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Some properties of the arc-sine law

related to its invariance under a family of

rational maps∗

Jim Pitman1 and Marc Yor2

University of California, Berkeley

Université Pierre et Marie Curie – Bôıte

Abstract: This paper shows how the invariance of the arc-sine distribution
on (0, 1) under a family of rational maps is related on the one hand to various
integral identities with probabilistic interpretations involving random variables
derived from Brownian motion with arc-sine, Gaussian, Cauchy and other dis-
tributions, and on the other hand to results in the analytic theory of iterated
rational maps.

1. Introduction

Lévy [20, 21] showed that a random variable A with the arc-sine law

P (A ∈ da) =
da

π
√

a(1 − a)
(0 < a < 1) (1)

can be constructed in numerous ways as a function of the path of a one-dimensional
Brownian motion, or more simply as

A = 1
2 (1 − cosΘ) d= 1

2 (1 − cos 2Θ) = cos2 Θ (2)

where Θ has uniform distribution on [0, 2π] and d= denotes equality in distribu-
tion. See [31, 7] and papers cited there for various extensions of Lévy’s results. In
connection with the distribution of local times of a Brownian bridge [29], an integral
identity arises which can be expressed simply in terms of an arc-sine variable A.
Section 5 of this note shows that this identity amounts to the following property
of A, discovered in a very different context by Cambanis, Keener and Simons [6,
Proposition 2.1]: for all real a and c

a2

A
+

c2

1 − A

d=
(|a| + |c|)2

A
. (3)

As shown in [6], where (3) is applied to the study of an interesting class of multivari-
ate distributions, the identity (3) can be checked by a computation with densities,
using (2) and trigonometric identities. Here we offer some derivations of (3) related
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Figure 1: Graphs of Qu(a) for 0 ≤ a ≤ 1 and u = k/10 with k = 0, 1, . . . , 10.

to various other characterizations and properties of the arc-sine law. For u ∈ [0, 1]
define a rational function

Qu(a) :=
(

u2

a
+

(1 − u)2

1 − a

)−1

=
a(1 − a)

u2 + (1 − 2u)a
(4)

So (3) amounts to Qu(A) d= A, as restated in the following theorem. It is easily
checked that Qu increases from 0 to 1 over (0, u) and decreases from 1 to 0 over
(u, 1), as shown in the above graphs.

Theorem 1. For each u ∈ (0, 1) the arc-sine law is the unique absolutely continuous
probability measure on the line that is invariant under the rational map a → Qu(a).

The conclusion of Theorem 1 for Q1/2(a) = 4a(1 − a) is a well known result
in the theory of iterated maps, dating back to Ulam and von Neumann [38]. As
indicated in [3] and [22, Example 1.3], this case follows immediately from (2) and
the ergodicity of the Bernoulli shift θ �→ 2θ (mod 2π). This argument shows also,
as conjectured in [15, p. 464 (A3)] and contrary to a footnote of [37, p. 233], that
the arc-sine law is not the only non-atomic law of A such that 4A(1 − A) d= A.
For the argument gives 4A(1−A) d= A if A = (1− cos 2πU)/2 for any distribution
of U on [0, 1] with (2U mod 1) d= U , and it is well known that such U exist
with singular continuous distributions, for instance U =

∑∞
m=1 Xm2−m for Xm

independent Bernoulli(p) for any p ∈ (0, 1) except p = 1/2. See also [15] and papers
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cited there for some related characterizations of the arc-sine law, and [13] where this
property of the arc-sine law is related to duplication formulae for various special
functions defined by Euler integrals.

Section 2 gives a proof of Theorem 1 based on a known characterization of
the standard Cauchy distribution. In terms of a complex Brownian motion Z, the
connection between the two results is that the Cauchy distribution is the hitting
distribution on R for Z0 = ±i, while the arc-sine law is the hitting distribution
on [0, 1] for Z0 = ∞. The transfer between the two results may be regarded as a
consequence of Lévy’s theorem on the conformal invariance of the Brownian track.
In Section 4 we use a closely related approach to generalize Theorem 1 to a large
class of functions Q instead of Qu. The result of this section for rational Q can
also be deduced from the general result of Lalley [18] regarding Q-invariance of the
equilibrium distribution on the Julia set of Q, which Lalley obtained by a similar
application of Lévy’s theorem.

2. Proof of Theorem 1

Let A have the arc-sine law (1), and let C be a standard Cauchy variable, that is

P (C ∈ dy) =
dy

π(1 + y2)
(y ∈ R). (5)

We will exploit the following elementary fact [33, p. 13]:

A
d= 1/(1 + C2). (6)

Using (6) and C
d= − C, the identity (3) is easily seen to be equivalent to

uC − (1 − u)/C
d= C. (7)

This is an instance of the result of E. J. G. Pitman and E. J. Williams [28] that for
a large class of meromorphic functions G mapping the half plane H+ := {z ∈ C :
Im z > 0} to itself, with boundary values mapping R (except for some poles) to R,
there is the identity in distribution

G(C) d= Re G(i) + (Im G(i))C (8)

where i =
√
−1 and z = Re z + iIm z. Kemperman [14] attributes to Kesten the

remark that (8) follows from Lévy’s theorem on the conformal invariance of complex
Brownian motion Z, and the well known fact that for τ the hitting time of the
real axis by Z, the distribution of Zτ given Z0 = z is that of Re z + (Im z)C.
As shown by Letac [19], this argument yields (8) for all inner functions on H+,
that is all holomorphic functions G from H+ to H+ such that the boundary limit
G(x) := limy↓0 G(x + iy) exists and is real for Lebesgue almost every real x. In
particular, (8) shows that

if G is inner on H+ with G(i) = i, then G(C) d= C. (9)

As indicated by E. J. Williams [39] and Kemperman [14], for some inner G on H+

with G(i) = i, the property G(C) d= C characterizes the distribution of C among
all absolutely continuous distributions on the line. These are the G whose action
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on R is ergodic relative to Lebesgue measure. Neuwirth [26] showed that an inner
function G with G(i) = i is ergodic if it is not one to one. In particular,

Gu(z) := uz − (1 − u)/z (10)

as in (7) is ergodic. The above transformation from (3) to (7) amounts to the
semi-conjugacy relation

Qu ◦ γ = γ ◦ Gu where γ(w) := 1/(1 + w2). (11)

So Qu acts ergodically as a measure preserving transformation of (0, 1) equipped
with the arc-sine law. It is easily seen that for u ∈ (0, 1) a Qu-invariant probability
measure must be concentrated on [0, 1], and Theorem 1 follows.

See also [35, p. 58] for an elementary proof of (7), [1, 23, 24, 2] for further study
of the ergodic theory of inner functions, [16, 19] for related characterizations of the
Cauchy law on R and [17, 9] for extensions to Rn.

3. Further interpretations

Since w �→ 1/(1 + w2) maps i to ∞, another application of Lévy’s theorem shows
that the arc-sine law of 1/(1 + C2) is the hitting distribution on [0, 1] of a complex
Brownian motion plane started at ∞ (or uniformly on any circle surrounding [0, 1]).
In terms of classical planar potential theory [32, Theorem 4.12], the arc-sine law is
thus identified as the normalized equilibrium distribution on [0, 1]. The correspond-
ing characterization of the distribution of 1−2A on [−1, 1] appears in Brolin [5], in
connection with the invariance of this distribution under the action of Chebychev
polynomials, as discussed further in the next section. Equivalently by inversion, the
distribution of 1/(1−2A) is the hitting distribution on (−∞, 1]∪ [1,∞) for complex
Brownian motion started at 0. Spitzer [36] found this hitting distribution, which
he interpreted further as the hitting distribution of (−∞, 1] ∪ [1,∞) for a Cauchy
process starting at 0. This Cauchy process is obtained from the planar Brownian
motion watched only when it touches the real axis, via a time change by the inverse
local time at 0 of the imaginary part of the Brownian motion. The arc-sine law can
be interpreted similarly as the limit in distribution as |x| → ∞ of the hitting dis-
tribution of [0, 1] for the Cauchy process started at x ∈ R. See also [30] for further
results in this vein.

4. Some generalizations

We start with some elementary remarks from the perspective of ergodic theory.
Let λ(a) := 1 − 2a, which maps [0, 1] onto [−1, 1]. Obviously, a Borel measurable
function f † has the property

f †(A) d= A (12)

for A with arc-sine law if and only if

f̃(1 − 2A) d= 1 − 2A where f̃ = λ ◦ f † ◦ λ−1. (13)

Let ρ(z) := 1
2 (z + z−1), which projects the unit circle onto [−1, 1]. It is easily seen

from (2) that (13) holds if and only if there is a measurable map f from the circle
to itself such that

f(U) d= U and f̃ ◦ ρ(u) = ρ ◦ f(u) for |u| = 1 (14)
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where U has uniform distribution on the unit circle. In the terminogy of ergodic
theory [27], every transformation f † of [0, 1] which preserves the arc-sine law is thus
a factor of some non-unique transformation f of the circle which preserves Lebesgue
measure. Moreover, this f can be taken to be symmetric, meaning

f(z) = f(z).

If f acts ergodically with respect to Lebesgue measure on the circle, then f † acts
ergodically with respect to Lebesgue measure on [0, 1], hence the arc-sine law is the
unique absolutely continuous f †-invariant measure on [0, 1]. This argument is well
known in case f(z) = zd for d = 2, 3, . . ., when it is obvious that (14) holds and
well known that f is ergodic. Then f̃(x) = Td(x), the dth Chebychev polynomial
[34] and we recover from (14) the well known result ([3],[34, Theorem 4.5]) that

Td(1 − 2A) d= 1 − 2A (d = 1, 2, . . .). (15)

Let D := {z : |z| < 1} denote the unit disc in the complex plane. An inner
function on D is a function defined and holomorphic on D, with radial limits of
modulus 1 at Lebesgue almost every point on the unit circle. Let φ(z) := i(1 +
z)/(1 − z) denote the Cayley bijection from D to the upper half-plane H

+. It is
well known that the inner functions G on H+, as considered in Section 2, are the
conjugations G = φ ◦ f ◦ φ−1 of inner functions f on D. So either by conjugation
of (9), or by application of Lévy’s theorem to Brownian motion in D started at 0,

if f is inner on D with f(0) = 0, then f(U) d= U (16)

where U is uniform on the unit circle. If f is an inner function on D with a fixed
point in D, and f is not one-to-one, then f acts ergodically on the circle [26]. The
only one-to-one inner functions with f(0) = 0 are f(z) = cz for some c with |c| = 1.
By combining the above remarks, we obtain the following generalization of (15),
which is the particular case f(z) = zd:

Theorem 2. Let f be a symmetric inner function on D with f(0) = 0. Define the
transformation f̃ on [−1, 1] via the semi-conjugation

f̃ ◦ ρ(z) = ρ ◦ f(z) for |z| = 1, where ρ(z) := 1
2

(
z + z−1

)
. (17)

If A has arc-sine law then
f̃(1 − 2A) d= 1 − 2A. (18)

Except if f(z) = z or f(z) = −z, the arc-sine law is the only absolutely continuous
law of A on [0, 1] with this property.

It is well known that every inner function f which is continuous on the closed
disc is a finite Blaschke product, that is a rational function of the form

f(z) = c

d∏
i=1

z − ai

1 − aiz
(19)

for some complex c and ai with |c| = 1 and |ai| < 1. Note that f(0) = 0 iff some
ai = 0, and that f is symmetric iff c = ±1 with some ai real and the rest of the ai

forming conjugate pairs. In particular, if we take c = 1, a1 = 0, a2 = a ∈ (−1, 1),
we find that the degree two Blaschke product

fa(z) := z
(z − a)
(1 − az)

=
z − a

z−1 − a
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for a = 1 − 2u is the conjugate via the Cayley map φ(z) := i(1 + z)/(1 − z) of
the function Gu(w) = uw − (1 − u)/w on H+, which appeared in Section 2. For
f = f1−2u the semi-conjugation (17) is the equivalent via conjugation by φ of the
semi-conjugation (11). So for instance

Qu ◦ γ ◦ φ = γ ◦ φ ◦ f1−2u where γ ◦ φ(z) =
−(1 − z)2

4z
(20)

so that
γ ◦ φ(z) = 1

2 (1 − Re z) if |z| = 1,

and Theorem 1 can be read from Theorem 2.
Consider now a rational function R as a mapping from C to C where C is the

Riemann sphere. A subset A of C is completely R-invariant if A is both forward
and backward invariant under R: for z ∈ C, z ∈ A ⇔ R(z) ∈ A. Beardon [4,
Theorem 1.4.1] showed that for R a polynomial of degree d ≥ 2, the interval [−1, 1]
is completely R-invariant iff R is Td or −Td. A similar argument yields

Proposition 3. Let f be a symmetric finite Blaschke product of degree d. Then
there exists a unique rational function f̃ which solves the functional equation

f̃ ◦ ρ(z) = ρ ◦ f(z) for z ∈ C, where ρ(z) := 1
2

(
z + z−1

)
. (21)

This f̃ has degree d, and [−1, 1] is completely f̃-invariant. Conversely, if [−1, 1] is
completely R-invariant for a rational function R, then R = f̃ for some such f .

Proof. Note that ρ maps the circle with ±1 removed in a two to one fashion to
(−1, 1), while ρ fixes ±1, and maps each of D and D∗ := {z : |z| > 1} bijectively
onto [−1, 1]c := C\[−1, 1]. Let us choose to regard

ρ−1(w) = w + i
√

1 − w2

as mapping [−1, 1]c to D. Then f̃ := ρ◦f ◦ρ−1 is a well defined mapping of [−1, 1]c

to itself. Because f is continuous and symmetric on the unit circle, this f̃ has a
continuous extension to C, which maps [−1, 1] to itself. So f̃ is continuous from C

to C, and holomorphic on [−1, 1]c. It follows that f̃ is holomorphic from C to C,
hence f̃ is rational. Clearly, f̃ leaves [−1, 1] completely invariant.

Conversely, if [−1, 1] is completely R-invariant for a rational function R, then
we can define f := ρ−1 ◦ R ◦ ρ as a holomorphic map D to D. Because R preserves
[−1, 1] we find that f is continuous and symmetric on the boundary of D. Hence f
is a Blaschke product, which must be symmetric also on D by the Cauchy integral
representation of f .

As a check, Proposition 3 combines with Theorem 2 to yield the special case
K = [−1, 1] of the following result:

Theorem 4. Lalley [18] Let K be a compact non-polar subset of C, and suppose
that K is completely R-invariant for a rational mapping R with R(∞) = ∞. Then
the equilibrium distribution on K is R-invariant.

Proof. Lalley gave this result for K = J(R), the Julia set of a rational mapping R,
as defined in any of [5, 22, 4, 18], assuming that R(∞) = ∞ /∈ J(R). Then K is
necessarily compact, non-polar, and completely R-invariant. His argument, which
we now recall briefly, shows that these properties of K are all that is required
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for the conclusion. The argument is based on the fact [32, Theorem 4.12] that
the normalized equilibrium distribution on K is the hitting distribution of K for a
Brownian motion Z on C started at ∞. Stop Z at the first time τ that it hits K. By
Lévy’s theorem, and the complete R-invariance of K, the path (R(Zt), 0 ≤ t ≤ τ)
has (up to a time change) the same law as does (Zt, 0 ≤ t ≤ τ). So the distribution
of the endpoint Zτ is R-invariant.

According to a well known result of Fatou [22, p. 57], the Julia set of a Blaschke
product f is either the unit circle or a Cantor subset of the circle. According to
Hamilton [11, p. 281], the former case obtains iff the action of f on the circle is
ergodic relative to Lebesgue measure. Hamilton [12, p. 88] states that a rational
map R has [−1, 1] as its Julia set iff R is of the form described in Proposition 3 for
some symmetric and ergodic Blaschke product f . In particular, for the Chebychev
polynomial Td it is known [4] that J(Td) = [−1, 1] for all d ≥ 2, and [25, Theorem
4.3 (ii)] that J(Qu) = [0, 1] for all 0 < u < 1. Typically of course, the Julia set of a
rational function is very much more complicated than an interval or smooth curve
[22, 4, 8].

Returning to consideration of the arc-sine law, it can be shown by elementary
arguments that if Q preserves the arc-sine law on [0, 1] and Q(a) = P2(a)/P1(a)
with Pi a polynomial of degree i, then Q = Qu or 1 − Qu for some u ∈ [0, 1]. This
and all preceding results are consistent with the following:

Conjecture 5. Every rational function R which preserves the arc-sine law on [0, 1]
is of the form R(a) = 1

2 (1−f̃(1−2a)) where f̃ is derived from a symmetric Blaschke
product f with f(0) = 0, as in Theorem 2.

5. Some integral identities

Let (Bt, t ≥ 0) denote a standard one-dimensional Brownian motion. Let

ϕ(z) :=
1√
2π

e−
1
2 z2

; Φ(x) :=
∫ ∞

x

ϕ(z) dz = P (B1 > x).

According to formula (13) of [29], the following identity gives two different expres-
sions for the conditional probability density P (BU ∈ dx |B1 = b)/dx for U with
uniform distribution on [0, 1], assumed independent of (Bt, t ≥ 0):∫ 1

0

1√
u(1 − u)

ϕ

(
x − bu√
u(1 − u)

)
du =

Φ(|x| + |b − x|)
ϕ(b)

. (22)

The first expression reflects the fact that Bu given B1 = b has normal distribution
with mean bu and variance u(1 − u), while the second was derived in [29] by con-
sideration of Brownian local times. Multiply both sides of (22) by

√
2/π to obtain

the following identity for A with the arc-sine law (1): for all real x and b

E

[
exp

(
−1

2
(x − bA)2

A(1 − A)

)]
= 2 eb2/2 Φ(|x| + |b − x|). (23)

Now
(x − bA)2

A(1 − A)
=

x2

A
+

(x − b)2

1 − A
− b2 d=

(|x| + |b − x|)2
A

− b2 (24)

where the equality in distribution is a restatement of (3). So (23) amounts to the
identity

E

[
exp

(
−1

2

(
x2

A
+

y2

1 − A

))]
= 2 Φ(|x| + |y|) (25)
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for arbitrary real x, y. Moreover, the identity in distribution (3) allows (25) to be
deduced from its special case y = 0, that is

E

[
exp

(
− x2

2A

)]
= 2Φ(|x|), (26)

which can be checked in many ways. For instance, P (1/A ∈ dt) = dt/(πt
√

t − 1)
for t > 1 so (26) reduces to the known Laplace transform [10, 3.363]

1
2π

∫ ∞

1

1
t
√

t − 1
e−λt dt = Φ(

√
2λ) (λ ≥ 0). (27)

This is verified by observing that both sides vanish at λ = ∞ and have the same
derivative with respect to λ at each λ > 0. Alternatively, (26) can be checked as
follows, using the Cauchy representation (6). Assuming that C is independent of
B1, we can compute for x ≥ 0

E

[
exp

(
−1

2
x2

A

)]
= e−

1
2x2

E [exp(ixCB1)] = e−
1
2x2

E [exp(−x|B1|)] = 2Φ(x).

(28)
We note also that the above argument allows (24) and hence (3) to be deduced
from (23) and (26), by uniqueness of Laplace transforms.

By differentiation with respect to x, we see that (25) is equivalent to

E

[
x

A
exp

(
−1

2

(
x2

A
+

y2

1 − A

))]
=

√
2
π

e−
1
2 (x+y)2 (x > 0, y ≥ 0). (29)

That is to say, for each x > 0 and y ≥ 0 the following function of u ∈ (0, 1) defines
a probability density on (0, 1):

fx,y(u) :=
x√

2πu3(1 − u)
exp

[
1
2

(
(x + y)2 − x2

u
− y2

1 − u

)]
. (30)

This was shown by Seshadri [35, §p. 123], who observed that fx,y is the density of
Tx,y/(1+Tx,y) for Tx,y with the inverse Gaussian density of the hitting time of x by
a Brownian motion with drift y. In particular, fx,0 is the density of x2/(x2 + B2

1).
See also [29, (17)] regarding other appearances of the density fx,0.

6. Complements

The basic identity (3) can be transformed and checked in another way as follows.
By uniqueness of Mellin transforms, (3) is equivalent to

u2

Aε2
+

(1 − u)2

(1 − A)ε2

d=
1

Aε2
(31)

where ε2 is an exponential variable with mean 2, assumed independent of A. But
it is elementary and well known that Aε2 and (1 − A)ε2 are independent with the
same distribution as B2

1 . So (31) amounts to

u2

X2
+

(1 − u)2

Y 2

d=
1

X2
(32)

where X and Y are independent standard Gaussian. But this is the well known
result of Lévy[20] that the distribution of 1/X2 is stable with index 1

2 . The same
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argument yields the following multivariate form of (3): if (W1, . . . , Wn) is uniformly
distributed on the surface of the unit sphere in Rn, then for ai ≥ 0

n∑
i=1

a2
i

W 2
i

d=
(
∑n

i=1 ai)
2

W 2
1

. (33)

This was established by induction in [6, Proposition 3.1]. The identity (32) can be
recast as

X2Y 2

a2X2 + c2Y 2

d=
X2

(a + c)2
(a, c > 0). (34)

This is the identity of first components in the following bivariate identity in dis-
tribution, which was derived by M. Mora using the property (7) of the Cauchy
distribution: for p > 0(

(XY (1 + p))2

X2 + p2Y 2
,
(X2 − p2Y 2)2

X2 + p2Y 2

)
d=

(
X2, Y 2

)
. (35)

See Seshadri [35, §2.4, Theorem 2.3] regarding this identity and related properties
of the inverse Gaussian distribution of the hitting time of a > 0 by a Brownian
motion with positive drift. Given (X2, Y 2), the signs of X and Y are chosen as if
by two independent fair coin tosses, so (34) is further equivalent to

XY√
a2X2 + c2Y 2

d=
X

a + c
(a, c > 0). (36)

As a variation of (26), set x =
√

2λ and make the change of variable z =
√

2λu
in the integral to deduce the following curious identity: if X is a standard Gaussian
then for all x > 0

E

(
x

X
√

X2 − x2

∣∣∣∣ X > x

)
≡

√
π

2
(x > 0) (37)

As a check, (37) for large x is consistent with the elementary fact that the distri-
bution of (x(X − x) |X > x) approaches that of a standard exponential variable
ε1 as x → ∞. The distribution of (x/(X

√
X2 − x2) |X > x) therefore approaches

that of 1/
√

2ε1 as x → ∞, and E(1/
√

2ε1) =
√

π/2.
By integration with respect to h(x)dx, formula (37) is equivalent to the following

identity: for all non-negative measurable functions h√
2
π

E

[∫ X

0

xh(x) dx

X
√

X2 − x2
1(X ≥ 0)

]
= E

[∫ X

0

h(x) dx 1(X ≥ 0)

]
.

That is to say, for U with uniform (0, 1) distribution, assumed independent of X ,√
1
2π

E
[
h

(√
1 − U2 |X |

)]
= E [ |X |h( |X |U)] .

Equivalently, for arbitrary non-negative measurable g

E
[
g

(
(1 − U2)X2

)]
=

√
2πE

[
|X |h(X2U2)

]
. (38)

Now X2 d= Aε2 where ε2 is exponential with mean 2, independent of A; and when
the density of X2 is changed by a factor of

√
2π|X | we get back the density of ε2.

So the identity (38) reduces to

(1 − U2)Aε2
d= U2ε2



Some properties of the arc-sine law 135

and hence to
(1 − U2)A d= U2.

This is the particular case a = b = c = 1/2 of the well known identity

βa+b,c βa,b
d= βa,b+c

for a, b, c > 0, where βp,q denotes a random variable with the beta(p, q) distribution
on (0, 1) with density at u proportional to up−1(1 − u)q−1, and it is assumed that
βa+b,c and βa,b are independent.
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