P^(a ,  b) c  Rn with defining affine functions

£i(x) = Xi, i = 1 , . . .  , n ,  £n+i(x)  = — (r -  a) and £n+2(x) = — (b -  r)
m  m

where the real numbers 0 <  a <  b determine the Kahler class, i.e., the cohomol­
ogy class of the symplectic form cua^. Hence, if follows from Theorem 6 that,
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to determine a toric compatible complex structure on uia,b), the symplectic 
potential has to be of the form

2s(x)  =  Xi log Xi H-----((r  — a) log(r
i =  1

a) +  (b — r)  log(& — r))  +  h(r)  (11)

where h is smooth on P ^ (a , b) c l ” . Comparing (7), (10) and (11), one concludes 
that we must have

r n_1 1 / 1  1 \
r n — A  — B r  — C rn+1 — D rn+2 m  \ r  — a b — r )   ̂  ̂  ̂ ^

where R{r)  is a smooth function on P ^ (a , b) c  Mn. This gives rise to a system of 
four linear equations in the four unknowns A, B , C ,  D  e  M, which admits a unique 
explicit solution for any m . n  e N  and a i e l  such that 0 <  a <  b (see page 285 
of [7] or [22]).

5.2. Particular Cases

By construction, all Kahler metrics in Calabi’s four-parameter family are extremal. 
A simple computation shows that their scalar curvature is given by

Sc(r) = 2 (n +  1)((2 +  n ) D r  +  nC) .

Hence, these metrics have

constant scalar curvature iff D  =  0

and are
scalar-flat iff C = D  = 0. 

Moreover, one can show that these metrics are

Kähler-Einstein iff B  =  D  =  0

and
Ricci-flat iff B  = C  = D  = 0.

We will now analyse in more detail these constant scalar curvature particular cases. 
Note that when A  = B  = C  = D = Owe have 1

1 n
s(x) = - ^ X i l o g X i

i =  1

which is the standard symplectic potential of the Delzant set P  =  (Mg ) ” and 
determines the standard flat Euclidean metric on M2n (cf. Example 10).
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5.3. Ricci-Flat Metrics

Assume that B  =  C  =  D  =  0 and A  = an with 0 <  a e  1 . Then
1 n - l

h"{r) = - -  + ----------
v '  r rn -  an

1 rn~ 1 
r  ^  (r — a) Ylk=i ak~1r n~k

= - l  + - . ^ —  + R(r)  
r n  r  — a

where R{r)  is a smooth function on the rational Delzant set P n(a) c  Mn with 
defining affine functions

i i{x)  =  x,i , for all i = l , . . . , n  and i n+i (x) = —(r — a).
n

The symplectic potential can be written as

s(a;) =  — ( x i log Xi H— (r — a) log(r — a) +  h(r)  
\i=l

where h is smooth on P n (a) c  Mn. Hence, for each a >  0, it defines a Ricci-flat 
Kahler metric on the total space of the canonical line bundle

O ( - n )  — > P”“ 1

(as before, up to a GL (n, M) transformation, the underlying non-compact toric 
symplectic manifold is determined by P n (a) c  Mn). These are the metrics con­
structed by Calabi in [6],

5.4. Scalar-Flat Metrics

We will now show that Calabi’s family also contains the complete scalar-flat Kahler 
metrics on the total space of the line bundles

0 { - m )  — )■ P” “ 1 , for all m e  N

constructed by LeBrun [18] and Pedersen-Poon [21] (see also Simanca [24]).
Up to a GL(n, R) transformation, these spaces are determined by the rational 
Delzant sets P ^ (a )  c  Mn, with 0 <  a e  1  and defining affine functions

£i(x) = xi, i = 1 , . . . ,  n , and £n+i(x ) =  — (r -  a).
m

which means that the symplectic potential has to be of the form

1 (  71 i  \
s(x)  =  -  /  Xi log Xi H----- (r — a) log(r — a) +  h(r)

2 \ m  /V/=l /
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where h is smooth on P^n(a). This implies that

h"(r) =  - -  +  -  ■ —  +  R(r)
r m  r — a

with R(r)  smooth on P^n{a). Since the scalar-flat condition is equivalent to C  =  
D = 0, we get that

1 r ”" 1 1 1 1
------ 1---------- 7-----=r- = ------ 1------------------b R(r) .r  rn — A  — B r  r  m  r  — a

This relation gives rise to a system of two linear equations in the two unknowns 
A, B  6 R, which admits a unique solution for any m,  n  6 N and 0 <  a e  1

A  =  an ( l  — n  +  m)  and B  =  (n — m)an~l .

Note that when m  = 1 we get complete scalar-flat Kahler metrics on the total space 
of the line bundle

0 { - 1) — > r ^ 1
i.e., on Cn blown-up at the origin. These were originally constructed by D. Bums 
(at least when n  =  2).

5.5. Fubini-Study and Bergman Metrics

Assume that A  =  B  =  D  =  0, which implies in particular that we are considering 
Kähler-Einstein metrics. Then

h"(r)
„n—1

r  r 
i

n _  (Jr n+1 

1
r (  1 — Cr)

which implies that the symplectic potential can be written as
1 /  n

S(>) =  -  l Y ]  X  j log a;,
\ i = 1

c — r log
C

— r

When C  =  1 we recover Example 12, i.e., the standard complex structure and 
Fubini-Study metric on P n . More generally, for any C > 0, this defines the stan­
dard complex structure and suitably scaled Fubini-Study metric on Pn . The corre­
sponding moment polytope is the simplex in R n with defining affine functions

£i(x) =  X i , for all i =  1 , . . . ,  n , and £n+i(x)
1
C

r.

When C < 0 it follows from Theorem 6 that the above symplectic potential de­
termines a toric compatible complex structure J c  on the toric symplectic mani­
fold (R2n,cüst) with Delzant set P  =  (Mg’)" C Rn. The corresponding Kah­
ler metric is a U(n)-invariant Kähler-Einstein metric of negative scalar curvature
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on the complex manifold (R2n, Jc ) .  Using the holomorphic coordinates given 
by (4), one easily concludes that (R2n, Jc)  is biholomorphic to a ball B  c  Cn, 
which implies in particular that J c  is not complete. Moreover, the Kahler metric 
{•, -)c :=  cüst(-, Jc-)  is, in fact, the well-known and complete Bergman metric.

5.6. Other Kahler-Einstein Metrics

We will now show that Calabi’s family also contains the complete Kähler-Einstein 
metrics with negative scalar curvature on the total space of the open disc bundles

V ( —m)  C O ( - m )  — > Pn-1 for all n  < m  € N

constructed by Pedersen-Poon [21].
As toric symplectic manifolds, and up to a GL(n, R) transformation, these spaces 
are again determined by the rational Delzant sets Pj^(a) C R n with defining affine 
functions

£i(x) =  X i , for all i =  1 , . . . ,  n , and £n+i(x)  =  — (r — a)
m

which means that the symplectic potential has to be of the form

1 (  n i  \
s(x)  =  -  /  Xi log Xi H----- (r — a) log(r — a) +  h(r)

2 \ rn }

where h is smooth on P ^ (a ). This implies that

h"(r) = . - J —  +  R(r )
r m  r — a

with R(r)  smooth on P ^ (a ). Since the Kähler-Einstein condition is equivalent to 
B  = D = 0, we get that

1 r ”" 1
jy* iy*YL  

1
r

— * —------b R(r).
m  r  — a

This relation gives rise to a system of two linear equations in the two unknowns 
A, C  € R, which admits a unique solution for any n  < m  e  N and 0 <  a e  R

A
(m  +  l ) a n 

n - 1
>  0 and C

n  — m  
(■n  +  l)a

<  0.

As remarked by Pedersen-Poon, these metrics are a superposition of Calabi’s Ricci- 
flat metrics (A  >  0) and Bergman metrics (C < 0). The analogous superposition 
of Calabi’s Ricci-flat metrics (A > 0) with Fubini-Study metrics (C > 0) gives rise 
to Kähler-Einstein metrics on the projectivization of the above line bundles, with 
cone-like singularities in the normal directions to the zero and infinity sections. As 
explained in [4], these metrics are directly related to the smooth Sasaki-Einstein 
metrics constructed in 2004 by Gauntlett-Martelli-Sparks-Waldram [13,14].



Toric Kahler Metrics 39

5.7. Other Constant Scalar Curvature Metrics

We will now show that Calabi’s family also contains the complete constant negative 
scalar curvature Kahler metrics on the total space of the open disc bundles

V { —m)  C 0 { —m)  — > P n -1  for all m,  n  € N

constructed again by Pedersen-Poon [21].
As before, we are interested in the rational Delzant sets P^(a)  c Mn and sym- 
plectic potentials of the form

1 (  n 1
s(x)  =  -  |%  Xi log Xi H-----(r — a) log(r — a) +  h(r)

2 \ m
\ i =  1

with h smooth on P^n{a). Assuming D  =  0 and C  
this implies that

-1, i.e., Sc -2 n (n

r n —1
R(r)

r r n — A  — B r  +  r n+1 r  m  r — a 
with R(r)  smooth on P ^ (a ). This relation gives rise to a system of two linear 
equations in the two unknowns i , S e R ,  which admits a unique solution for any 
m,  n  € N and 0 <  a € R

A  =  (m — n  +  (1 — n)a)an and B  = (n — m  + 1 +  n a )a n_1.
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