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On the characteristic function of Pearson
type IV distributions

Wei-Liem Loh!
National University of Singapore
Abstract: Using an identity of Stein (1986), this article gives an exact expres-

sion for the characteristic function of Pearson type IV distributions in terms
of confluent hypergeometric functions.

1. Introduction

Pearson (1895) introduced a family of probability density functions where each
member p of the family satisfies a differential equation

a+w
P (w) = -

(), 1)
for some constants a, ag, a1 and as. The Pearson family is very general and it
includes many of the probability distributions in common use today. For example,
the beta distribution belongs to the class of Pearson type I distributions, the gamma
distribution to Pearson type III distributions and the ¢ distribution to Pearson type
VII distributions.

This article focuses on the Pearson type IV distributions. These distributions
have unlimited range in both directions and are unimodal. In particular, Pearson
type IV distributions are characterized by members satisfying (@) with 0 < as < 1
and the equation

a2w2 +aiw+ag=0

having no real roots. Writing Ag = ag — a?(4ag) ! and A; = a1(2az) 7}, it follows
from () that a Pearson type IV distribution has a probability density function of
the form

A

(w)_ ox _a—A1 w+ Ay
P TA ¥ aa(w + Ay P | T A,

\/Ao/ag

where A is the normalizing constant. It is well known that Pearson type IV dis-
tributions are technically difficult to handle in practice [Stuart and Ord (1994),
page 222]. Johnson, Kotz and Balakrishnan (1994), page 19, noted that working
with p(w) often leads to intractable mathematics, for example if one attempts to
calculate its cumulative distribution function.

The main result of this article is an exact expression (see Theorem [2) for the
characteristic function of a Pearson type IV distribution in terms of confluent hyper-
geometric functions. We note that we have been unable to find any non-asymptotic
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closed-form expression for the characteristic function of a Pearson type IV distrib-
ution in the literature.

The approach that we shall take is inspired by the results of Stein (1986) on
the Pearson family of distributions. Since confluent hypergeometric functions have
an extensive literature going back over two hundred years to Euler and Gauss, it is
plausible that Theorem [2 may provide us with a way of understanding the behavior
of Pearson type IV distributions better in a more rigorous manner.

For example, one possible use of Theorem P]is that we can now apply Fourier
analytic techniques in combination with Stein’s method [see Stein (1986)] to obtain
Pearson type IV approximations to the distribution of a sum of weakly dependent
random variables. This work is currently in progress and hence will not be addressed
here. The hope is that such a Pearson type IV approximation would have the same
order of accuracy as that of an one-term Edgeworth expansion [see, for example,
Feller (1971), page 539] with the (often desirable) property that the Pearson type
IV approximation is a probability distribution whereas the one-term Edgeworth
expansion is not.

We should also mention that besides one-term Edgeworth approximations,
gamma and chi-square approximations exist in the literature [see, for example,
Shorack (2000), page 383]. The latter approximations typically have the same or-
der of accuracy as the former. However, gamma and chi-square approximations are
supported on the half real line and may be qualitatively inappropriate for some
applications.

Finally throughout this article, Z{.} denotes the indicator function and for any
function h : R — R, we write h(") as the rth derivative of h (if it exists) whenever
r=1,2---

2. Pearson type IV characteristic function

We shall first state an identity of Stein (1986) for Pearson type IV distributions.

Theorem 1 (Stein). Let p be the probability density function of a Pearson type
1V distribution satisfying

(2as + Dw + ay
axw? + aqw + ag

P (w) = - p(w), VweR, (2)

for some constants agy, a1 and as. Then for a given bounded piecewise continuous
function h : R — R, the differential equation

(ow? + arw + ) fP (w) —wf(w) = h(w), Yw € R, (3)

has a bounded continuous and piecewise continuously differentiable solution f : R —
R if and only if

/jo h(w)p(w)dw = 0. (4)

When () is satisfied, the unique bounded solution f of () is given by

Y h(z) v ydy
5 exp 5 dx
Coo X + 1T + Qg z QY°+ o1y + o

B _/ _hia) exp(_/ L )dx, Vw e R.
w 2x?+ a1x+ ag w Y+ o1y + ap

fw)
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We refer the reader to Stein (1986), Chapter 6, for the proof of Theorem [II
Let Z be a random variable having probability density function p where p sat-

isfies (2).
Proposition 1. Let Z be as above and 1z be its characteristic function. Then ¥z
satisfies the following homogeneous second order linear differential equation:

(1) + tagpz (t) — tagp D (t) — itanp}) () =0, Vi € R. (5)

Proof. Since 17(t) = Ee®?, t € R, we observe from Theorem [ that

/ [(aow? + cyw + ao)di(e“w) — we'™p(w)dw
w

— 00

(o)
/ [it(ow? + aqw + ag)e™ — we™]p(w)dw

— 00

= (agw + a1w + ag)e ettvp |7 / (20 + Nw + oq]e““’p(w)dw

- /OO (aow? + ajw + ag)e’™p™ (w)dw
= 0. -
Hence we conclude that
—itagh D) (£) + tar D) () + itagpz (t) + i) (1) =0, Vi€ R.
This proves Proposition [l O

Definition. Following Slater (1960), pages 2 to 5, we define the confluent hyper-
geometric function (with complex-valued parameters a and b) to be a power series
in x of the form

1Fi(a;by2) = i(a

!
j=0 31b);

where (a); = a(a+1)---(a+j — 1), etc. and b is not a negative integer or 0. We
further define

I'(l1—-1b)
I'l4+a—0)
Remark. It is well known [see for example Theorem 2.1.1 of Andrews, Askey and
Roy (1999)] that the series 1 Fj(a;b;2) [and hence U(a;b; z)] converges absolutely

for all z.
The theorem below establishes an explicit expression for 1z (t).

-1
)xl_blFl(l +a—b;2—bx).

Ula;b;z) = T

1F1(a; b ) +

Theorem 2. Let 1)z be as in Proposition [,

A v/ dapon —oz%,
Vidagos — o i
po= MOURO T T (6)

20{2 2042
- Vidagas — a2 iag
T = - @ - -
20{2 20[27
1
v = 14—,

Q2
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and kas # 1 for all k=1,2,---. Then fort € R, we have

—r|t| _ -1
vrtt) = SR -n S hnez o)
—7|t] —FA-L r
+2 11;“1/(1/)7AA )U(_i;l_y;A&—'s')I{t<o}.

Remark. We would like to add that the confluent hypergeometric function U(.;, ;.)
is available in a number of mathematical software packages. For example in Math-
ematica [Wolfram (1996)],

HypergeometricU[a, b, x]
is the command to evaluate U(a; b; x).
Proof of Theorem[2 We observe from (&) that for all ¢t € R,

1 ita1 tao

W3 (1) + (- i (1) - () = (7)

a2 Q2

STEP 1. Suppose that ¢ > 0. We seek a solution of the above differential equation
that has the form

o0
t)=e > ot VO<t<oo,

for complex constants cg, c1, - - -. Observing that
oo (o]
POty = —re Z cit! +e " chjtjfl,
Jj=0 Jj=1
oo (o] oo
1/)(2)(t) = rle Z cjt! — 2re” "t chjtj;l +e " Zj(j — 1)cjtj*2,
§=0 j=1 j=2

and substituting these expressions into the left hand side of (), we have

oo o0
rze_Tthjth ”ch et Z (7 — 1)ey it
Jj=0 Jj=2
1 ztoq ot - 1 taoe rt
—l—(———l— chtj +e” Z]c it chtj (8)

Q2

= 0, Y0<t<oo.

Equating the coefficient of t° in (B) to zero, we have

rCo Cc1
— - = =0,
Q2 Q2

and equating the coefficient of t/,j = 1,2,---, in (B) to zero, we have

rc |+ 1)c; oqrei— i jc;  0pCi_
ricj_ 1—27’jCj+](j+1)C]+1+—2j_(j Jej _ doare, Ly e S

=0.

Q2 Q2 Q2 Q2
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This implies that ¢; = rcg, and in general for j =2,3,- -,
1

- 1~ 71¢-1

=G = D] (971

+cjo(—ag + rPag —irar)},

¢ = r—2r(j—1az+i(j — 1)a]

whenever ka2 # 1,k =1,2,---. We observe from (@) that r satisfies

r2a2 —to1r — g = 0.

Since 4apas > a2 (from the definition of Pearson type IV distributions), we con-
clude that

Cj = [ ] 1 ][’I“— 27“(.7 — 1)042 +Z(j _ 1)041]
- ¢ J 7“—27' _1a2+l(k—1)a1
= Cj— 2k1:[1{ k[l — (k- 1)ag) }
_ Io(r— 2r(k — Dag +i(k — oy -
- cokl_[l{ k[l = (k —1)as] }7 Vji=1,2,--,

and hence for ¢t > 0,

_ = It r—2rk—1az +i(k—1a
v = < ”"'”Z'—,H ; 21( )1}
- . — (k= 1as
7=0 k=1
el 7
_ 77" t
- S )
1 Al
= N N Al
! 1( A 0&2 9 (9)
STEP 2. Suppose that ¢t < 0. Writing £ = —¢t and uz (&) = ¢¥z(t), we have
) duz(§)d§ )
$) = )
7 () dg dt uZ (5)7
. d,_dug(€), d
2 Uz 2
20 = =g =2
Consequently, (&) now takes the form
1 €a «
(€ + (-~ S S0 =0, ves0. (10)
Q2 Q2 Q2
We seek a solution of the above differential equation that has the form
oo
=eT dif, V<< o,
for complex constants dy,ds,---. Arguing as in Step 1, we observe that for ¢ =
_E < 0)
%) t 7
we) = a3 BT 5T )
§=0 k=1
gl p T 1 Al 11
doe™ """ By ( N )- (11)
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Since a solution of (@) is continuous at ¢ = 0, we have ¢y = dy. Thus we conclude
from (@) and (II) that a solution of () is

STEP 3. Suppose that t > 0. We seek a solution of (7)) that has the form

oo
h(t) = e "t it Y0 <t < oo,
j
j=0

for complex constants cg, c1, - - -. Observing that
P = —re Y et ey (vt et
§=0 §=0
oAy = et Z cjt"t — 2re" Z(l/ + j)e it
§=0 §=0
o0
ey () = et
§=0

and substituting these expressions into the left hand side of (), we have

oo

o0 o)
r2e "t Z c;tv Tt _opemrt Z(V +)et T f et Z(l/ + )W+ — 1)ttt
j=0 =0 §=0
1 © . o )
- a—[—r(f” Z cit"t e Z(l/ + et
2 =0 =0
o —rt - v+j+1 —rt - . v+j aoeirt = v+j+1
—l—a—[—re cht +e Z(V—l—j)c]’t |- - cht
2 =0 =0 R
(13)

=0, VO<t<oo.

Equating the coefficient of # in (I3)) to zero, we have

1 .
reg  (v+1)a . iaavey 0.

—2rveg+ (v + vey + — —
(65) (%) (%)
and equating the coefficient of t**/=1 j =2 3, ... in () to zero, we have
. . ) rCi_ v+7j)c
r2ci o —2r(v+j—1)cj_1+w+j)w+j—1e; + —2 NGl
Q2 Q2
xe] ) QpCj—
+—[=reja + (v +j — 1)ejo1] — —22 =0,
Q2 Q2
This gives

2rag +r — iV

‘= as(1+v) 0,

and in general for j = 2,3, -,
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1
ci = ——{2(v+7—1D)rags—r—taqn(v+75—1)lc;—
J j(l/-i—j)()ég{[ ( J ) 2 1( J )] j—1

—(agr?® —iaqr — Qp)Cj_a}

ﬁ v+k—1Drag—r—ioa(v+k—-1)

k(v + E)as
Hence for t > 0, we have
oo J
~ _ 2w+ k—Drag—r—ia(v+k—1)
P(t) = cpe ”Z H
— Pl k(v + Ek)as
At
= cot’e "R (v — %;ll—ﬁ-l;a—). (14)
2

STEP 4. Suppose that ¢t < 0. Writing £ = —t and uz(§) = ¥z(t), we seek a
solution of (I that has the form

i(8) = e dig"t, V0 < € < o0,

for complex constants dg,d;,---. Arguing as in Step 3, we observe that for ¢ =
_E < 0)

a€) = dolt|e "M Z @ I (v+k—-DA—F

= dolt|"e T‘”lFl(z/— vt 1; =), (15)

Since a solution of (@) is continuous at ¢ = 0, we have ¢y = dy. Thus we conclude
from (I4)) and (I5) that a solution of ([ is

P(t) = |t|uefr|t\1F1(V _ i; v+ 1; M)I{t >0}

A

As the solutions in ([[J) and (IG) are independent, the general solution of (7)) is
given by

O {Aemllm_g;_;%

Q2 Q2

Alt
+Bt|Pe I Py (v — Z v+ 1; J)}I{t > 0}
Qa9
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where A,/LB and B are arbitrary constants. Consequently since Yz(0) = 1, we
have A=A =1 and

_ A|t|
— Tt (1 — e 2
Yz (1) {6 173 ( A o )
Bt e Ry (v — — N Alt |)}I{t >0}
i 7 Alt
e{emmc g -n gD

o Alt
Bl e F(v— St ||)}I{t<o} (17)

> =i

for some constants B and B.
STEP 5. To complete the proof of Theorem [2], it suffices to determine the con-
stants B and B in ([[7)). We observe from Slater (1960), page 60, that for z — oo,

r'(b)
I'(a)

1By (a; by ) = 297 %e® (1+0(z|™1).

Hence it follows from () that as t — oo,

bo(t) = eriebtlas {(ﬁ_j)u_l_m—l%
+Bt"(§—§)—1—m“ 7F(£(f :A”l) } (1+0(1))
_ e B (A %
+B%}(l +o(1)).

Since lim;_.o ¥z, (t) = 0, we have

A T(—ay (v —rA™Y)

b= T

(18)
Similarly as t — —oo,

Yz(t) = e TlHeAl oz {(Aa—lf)u_l_rAlrré(__fOX_B)
A|7f| 1par P +1)
effteA|t\/a2|t|u(Aa_|2t|>717fA—1 {(O%)VPF((_—FO&AQI))

+B%} (1 +o(1)).

Since lim;—, o ¥z(t) = 0, we have

= A JT(—ay (v —7AY)
B= F(ui DD(—7A-1)
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Theorem [ now follows from (), (I8), (IH), the definition of U(.;.;.) and Euler’s

reflection formula, namely

x
Mz)l(l—-=z) =
@I - ) sin(rz)’
[see, for example, Theorem 1.2.1 of Andrews, Askey and Roy (1999)]. O

Acknowledgments

I would like to thank Professor Anirban DasGupta for his suggestions and comments
on this article.

References

[1] ANDREWS, G. E., AskEY, R. and Rov, R. (1999). Special Functions. Cam-
bridge Univ. Press, Cambridge.

[2] FELLER, W. (1971). An Introduction to Probability Theory and Its Applica-
tions, Vol. 2, 2nd edition. Wiley, New York.

[3] JounsoNn, N. L., KoTz, S. and BALAKRISHNAN, N. (1994). Continuous Uni-
variate Distributions, Vol. 1, 2nd edition. Wiley, New York. MR1299979

[4] PEARSON, K. (1895). Contributions to the mathematical theory of evolution.
I1. Skew variations in homogeneous material. Phil. Trans. Roy. Soc. Lond. Ser.
A 186 343-414.

[5] SHORACK, G. R. (2000). Probability for Statisticians. Springer, New York.

[6] SLATER, L. J. (1960). Confluent Hypergeometric Functions. Cambridge Univ.
Press, Cambridge.

[7] STEIN, C. M. (1986). Approzimate Computation of Expectations. IMS Lecture
Notes-Monograph Series, Vol. 7. Hayward, California.

[8] STUART, A. and ORD, J. K. (1994). Kendall’s Advanced Theory of Statistics,
Vol. 1, 6th edition. Edward Arnold, London.

[9] WoOLFRAM, S. (1996). The Mathematica Book, 3rd edition. Cambridge Univ.
Press, New York.


http://www.ams.org/mathscinet-getitem?mr=1299979

	Introduction
	Pearson type IV characteristic function

