MULTIPLIERS OF TYPE (p, p) AND MULTIPLIERS OF THE GROUP L_p -ALGEBRAS

KELLY MCKENNON

Let G be a locally compact group with left Haar measure λ and suppose $1 \leq p < \infty$. The purpose of this paper is to exhibit an isometric isomorphism ω of the Banach algebra M_p of all right multipliers on $L_p = L_p(G, \lambda)$ into the normed algebra m_p of all right multipliers on the group L_p -algebra L_p^1 . When G is either commutative or compact, ω is surjective.

A function $f \in L_p$ is said to be *p*-temperate if

(1)
$$h*f(x) = \int_G f(t)h(t^{-1}x)d\lambda(t) \ \ \text{exists for} \ \ \lambda\text{-almost} \ \ \text{all}$$

$$x \in G \ \ \text{whenever} \ \ h \ \ \text{is in} \ \ L_p \ ;$$

$$(2) h*f is in L_x for all h \in L_x;$$

(3)
$$\sup \{ ||h*f||_p : h \in L_p, ||h||_p \le 1 \} < \infty.$$

It was shown in [6], Theorem 1, that $f \in L_p$ is p-temperate if

(4)
$$\sup \{ ||h * f||_n : h \in C_{\infty}, ||h||_n \le 1 \} < \infty$$

where C_{00} denotes the set of all continuous complex-valued functions on G with compact support. The set of all p-temperate functions will be written as L_p^t . Each function $f \in C_{00}$ is in L_p^t and so L_p^t comprises a dense subspace of L_p . For $f \in L_p^t$, the number given by either (3) or (4) will be written as $||f||_p^t$. The function $||\ ||_p^t$ so defined is a norm under which L_p^t is a normed algebra. This normed algebra will be referred to as the $group\ L_p$ -algebra.

By a right multiplier on L_p^t will be meant a bounded linear operator T on L_p^t such that

(5)
$$T(f*g) = f*T(g) \quad \text{for all } f \text{ and } g \text{ in } L_p^t.$$

The set of all such T, which constitutes a normed algebra under the usual operator norm, will be written as \mathfrak{m}_p . Write $\mathfrak{B}p$ for the Banach algebra of all bounded linear operators on L_p . An operator $T \in \mathfrak{B}p$ is said to be a right multiplier of type (p, p) (see [3]) if

(6)
$$T(xf) = {}_{x}T(f) \quad \text{for all } f \in L_{p}$$

where $_{x}h(y) = h(xy)$ for each function h on G. The set of all such T will be written as M_{p} . It is a complete sub-algebra of \mathfrak{B}_{p} .

The group L_p -algebra was utilized in [6] to study a related algebra A_p , of which the Banach algebra of left multipliers was found

to be isomorphic to M_p . The situation is reversed here. For $f \in L_p^t$, an operator W_f in \mathfrak{B}_p is defined by

$$(7) W_f(g) = g * f \text{for all } g \in L_p$$

and, consequently,

(8)
$$||W_f|| = ||f||_p^t.$$

The closure in \mathfrak{B}_p of the linear span of the set $\{W_{f*g}: f \in L_p^t, g \in C_\infty\}$ will be written as A_p . It is a Banach algebra with a minimal left approximate identity ([6], Theorem 3). Concrete interpretations of both A_p and L_p^t , in the cases where G is either commutative or compact, may be found in [6]. It will be mentioned here only that L_1^t is the group algebra L_1 and that L_2^t is the group Hilbert algebra (see [1] and [2] for example).

PROPOSITION 1. Let T be in M_p and f and g be in L_p . Then

- (i) T(f*g) = f*T(g) if $f \in L_1$;
- (ii) T(g) is in L_p^t if g is in L_p^t ;
- (iii) T(f*g) = f*T(g) if g is in L_p^t .

Proof. Part (i) was proved in the corollary to Theorem 4 in [6]. Let g be in L_x^t . By (i),

$$\begin{split} \sup \left\{ ||\ h * T(g)\ ||_p : \ h \in C_{00}, \ ||\ h\ ||_p \le 1 \right\} \\ = \sup \left\{ ||\ T(h * g)\ ||_p : \ h \in C_{00}, \ ||\ h\ ||_p \le 1 \right\} \le ||\ T|| \cdot ||\ g\ ||_p^t \ . \end{split}$$

By (4), this implies that T(g) is in L_n^t .

Let again g be in L_p^t and choose a sequence $\{f_n\}$ in C_∞ which converges to f in L_p . Then

$$\lim_n ||f_n*g - f*g||_p = 0 \text{ and, in view of (ii),}$$

$$\lim_n ||f_n*T(g) - f*T(g)||_p = 0. \text{ Thus, by (i),}$$

$$f*T(g) = \lim_n f_n*T(g) = \lim_n T(f_n*g) = T(f*g).$$

LEMMA 1. For each nonzero $f \in L_p$, there exists $g \in C_{\infty}$ for which $g*f \neq 0$.

Proof. See [4] 20.15.

LEMMA 2. For each $T \in m_p$ and $V \in A_p$,

$$\sup \{ || T \circ V(h) ||_p : h \in L_p^t, || h ||_p \le 1 \} \le || T || \cdot || V ||.$$

Proof. Write D for the set $\{W_f: f \in L_p^t, W_f \in A_p\}$. Then D is a dense subspace of A_p and, by (8), $||W_f|| = ||f||_p^t$ for all $W_f \in D$.

Hence, if $\rho' \mid D \to \mathfrak{B}p$ is defined by $\rho'(W_f) = W_{T(f)}$ for all $W_f \in D$, then ρ' is continuous. Let $\rho \mid A_p \to \mathfrak{B}_p$ be the unique continuous extension of ρ to A_p . The immediate object is to show that $\rho(V)$ and $T \circ V$ coincide on L_p^t .

Let $h \in L_p^t$ be such that $||h||_p \leq 1$ and let $\{f_n\}$ be a sequence in L_p^t such the W_{f_n} is in D for each $n \in N$ and $\lim_n ||W_{f_n} - V|| = 0$. Since A_p is a subset of M_p , the operator V is in M_p and so, by Proposition 1.iii,

$$V \circ W_h(g) = V(g*h) = g*V(h) = W_{V(h)}(g)$$

for all $g \in L_p$; hence, $V \circ W_h = W_{V(h)}$. That $W_{W_{f_n}}(h) = W_{f_n} \circ W_h$ is easy to check. Thus, for each $n \in N$, (8) yields $||W_{f_n}(h) - V(h)||_p^t = ||W_{f_n} \circ W_h - V \circ W_h||$. Hence,

$$\overline{\lim_{n}} ||W_{f_n}(h) - V(h)||_p^t \leq \overline{\lim_{n}} ||W_{f_n} - V|| \circ ||W_h|| = 0$$
.

Consequently,

(9)
$$\lim ||T(W_{f_n}(h)) - T(V(h))||_p^t = 0.$$

For each $n \in N$ and $g \in L_p^t$, $W_{T(f_n)}(g) = g * T(f_n) = T(g * f_n) = T \circ W_{f_n}(g)$; hence, $\rho(W_{f_n}) = \rho'(W_{f_n}) = W_{T(f_n)} = T \circ W_{f_n}$. Consequently

$$\overline{\lim_n} || T \circ W_{f_n} - \rho(V) || = \lim_n || \rho(W_{f_n}) - \rho(V) || = 0$$
.

Thus

$$\lim_n || T \circ W_{f_n}(h) - [\rho(V)](h) ||_p = 0$$
 and so $\lim_n || g * (T \circ W_{f_n}(h)) - g * [\rho(V)](h) ||_p = 0$

for each $g \in C_{\infty}$. But, by (9),

$$\lim_{n} ||g*(T\circ W_{f_n}(h)) - g*(T(V(h)))||_p = 0$$

for all $g \in C_{\infty}$. It follows that $g*[\rho(V)](h) = g*(T(V(h)))$ for all $g \in C_{\infty}$. By Lemma 1, this yields that

$$[\rho(V)](h) = T(V(h)) .$$

Now

$$\begin{split} || \ T \circ V(h) \ ||_p &= || \ [\rho(V)](h) \ ||_p = \lim_n || \ [\rho(W_{f_n})](h) \ ||_p \\ &= \lim_n || \ h \ast T(f_n) \ ||_p \leq || \ h \ ||_p \cdot \overline{\lim}_n || \ T(f_n) \ ||_p^t \\ &\leq (\text{since} \ || \ h \ ||_p \leq 1 \ \text{and because of (8)}) \\ &|| \ T || \cdot \overline{\lim}_n || f_n \ ||_p^t = || \ T || \cdot \overline{\lim}_n || W_{f_n} \ || = || \ T || \cdot || V || \ . \end{split}$$

PROPOSITION 2. For each $T \in m_p$, $V \in A_p$, and $f \in L_p^t$,

$$||T(V(f))||_{p} \leq ||T|| \cdot ||V(f)||_{p}$$
.

Proof. Let ε be any positive number. Since A_p is a Banach algebra with a minimal left approximate identity, Cohen's factorization theorem ([5] 32.26) implies that there exist P and S in A_p such that ||P|| = 1, $||S - V|| < \varepsilon$, and V = PS. Thus, $||S(f)||_p \le ||V(f)||_p + \varepsilon \cdot ||f||_p$ and, by Lemma 2,

$$|| T(V(f)) ||_{p} = || T \circ P(S(f)) ||_{p}$$

$$\leq || T || \cdot || P || \cdot || S(f) ||_{p} = || T || (|| V(f) ||_{p} + \varepsilon || f ||_{p}).$$

It follows that $||T(V(f))||_p \leq ||T|| \cdot ||V(f)||_p$.

LEMMA 3. The set $\{V(f): f \in L_p^t, V \in A_p\}$ is a dense subspace of L_p .

Proof. Let ε be a positive number and g be in L_p . Choose $f \in C_{00}$ such that $||g - f||_p < \varepsilon/2$. If $\{V_\alpha\}$ is a minimal left approximate identity for A_p , it follows from [6], Lemma 3, that $\lim_{\alpha} ||V_{\alpha}(f) - f||_p = 0$. Thus, for some index α , $||V_{\alpha}(f) - f||_p < \varepsilon/2$ and so $||V_{\alpha}(f) - g||_p < \varepsilon$.

LEMMA 4. Let V be in \mathfrak{B}_p and D a dense subset of L_p such that V(h*f) = h*V(f) for all $h \in C_{00}$ and $f \in D$. Then V is in M_p .

Proof. Let x be in G. By [4] 20.15, there is a net $\{f_{\alpha}\}$ in C_{00} such that $\lim_{\alpha} ||_x h - f_{\alpha} * h||_p = 0$ for all $h \in L_p$. It follows that $\lim_{\alpha} || V(xh) - V(f_{\alpha} * h)||_p = 0$ and $\lim_{\alpha} ||_x V(h) - f_{\alpha} * V(h)||_p = 0$. Hence, for $h \in D$

$$|| V(_x h) - _x V(h) ||_p = \lim_{\alpha} || V(f_{\alpha} * h) - f_{\alpha} * V(h) ||_p = \lim_{\alpha} 0$$

by the hypothesis for V. Since D is dense in L_p , V is in M_p .

THEOREM 1. Define $\omega \mid M_p \to m_p$ by letting $\omega_T(f) = T(f)$ for each $T \in M_p$ and $f \in L_p^t$. Then ω is an isometric isomorphism of M_p into m_p . Furthermore, if T is any operator in m_p , then there exists some $S \in M_p$ such that, for all $V \in A_p$ and $f \subset L_p^t$, $\omega_S(V(f)) = T(V(f))$.

Proof. That ω is well-defined follows from Proposition 1. That ω is an isomorphism is evident when it is noted that L_p^t is a dense subset of L_p .

Let T be an arbitrary element of \mathfrak{m}_p . It follows from Proposition 2 and Lemma 3 that there exists a unique operator S in \mathfrak{B}_p such that S(V(f)) = T(V(f)) for all $V \in A_p$ and $f \in L_p^t$. For $h \in C_{00}$, $V \in A_p$, and $f \in L_p^t$, Proposition 1 implies

$$S(h*V(f)) = S(V(h*f)) = T(V(h*f))$$

= $T(h*V(f)) = h*T(V(f)) = h*S(V(f))$.

By Lemmas 3 and 4, this implies that S is in M_p . Consequently, $\omega_S(V(h)) = S(V(h)) = T(V(h))$ for all $h \in L_p^t$ and $V \in A_p$.

To complete this proof, it will now suffice to show that ω is an isometry. Let T be in M_p . Let f be in L_p^t and ε a positive number. Choose $g \in L_p^t$ for which $||g||_p \leq 1$ and $||\omega_T(f)||_p^t < ||g*\omega_T(f)||_p + \varepsilon$. By Proposition 1.iii, T(g*f) = g*T(f); this means that $T \circ W_f(g) = g*\omega_T(f)$. Hence,

$$||\omega_{\scriptscriptstyle T}(f)||_{\scriptscriptstyle p}^{\scriptscriptstyle t} < ||T\circ W_{\scriptscriptstyle f}(g)|| + \varepsilon \leq ||T|| \cdot ||W_{\scriptscriptstyle f}|| + \varepsilon$$
 .

By (8), this implies $||\omega_T(f)||_p^t \leq ||T|| \cdot ||f||_p^t$. Hence

$$||\omega_T|| \leq ||T||$$
.

On the other hand, Proposition 2 and Lemma 3 imply

$$||T|| = \sup \{||T(V(h))||_p \colon V \in A_p, h \in L_p^t, ||V(h)||_p \le 1\}$$

$$= \sup \{||\omega_T(V(h))||_p \colon V \in A_p, h \in L_p^t, ||V(h)||_p \le 1\} \le ||\omega_T||.$$

This proves that $||T|| = ||\omega_T||$.

Theorem 2. Let ω be as in Theorem 1 and G be either commutative or compact. Then ω is surjective.

Proof. Let T be any operator in \mathfrak{m}_p . By Theorem 1, there is an operator S in M_p for which $T(V(f)) = \omega_S(V(f))$ for all $V \in A_p$ and $f \in L_p^t$.

If G is compact, then $L_p^t = L_p$. It follows from the Hewitt-Curtis-Figa Talamanca factorization theorem ([5] 32.22) that each $h \in L_p^t$ is of the form V(f) for some $V \in A_p$ and $f \in L_p^t$. Hence, $T = \omega_s$.

Suppose now that G is commutative (not necessarily compact). Assume that there existed $h \in L_p^t$ such that $\omega_S(h) \neq T(h)$. Then Lemma 1 implies that $g*(\omega_S - T)(h) \neq 0$ for some $g \in C_{00}$. Let $\{h_n\}$ be a sequence in C_{00} for which $\lim_n ||h_n - h||_p = 0$. Then

$$||g*(\omega_{S} - T)(h)||_{p}$$

$$= ||(\omega_{S} - T)(g*h)||_{p} = ||(\omega_{S} - T)(h*g)||_{p}$$

$$= ||h*(\omega_{S} - T)(g)||_{p} = \lim_{n} ||h_{n}*(\omega_{S} - T)(g)||_{p}$$

$$= ||\lim_{n} ||(\omega_{S} - T)(h_{n}*g)||_{p} = \lim_{n} ||(\omega_{S} - T)(W_{h_{n}}(g))||_{p} = 0$$

a contradiction. Thus, $\omega_s = T$.

REFERENCES

- 1. W. Ambrose, The L²-system of a unimodular group I, Trans. Amer. Math. Soc., **65**, (1949), 27-48.
- 2. J. Dixmier, Les C*-Algebres et Leurs Representations, Paris: Gauthier-Villars & C^{1e} 1964.
- 3. A. Figa Talamanca, Translation invariant operators in L^p , Duke Math. J., 32, (1965), 495-501.
- 4. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1. Berlin Springer Verlag, 1963.
- 5. _____, Abstract Harmonic Analysis, Vol. 2. Berlin, Springer Verlag, 1970.
- 6. K. McKennon, Multipliers of type (p, p), Pacific J. of Math., 43 (1972), 429-436.

Received November 15, 1971.

WASHINGTON STATE UNIVERSITY