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MULTIPLIERS OF TYPE (p, p) AND MULTIPLIERS
OF THE GROUP L,-ALGEBRAS

KeLLy McKENNON

Let G be a locally compact group with left Haar measure
4 and suppose 1 =< p < co. The purpose of this paper is fo
exhibit an isometric isomorphism « of the Banach algebra
M, of all right multipliers on L, = L,(G, 2) into the normed
algebra m, of all right multipliers on the group L,-algebra
L.. When G is either commutative or compact, » is surjective.

A function fe L, is said to be p-temperate if

(1) haf (@) = S FORE 2N  exists for r-almost all
[e]
x€G whenever h isin L,;
(2) h«f isin L, for all helL,;
(3) Sup{“h*f”p:heLmthlpgl}<Oo‘

It was shown in [6], Theorem 1, that fe L, is p-temperate if
(4) sup {[[ hxf [l he Cu, [[ R[], = 1} < o0

where C, denotes the set of all continuous complex-valued functions
on G with compact support. The set of all p-temperate functions
will be written as L. Each function feC, is in L} and so L’ com-
prises a dense subspace of L,. For fe L', the number given by either
(3) or (4) will be written as ||f||.. The function || ||} so defined is
a norm under which L} is a normed algebra. This normed algebra
will be referred to as the group L,-algebra.

By a right multiplier on L will be meant a bounded linear
operator T on L! such that

(5) T(fxg) = f*T(g) for all f and ¢ in Lf.

The set of all such 7, which constitutes a normed algebra under the
usual operator norm, will be written as m,. Write Bp for the Banach
algebra of all bounded linear operators on L,. An operator T e Bp
is said to be a right multiplier of type (p, p) (see [3]) if

(6) TGf) = .T(f)  for all feL,

where ,i(y) = h(zy) for each function 7 on G. The set of all such T
will be written as M,. It is a complete sub-algebra of 3,.

The group L,-algebra was utilized in [6] to study a related
algebra A,, of which the Banach algebra of left multipliers was found
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to be isomorphic to M,. The situation is reversed here. For fe L,
an operator W, in B, is defined by

(7) Wi(g) = g+f for all ge L,
and, consequently,

(8) HWell=11A15 -

The closure in B, of the linear span of the set {W,, feL), geC.}
will be written as A,. It is a Banach algebra with a minimal left
approximate identity ([6], Theorem 3). Concrete interpretations of
both A, and L!, in the cases where G is either commutative or com-
pact, may be found in [6]. It will be mentioned here only that L!
is the group algebra L, and that L{ is the group Hilbert algebra
(see [1] and [2] for example).

PROPOSITION 1. Let T be in M, and f and g be in L,. Then
(1) T(fxg) =f«T(9) f feLy
(ii) T(g) is in Lt if g is in Li;
(i) T(f+g9) =f«T(9)  if g is in L;.
Proof. Part (i) was proved in the corollary to Theorem 4 in [6].
Let g be in L. By (i),
sup {|[ ~xT(g) [[»: h € C, [[ [, = 1}
= sup {|| T(h+g) |l h€ Co, [[RIl, =1} < || T||-ll 91l -

By (4), this implies that T(g) is in L.
Let again g be in L’ and choose a sequence {f,} in C.. which con-
verges to f in L,. Then

li”m | faxg — f*g]l, = 0 and, in view of (ii),
Um || fox T(g) — fxT(g) ll, = 0. Thus, by (i),
+T(g) = lim f,+ T(g) = lim T(fyxg) = T(f+g) -
LeMMA 1. For each nonzero f€ L,, there exists g € C., for which
gxf # 0.
Proof. See [4] 20.15.

LEMMA 2. For each Tem, and Ve A,
sup {[| ToV(®) [l,: ke L, [ Rll, = 1} < (| TV ] .

Proof. Write D for the set {Wy:feLi, WyeA,}, Then D is
a dense subspace of 4, and, by (), ||W,| = ||fIl; for all W,eD.
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Hence, if o’ | D — Bp is defined by o' (W;) = Wy for all W, e D, then
0’ is continuous. Let p|A,— B, be the unique continuous extension
of o to A,. The immediate object is to show that o(V) and To-V
coincide on L.

Let he L: be such that ||h]], £1 and let {f,} be a sequence in

L such the W, is in D for each ne N and lim, |[|[W, — V|| = 0.
Since A, is a subset of M,, the operator V is in M, and so, by Pro-
position 1.iii,

VoWi(g) = Vi(gxh) = gxV(h) = Wyu(9)

for all geL,; hence, VoW, = Wyu. That Wy, (h) = W, oW, is
easy to check. Thus, for each ne N, (8) yields ||W, (k) — V(R) [} =
[|Wy, oW, — VoW,|l. Hence,

lim | W;, () — VB 5 < Tm [[Wy, — V{le[[Wall=0.

Consequently,
(9) lim [| T(W,, () — T(V(W) [, = 0 .
For each ne N and ge Lj, Wy, (9) = gxT(f,) = T(gxf.) = ToWy.(9);
hence, o(W;,) = 0'(W;,) = Wyy,) = ToW, . Consequently
ﬁ?ll ToW;, —o(V) |l = lim|lo(W;,) — o(V) |l = 0.

Thus
lim [ ToW,,(h) — [o(V)](®) |, =0  and so

lim [[g«(Te W, (1) — gx[o(V)I(®) ll, = 0

for each geC.. But, by (9),
lim llg*(ToW,,(h) — gx(T(V(R)) Il, = 0
for all geC.. It follows that g«[o(V)](h) = g+x(T(V(h))) for all g € C...
By Lemma 1, this yields that
[o(M)](k) = T(V(R)) .
Now
TV I, = I Te(WI®) [l = lim oW IR |,
= lip [ T(F) Mls = 12 llp-Hm (| T(F) 115

< (since ||k ||, =1 and because of (8))
i -'li:r?lllfnlli = [Tl - li?HWf,.H = TIl-1VIl.
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PROPOSITION 2. For each Tem, VeA, and fe L,
VN L =TI - V) [l -

Proof. Let ¢ be any positive number. Since A, is a Banach
algebra with a minimal left approximate identity, Cohen’s factoriza-
tion theorem ([5] 32.26) implies that there exist P and S in A4, such
that | Pl =1, ||S— VIl <e, and V= PS. Thus, [[SNIL, =V (), +
e+||fll, and, by Lemma 2,

I TVN s = [ TePS(N)) s
sUTU-NPIH-USA U = NTHUVO [l + A1) -

It follows that [[T(V(f)) I, < [ITIl - V() ll5
LEMMA 8. The set {V(f): fe L, VeA,} is a dense subspace of L,.

Proof. Let ¢ be a positive number and ¢ be in L,. Choose
feCysuch that ||g — f||, <e&/2. If {V,} is a minimal left approximate
identity for A,, it follows from [6], Lemma 38, that lim, || V,(f) — f||, =0.
Thus, for some index «, || V.(f) — fll, < ¢/2 and so ||V.(f) — gll, < e.

LEMMA 4. Let V be tn B, and D a dense subset of L, such that
V(h«f) = hxV(f) for all heCy and feD. Then V is in M,.

Proof. Let z bein G. By [4] 20.15, there is a net {f,} in C,, such
that lim, ||,& — fu.xh||, = O for all he L,. It follows that lim, || V(,h) —
V(fexh) |, = 0 and lim, ||,V (k) — fuxV(R) ||, = 0. Hence, for he D

1 VG = V@], = lm [[V(ferh) — fox V) ], = Lim 0
by the hypothesis for V. Since D is dense in L,, V is in M,.

THEOREM 1. Define w | M, — m, by letting w,(f) = T(f) for each
TeM, and feL,. Then w is an isometric isomorphism of M, into
m,. Furthermore, if T is any operator in m,, then there exists some
Se M, such that, for all Ve A, and fC L, ws(V(f)) = T(V(f)).

Proof. That o is well-defined follows from Proposition 1. That
® is an isomorphism is evident when it is noted that L} is a dense
subset of L,.

Let T be an arbitrary element of m,. It follows from Proposi-
tion 2 and Lemma 3 that there exists a unique operator S in B, such
that S(V(f)) = T(V(f)) for all Ve A, and fe L. For heC,, VeA,,
and fe L, Proposition 1 implies
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S(xV(f)) = S(V(hx[)) = T(V(kf))
= T(h=V(f)) = h=T(V(f)) = h=xS(V(f)) .

By Lemmas 3 and 4, this implies that S is in M,. Consequently,
ws(V(h)) = S(V(k)) = T(V(Rh)) for all he L, and VeA,.

To complete this proof, it will now suffice to show that ® is an
isometry. Let T be in M,. Let f be in L and ¢ a positive number.
Choose ge L} for which |g|l, =1 and [[w(f) ]} <Ilgx@(f)l> + &
By Proposition 1.iii, T(gxf) = g+=T(f); this means that T-W,(g) =
g+xwx(f). Hence,

oD <NT Wil +e=ITI - [[Wsll + €.
By (8), this implies || (f) [[; < || T'l| - [ f]l> Hence
ol = IT] .
On the other hand, Proposition 2 and Lemma 3 imply
Tl = sup {|| T(V(R) |l,: Ve Ay, ke L, [[V(R) I, = 1}

= sup {[|@/(V(W) I Ve A, he L, [V [, <1} = [[@]] .

This proves that || T|] = || o, |].

THEOREM 2. Let w be as in Theorem 1 and G be either com-
mutative or compact. Then @ is surjective.

Proof. Let T be any operator in nt,. By Theorem 1, there is an
operator S in M, for which T(V(f)) = ws(V(f)) for all Ve A, and
fe L.

If G is compact, then L, = L,. It follows from the Hewitt-Curtis-
Figa Talamaneca factorization theorem ([5] 32.22) that each he Lf is
of the form V(f) for some Ve A, and fe L. Hence, T = w;.

Suppose now that G is commutative (not necessarily compact).
Assume that there existed & € L such that wgs(h) = T(h). Then Lemma
1 implies that gx(ws — T)(h) =0 for some geC,. Let {h,} be a
sequence in C,, for which lim, || %, — k||, = 0. Then

| g(@s — T) () |l

= [ (@s — T)(g=h) [l, = [ (@s — T)(hx9) I,

= llkx(@s = T)(9) I, = lim || hx(@5s — T)(@) Il

= [[llim [[ (@5 = T)(hax9) |l, = lim [| (@5 — T) (W, (@) ll, = 0

a contradiction. Thus, wy = T.
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