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On the “Poisson boundaries” of the

family of weighted Kolmogorov statistics

Leah Jager1 and Jon A. Wellner1

University of Washington

Abstract: Berk and Jones (1979) introduced a goodness of fit test statis-
tic Rn which is the supremum of pointwise likelihood ratio tests for testing
H0 : F (x) = F0(x) versus H1 : F (x) �= F0(x). They showed that their sta-
tistic does not always converge almost surely to a constant under alternatives
F , and, in fact that there exists an alternative distribution function F such
Rn →d supt>0 N(t)/t where N is a standard Poisson process on [0,∞). We
call the particular distribution function F which leads to this limiting Pois-
son behavior the Poisson boundary distribution function for Rn. We investi-
gate Poisson boundaries for weighted Kolmogorov statistics Dn(ψ) for various
weight functions ψ and comment briefly on the history of results concerning
Bahadur efficiency of these statistics. One result of note is that the logarith-
mically weighted Kolmogorov statistic of Groeneboom and Shorack (1981) has
the same Poisson boundary as the statistic of Berk and Jones (1979).

1. Introduction

Suppose that X1, . . . , Xn are i.i.d. F on R and we want to test the null hypothesis

H : F (x) = F0(x) for all x ∈ R

where F0 is continuous, versus the alternative hypothesis

K : F (x) �= F0(x) for some x ∈ R.

As usual, we can reduce to the case when F0 is the Uniform(0, 1) distribution on
[0, 1]; i.e. F0(x) = x for 0 ≤ x ≤ 1.

Berk and Jones (1979) introduced the test statistic Rn, which is defined as

Rn = sup
−∞<x<∞

K
(
Fn(x), F0(x)

)
, (1.1)

where

K(x, y) = x log
x

y
+ (1 − x) log

1 − x

1 − y
, (1.2)

and Fn is the empirical distribution functions of the Xi’s, given by

Fn(x) =
1
n

n∑
i=1

1[Xi≤x]. (1.3)
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Define

K+(x, y) =




K(x, y), 0 < y < x < 1,
0, 0 ≤ x ≤ y ≤ 1,
∞, otherwise

, (1.4)

and

K−(x, y) =




K(x, y), 0 < x < y < 1,
0, 0 ≤ y ≤ x ≤ 1,
∞, otherwise.

Berk and Jones also studied the one-sided statistics R+
n and R−

n defined by

R+
n = sup

x
K+

(
Fn(x), x

)
, R−

n = sup
x

K−(
Fn(x), x

)
.

Berk and Jones (1979) discussed the optimality properties of the statistics R+
n

and Rn. They showed, in particular, that they have greater Bahadur efficiency than
the corresponding Kolmogorov statistics. Berk and Jones (1979) also extended this
comparison to weighted Kolmogorov statistics via the results of Abrahamson (1967).
In view of the results of Groeneboom and Shorack (1981), these comparisons are
trivial for any weight funtion ψ of the form ψ(x) = [x(1 − x)]−b for any positive b
since Groeneboom and Shorack show that the limiting efficacy of the weighted Kol-
mogorov statistics with power function weighting is in fact zero for any alternative
for which the efficacy makes sense. Moreover, as we show here the efficacies of the
weighted Kolmogorov statistics are not well-defined (and the Bahadur efficiency
comparison is not meaningful) for fixed alternatives at or beyond certain “Poisson
boundaries” which we describe below. Thus it seems to us that the assertion by
Owen (1995), at the end of his section 1, that the statistics of Berk and Jones (1979)
have “increased efficiency over any weighted Kolmogorov–Smirnov method at any
alternative distribution” is an over-interpretation of the results of Berk and Jones
(1979).

Wellner and Koltchinskii (2003) present a proof of the limiting null distribution
of the Berk-Jones statistic, and Owen (1995) computes exact quantiles under the
null distribution for finite n; see also Owen (2001). Using these quantiles, Owen
constructed confidence bands for F by inverting the Berk and Jones test, and
then calculates the power associated with the Berk-Jones test statistic for fixed
alternatives of the form F (x) = F0(x)α. See Jager and Wellner (2004) for some
corrections of the results of Owen (1995).

One of the interesting results for the statistic Rn proved in Berk and Jones
(1979) is the following limit behavior under a rather extreme alternative distribu-
tion.

Theorem 1 (Berk and Jones (1979)). Suppose that X1, . . . , Xn are i.i.d. with
distribution function F given by

F (x) =
1

1 + log(1/x)
, 0 < x < 1 and 0 < b < 1. (1.5)

Then

R+
n →

d
sup

0<t<∞

N(t)
t

d=
1
U

,

Rn →
d

sup
0<t<∞

N(t)
t

d=
1
U
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where N is a standard Poisson process on [0,∞) and U is a Uniform[0, 1] random
variable.

Because of the Poisson nature of the limiting distribution in Theorem 1, we call
the corresponding alternative distribution function F a “Poisson boundary” for the
test statistic Rn. The fact that supt>0 N(t)/t

d= 1/U follows from results of Pyke
(1959), page 571, and elementary manipulations, or, alternatively from the classical
result of Daniels (1945) that

P

(
sup

0<t≤1
Gn(t)/t ≥ x

)
= 1/x for x ≥ 1

where Gn is the empirical distribution function of n i.i.d. Uniform(0, 1) random
variables (see e.g. Shorack and Wellner (1986), page 404) together with the Poisson
convergence results of Wellner (1977b).

For alternatives F that are “less extreme” than the F given in Theorem 1,
Berk and Jones (1979) give sufficient conditions under which following more usual
or “expected” behavior holds:

R+
n →

a.s.
sup

x
K+

(
F (x), x

)
, and Rn →

a.s.
sup

x
K

(
F (x), x

)
.

Some questions related to this type of result are discussed further in Section 4.
Our main purpose here is to note that the phenomena of a Poisson boundary

is not unique to the Berk–Jones statistic Rn, but that in fact this type of behavior
holds for a general class of “weighted” type statistics. Indeed we will show that the
Poisson boundary for the weighted Kolmogorov statistics is a much less extreme
alternative than the Poisson boundary distribution function F (given in (1.5)) found
by Berk and Jones (1979) for their statistic.

2. “Poisson boundaries” for weighted Kolmogorov statistics

Consider the family of weighted Kolmogorov–Smirnov statistics given by

Dn(b) ≡ sup
0<x<1

|Fn(x) − x|
(x(1 − x))b

(2.6)

where Fn is the empirical distribution function of the Xi’s and 0 < b < 1. The
asymptotic behavior of Dn(b) under the null hypothesis H is well-known: for 0 <
b < 1/2

n1/2Dn(b) →
d

sup
0<t<1

|U(t)|
(t(1 − t))b

where U is a standard Brownian bridge process, while for 1/2 < b ≤ 1

n1−bDn(b) →
d

max

{
sup

0<t<∞

|N(t) − t|
tb

, sup
0<t<∞

|Ñ(t) − t|
tb

}

where N and Ñ are independent standard Poisson processes. The case 0 < b < 1/2
follows from Chibisov (1964) and O’Reilly (1974); see e.g. Shorack and Wellner
(1986), pages 461–466, or Csörgő and Horváth (1993), Theorem 3.2, page 217. The
case 1/2 < b < 1 follows from Mason (1983); see also Csörgő and Horváth (1993),
Theorem 1.2, page 265. When b = 1/2 the limit behavior is due to Jaeschke (1979)
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and Eicker (1979), which in turn rely on the classical results of Darling and Erdös
(1956):

bnn1/2Dn(b) − cn →
d

E4
v

where bn = (2 log log n)1/2, cn = 2 log log n + (1/2) log log log n− (1/2) log(4π), and
P (E4

v ≤ x) = exp(−4e−x); see e.g. Shorack and Wellner (1986), page 600.
Our goal here is to prove the following theorems concerning particular fixed

alternative hypotheses.

Theorem 2. Suppose that X1, X2, . . . , Xn are i.i.d. F where F (x) = xb for 0 ≤
x ≤ 1. Then

Dn(b) →
d

sup
0<t<∞

N(t)
t

d=
1
U

(2.7)

where U ∼ Uniform(0, 1).

Theorem 2 does not cover the interesting special case b = 1. For b = 1 we have
the following (more special) result.

Theorem 2A. Suppose that c > 1 and that X1, X2, . . . , Xn are i.i.d. F where

F (x) =




0, −∞ < x < 0,
cx, 0 ≤ x ≤ 1/c,
1, 1/c ≤ x < ∞.

Then

Dn(1)→
d

(
c sup

0<t<∞

N(t)
t

− 1
)∨

c
d=

(
c

1
U

− 1
)∨

c ≡ Yc

where U ∼ Uniform(0, 1) and

P (Yc ≤ x) =
{

0, x < c,
1 − c/(x + 1), x ≥ c.

(2.8)

Theorems 2 and 2A do not cover the case of (very light) logarithmic weights
which are of interest because of their connection to the results of Groeneboom
and Shorack 1981. These authors showed that with ψ = ψ2 where ψ2(x) ≡
− log(x(1 − x)), the ψ-weighted Kolmogorov statistics

Dn(ψ) ≡ sup
0<x<1

|Fn(x) − F (x)|ψ(x), D+
n (ψ) ≡ sup

0<x<1
(Fn(x) − F (x))ψ(x) (2.9)

have non-trivial large deviation behavior under the null hypothesis and hence have
non-trivial Bahadur slopes as long as

Dn(ψ) →a.s. d(ψ, F ), D+
n (ψ) →a.s. d+(ψ, F ) (2.10)

respectively under the alternative hypothesis F . Thus it is of interest to determine
under what conditions (for what F ’s) (2.10) holds. A step in this direction is to find
the Poisson boundary for Dn(ψ2). As it turns out, Dn(ψ2) has the same Poisson
boundary distribution function as the Berk-Jones statistic Rn.
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Theorem 2B. Let F be the distribution function given by (1.5). If X1, . . . , Xn are
i.i.d. F , then

D+
n (ψ2) →

d
sup

0<t<∞

N(t)
t

d=
1
U

,

Dn(ψ2) →
d

sup
0<t<∞

N(t)
t

d=
1
U

where N is a standard Poisson process and U ∼ Uniform(0, 1).

An alternative test statistic, R̃n, which we have called the reversed Berk–Jones
statistic in Jager and Wellner (2004), is defined by

R̃n = sup
X(1)≤x<X(n)

K
(
F0(x), Fn(x)

)
(2.11)

where X(1) and X(n) are the first and last order statistics, respectively.
The motivation behind this statistic comes from examination of the functions

K(F0(x), F (x)) and K(F (x), F0(x)), for an alternative distribution function F .
When F is stochastically smaller than F0, we expect the Berk-Jones test to be
more powerful than the reversed Berk-Jones statistic, since supx K(F (x), F0(x)) >
supx K(F0(x), F (x)) in this case. However, in the case where F is stochastically
larger than F0, we have supx K(F (x), F0(x)) < supx K(F0(x), F (x)), and so we
expect the reversed statistic to be more powerful.

We do not yet know if R̃n has a “Poisson boundary”. The question is: does there
exist an alternative distribution function F such that when sampling from F we
have

R̃n →
d

g(N)

for some functional g of a (standard?) Poisson process N?
Before giving the proofs we state two results that will be used repeatedly in

the proofs: the weighted Glivenko–Cantelli theorem of Lai (1974) (see also Wellner
(1977a) and Shorack and Wellner (1986), page 410), and bounds for the sup of ratios
given by Wellner (1978) and Berk and Jones (1979) (see also Shorack and Wellner
(1986), Inequality 10.3.2, pages 415 and 416) that will be used several times in the
proofs. Let Gn(t) = n−1

∑n
i=1 1[0,t](ξi) where ξ1, . . . , ξn, . . . are i.i.d. Uniform(0, 1)

random variables, and let I be the identity function on [0, 1].

Theorem W-GC (Lai (1974); Wellner (1977a)). Suppose that ψ is positive
on (0, 1), decreasing on (0, 1/2], and symmetric about 1/2. Then

lim sup
n→∞

‖(Gn − I)ψ‖ =
{

0 a.s.
∞ a.s.

according as
∫ 1

0

ψ(t)dt

{
< ∞
= ∞.

Theorem (Ratio bounds). (Wellner (1978), Berk and Jones (1979)). For all
x ≥ 1 and 0 < ε ≤ 1

P

(
sup

ε≤t≤1

Gn(t)
t

≥ x

)
≤

{
exp(−nεh(x))
exp(−nK+(εx, ε))

(2.12)

and

P

(
sup

ε≤t≤1

t

Gn(t)
≥ x

)
≤

{
exp(−nεh(1/x))
exp(−nK+(1 − ε/x, 1 − ε))

(2.13)

where h(x) ≡ x(log x − 1) + 1 and where K+ is as defined in (1.4).
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Now we provide proofs for Theorems 2, 2A, and 2B.

Proof of Theorem 2. Let 0 < α < 1. We write

Dn(b) = sup
0<x<1

|Fn(x) − x|
(x(1 − x))b

= sup
x:F (x)<n−α

|Fn(x) − x|
(x(1 − x))b

∨
sup

x:F (x)≥n−α

|Fn(x) − x|
(x(1 − x))b

= sup
x:F (x)<n−α

|Fn(x) − x|
F (x)(1 − F (x)1/b)b

∨
sup

x:F (x)≥n−α

|Fn(x) − x|
F (x)(1 − F (x)1/b)b

≡ D(1)
n (b)

∨
D(2)

n (b).

Now

D(1)
n (b) − sup

x:F (x)<n−α Fn(x)
F (x)

= sup
x:F (x)<n−α

|Fn(x) − x|
F (x)(1 − F (x)1/b)b

− sup
x:F (x)<n−α

Fn(x)
F (x)

= sup
x:F (x)<n−α

Fn(x) − x

F (x)(1 − F (x)1/b)b

∨
sup

x:F (x)<n−α

x − Fn(x)
F (x)(1 − F (x)1/b)b

− sup
x:F (x)<n−α

Fn(x)
F (x)

≤ sup
x:F (x)<n−α

Fn(x)
F (x)(1 − F (x)1/b)b

− sup
x:F (x)<n−α

Fn(x)
F (x)

+ sup
x:F (x)<n−α

x

F (x)(1 − F (x)1/b)b

≤
∣∣∣∣ sup

x:F (x)<n−α

Fn(x)
F (x)(1 − F (x)1/b)b

− sup
x:F (x)<n−α

Fn(x)
F (x)

∣∣∣∣
+ 2 sup

x:x<n−α/b

x

xb(1 − x)b

≤ sup
x:F (x)<n−α

∣∣∣∣ Fn(x)
F (x)(1 − F (x)1/b)b

− Fn(x)
F (x)

∣∣∣∣ + o(1)

≤ sup
x:F (x)<n−α

∣∣∣∣Fn(x)
F (x)

(
1

(1 − x)b
− 1

)∣∣∣∣ + o(1)

≤ sup
x:F (x)<n−α

∣∣∣∣Fn(x)
F (x)

∣∣∣∣ sup
x:F (x)<n−α

∣∣∣∣
(

1
(1 − x)b

− 1
)∣∣∣∣ + o(1)

≤ Op(1)o(1) + o(1) = op(1).

On the other hand,

sup
x:F (x)<n−α

Fn(x)
F (x)

− D(1)
n (b)

= sup
x:F (x)<n−α

Fn(x)
F (x)

− sup
x:F (x)<n−α

|Fn(x) − x|
F (x)(1 − F (x)1/b)b

≤ sup
x:F (x)<n−α

x

xb(1 − x)b
= o(1)
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since

sup
x:F (x)<n−α

|Fn(x) − x|
F (x)(1 − F (x)1/b)b

≥ sup
x:F (x)<n−α

Fn(x) − x

F (x)(1 − F (x)1/b)b

≥ sup
x:F (x)<n−α

Fn(x)
F (x)(1 − F (x)1/b)b

− sup
x:F (x)<n−α

x

xb(1 − x)b

≥ sup
x:F (x)<n−α

Fn(x)
F (x)

− o(1).

Concerning D
(2)
n (b) we have

D(2)
n (b) = sup

x:F (x)≥n−α

|Fn(x) − x|
F (x)(1 − F (x)1/b)b

≤ sup
x:F (x)≥n−α

|Fn(x) − F (x)|
F (x)(1 − F (x)1/b)b

+ sup
x:F (x)≥n−α

|F (x) − x|
F (x)(1 − F (x)1/b)b

≤ sup
x:n−α≤F (x)≤1/2

|Fn(x) − F (x)|
F (x)(1 − F (x)1/b)b

+ sup
x:1/2≤F (x)<1

|Fn(x) − F (x)|
F (x)(1 − F (x)1/b)b

+ 1

≤ 1
(1 − (1/2)1/b)b

sup
x:n−α≤F (x)≤1/2

|Fn(x) − F (x)|
F (x)

+ 2 sup
x:1/2≤F (x)<1

|Fn(x) − F (x)|
(1 − F (x)1/b)b

+ 1

= o(1) + o(1) + 1

almost surely by Lemma 4.3 of Berk and Jones (1979) for the first term, and by
the weighted Glivenko–Cantelli Theorem W-GC for the second term since

∫ 1

0

1
(1 − x1/b)b

dx =
∫ 1

0

(1 − u)−bbub−1 du = bΓ(1 − b)Γ(b) < ∞

for b ∈ (0, 1). Hence it follows that lim supn→∞ D
(2)
n (b) ≤ 1 almost surely. Putting

all this together with the fact that

sup
x:F (x)<n−α

Fn(x)
F (x)

→
d

sup
0<t<∞

N(t)
t

d= 1/U

finishes the proof of Theorem 2.

Proof of Theorem 2A. Since Fn
d= Gn(F ) where Gn is the empirical distribution

function of i.i.d. Uniform(0, 1) random variables ξ1, . . . , ξn, we can write
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Dn(1) d= sup
0<x<1

|Gn(F (x)) − x|
x(1 − x)

= sup
0<x≤1/c

|Gn(cx) − x|
x(1 − x)

∨
sup

1/c<x≤1

|1 − x|
x(1 − x)

= sup
0<t≤n

|nGn(t/n) − t/c|
(t/c)(1 − t/(cn))

∨
c

→
d

sup
0<t<∞

|N(t) − t/c|
t/c

∨
c

=
(

c sup
0<t<∞

N(t)
t

− 1
) ∨

1
∨

c

d=
(

c
1
U

− 1
) ∨

c ≡ Yc.

since c > 1 and since the process {nGn(t/n) : 0 < t ≤ n} converges weakly to
the standard Poisson process N in a topology that makes the weighted supremum
functional in the last display continuous; see e.g. Wellner (1977b), Theorem 7,
page 1007. Computation of the distribution of Yc is straightforward. (Note that
this distribution has a jump at c of height 1/(1 + c).)

Proof of Theorem 2B. Let 0 < α < 1. We write

Dn(ψ2) = sup
0<x<1

∣∣Fn(x) − x
∣∣ψ2(x)

= sup
x:F (x)<n−α

∣∣Fn(x) − x
∣∣ψ2(x)

∨
sup

x:F (x)≥n−α

∣∣Fn(x) − x
∣∣ψ2(x)

= sup
x:F (x)<n−α

∣∣Fn(x) − x
∣∣ψ2(x)

∨
sup

x:F (x)≥n−α

∣∣Fn(x) − x
∣∣ψ2(x)

≡ D(1)
n (ψ2)

∨
D(2)

n (ψ2).

We first deal with D
(2)
n (ψ2). Note that

D(2)
n (ψ2) = sup

x:F (x)≥n−α

∣∣Fn(x) − x
∣∣ψ2(x)

≤ sup
x:F (x)≥n−α

∣∣Fn(x) − F (x)
∣∣ψ2(x)

+ sup
x:F (x)≥n−α

∣∣F (x) − x
∣∣ψ2(x)

≤ sup
x:n−α≤F (x)≤1/2

|Fn(x) − F (x)|
F (x)

F (x)ψ2(x)

+ sup
x:1/2≤F (x)<1

|Fn(x) − F (x)|
(1 − F (x))3/4

(1 − F (x))3/4ψ2(x) + 1

≤ sup
x:n−α≤F (x)≤1/2

|Fn(x) − F (x)|
F (x)

+ sup
x:1/2≤F (x)<1

|Fn(x) − F (x)|
(1 − F (x))3/4

+ 1

= o(1) + o(1) + 1
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almost surely by Lemma 4.3 of Berk and Jones (1979) or Wellner (1978) for the first
term, and Theorem W-GC for the second term. Here we also used ψ2(x)F (x) ≤ 1
for 0 < x ≤ 1/2, and (1 − F (x))3/4ψ2(x) ≤ 1 for 1/2 ≤ x < 1.

To handle D
(1)
n (ψ2), note that

D(1)
n (ψ2) − sup

x:F (x)<n−α

Fn(x)
F (x)

= sup
x:F (x)<n−α

|Fn(x) − x|
F (x)

F (x)ψ2(x) − sup
x:F (x)<n−α

Fn(x)
F (x)

= sup
x:F (x)<n−α

Fn(x) − x

F (x)
F (x)ψ2(x)

∨
sup

x:F (x)<n−α

x − Fn(x)
F (x)

F (x)ψ2(x)

− sup
x:F (x)<n−α

Fn(x)
F (x)

≤ sup
x:F (x)<n−α

Fn(x)
F (x)

F (x)ψ2(x) − sup
x:F (x)<n−α

Fn(x)
F (x)

+ sup
x:F (x)<n−α

xψ2(x)

≤
∣∣∣∣ sup

x:F (x)<n−α

Fn(x)
F (x)

F (x)ψ2(x) − sup
x:F (x)<n−α

Fn(x)
F (x)

∣∣∣∣ + o(1)

≤ sup
x:F (x)<n−α

∣∣∣∣Fn(x)
F (x)

(F (x)ψ2(x) − 1)
∣∣∣∣ + o(1)

≤ sup
x:F (x)<n−α

∣∣∣∣Fn(x)
F (x)

∣∣∣∣ sup
x:F (x)<n−α

∣∣∣∣F (x)ψ2(x) − 1
∣∣∣∣ + o(1)

≤ Op(1)o(1) + o(1) = op(1).

On the other hand,

sup
x:F (x)<n−α

Fn(x)
F (x)

− D(1)
n (ψ2)

= sup
x:F (x)<n−α

Fn(x)
F (x)

− sup
x:F (x)<n−α

|Fn(x) − x|
F (x)

F (x)ψ2(x)

≤ sup
x:F (x)<n−α

xψ(x) = o(1)

since

sup
x:F (x)<n−α

|Fn(x) − x|
F (x)

F (x)ψ2(x)

≥ sup
x:F (x)<n−α

Fn(x) − x

F (x)
F (x)ψ2(x)

≥ sup
x:F (x)<n−α

Fn(x)
F (x)

F (x)ψ2(x) − sup
x:F (x)<n−α

xψ2(x)

≥ sup
x:F (x)<n−α

Fn(x)
F (x)

(1 − o(1)) − o(1).

Combining these pieces as in the proof of Theorem 2 completes the proof for Dn(ψ2).
The proof for D+

n (ψ2) is similar (and easier).
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3. A consistency result

Theorems 2, 2A, 2B suggest that we might expect classical behavior for the weighted
Kolmogorov statistics under fixed alternatives F sufficiently “inside” their respec-
tive Poisson boundaries. Here are two of the expected consistency results. They are,
in fact, corollaries the weighted Glivenko–Cantelli Theorem W-GC in Section 2, or
of general Glivenko–Cantelli theory (see e.g. Dudley (1999) or Vaart and Wellner
1996).

Theorem 3. Suppose that X1, X2, . . . are i.i.d. F on [0, 1] and 0 < b < 1.
(i) If E[(X(1 − X))−b] < ∞, then

Dn(b) ≡ sup
0<x<1

|Fn(x) − x|
(x(1 − x))b

→a.s. sup
0<x<1

|F (x) − x|
(x(1 − x))b

≡ d(b, F ) < ∞.

(ii) If E[(X(1 − X))−b] = ∞, then lim supn→∞ Dn(b) = +∞ a.s.

Theorem 3B. Suppose that X1, X2, . . . are i.i.d. F on [0, 1] and ψ2(x) ≡
− log(x(1 − x)).
(i) If E[ψ2(X)] < ∞, then

Dn(ψ) ≡ sup
0<x<1

|Fn(x) − x|ψ2(x) →a.s. sup
0<x<1

|F (x) − x|ψ2(x) ≡ d(ψ2, F ) < ∞.

(ii) If E[ψ2(X)] = ∞ then lim supn→∞ Dn(ψ2) = +∞ almost surely.

Proof of Theorem 3. Note that

|Dn(b) − d(b, F )| ≤ sup
0<x<1

|Fn(x) − F (x)|
(x(1 − x))b

= sup
0<x<1

|Gn(F (x)) − F (x)|
(x(1 − x))b

= sup
0<u<1

|Gn(u) − u|
(F−1(u)(1 − F−1(u)))b

→
a.s.

0

if ∫ 1

0

1
(F−1(u)(1 − F−1(u)))b

du < ∞ (3.14)

by Theorem W-GC, or by part A, of Wellner (1977a) and remark 1 on page 475. But
(3.14) holds if and only if the stated hypothesis holds by the fact that F−1(U) d=
X ∼ F for U ∼ U(0, 1).

Remark 1. Note that for the “Poisson boundary” distribution function F (x) = xb

for Dn(b)

E[(X(1 − X))−b] =
∫ 1

0

bxb−1

(x(1 − x))b
dx = b

∫ 1

0

1
x(1 − x)b

dx = ∞,

so the hypothesis of Theorem 3 part (i) (just) fails. On the other hand, if F (x) = xc

with b < c < 1, then

E[(X(1 − X))−b] =
∫ 1

0

cxc−1

(x(1 − x))b
dx = c

∫ 1

0

1
x1+b−c(1 − x)b

dx < ∞,

so the hypothesis of Theorem 3(i) holds and Dn(b) →a.s. d(b, F ).
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Remark 2. Note that for the “Poisson boundary” distribution function F (x) =
(1 + log(1/x))−1 for the statistic Dn(ψ2),

EF [ψ2(X)] =
∫ 1

0

log
(

1
x(1 − x)

)
1

x(1 + log(1/x))2
dx = ∞

so the hypothesis of Theorem 3B part (i) (just) fails.

4. Further problems

Here is a partial list of open problems in connection with the statistics discussed
here and in Jager and Wellner (2004).

Question 1. What are the theorems corresponding to Theorem 3 in the case of
Rn and R̃n? In other words, for exactly which alternative distribution functions F
does it hold that

Rn →a.s. sup
x

K
(
F (x), F0(x)

)
≡ r(F, F0)? (4.15)

For exactly which alternative distribution functions F does it hold that

R̃n →a.s. sup
x

K
(
F0(x), F (x)

)
≡ r̃(F, F0) ? (4.16)

Question 2. For alternative distribution functions F such that (4.15) holds, can
we obtain useful approximations to the power of Rn via limit theorems for

√
n
(
Rn − r(F, F0)

)
along the lines of Raghavachari (1973)? Similarly for F ’s for which (4.16) holds
for R̃n?

Question 3. Donoho and Jin (2004) consider testing H0 : F = N(0, 1) = Φ versus
H1 : F = (1 − ε)N(0, 1) + εN(µ, 1) where εn = n−β and µ = µn =

√
2r log n for

β > 1/2 and r > 0. They show that a natural “detection boundary” is given by

r∗(β) =
{

β − 1/2, 1/2 < β ≤ 3/4
(1 −

√
1 − β)2, 3/4 < β < 1.

How do the statistics Rn, R̃n, and Kn(1/2) compare along the “detection boundary”
of Donoho and Jin (2004) Note that Donoho and Jin (2004) find that Dn(1/2) and
Rn have quite comparable power behavior for their testing problem, but they show
that Dn(1/2) has better power in the region r > r∗(β) and 3/4 < β < 1.

Question 4. What is the limiting null distribution of R̃n?
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