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TRANSLATION-INVARIANT OPERATORS
OF WEAK TYPE

DANIEL M. OBERLIN

Let G be a locally compact group and let m be a left
Ήaar measure on G. For 0 < p < oo, let LP(G) be the usual
Lebesgue space of functions f on G for which

\f(x)\*dm(xή < oo .

If T is a linear operator which takes LP(G), or a subspace
of LP(G), into measurable functions on G, then T is said
to be of weak type (p, p) if there exists a positive constant
C such that

m{xeG:\Tf(x)\ ̂ α} ^ C||/||J/α* for feL*(G), a > 0 .

We are interested in the translation-invariant operators of
weak type (p, p).

To be more precise, for x e G we define the left and right trans-
lation operators Lx and Rx by Lxf(y) = f(xy) and Rxf{y) = f(yx) for
functions f on G and 2/ 6 G. An operator Γ will be called translation-
invariant if T commutes with each Rx: TRX = RXT for each xeG.
We shall prove the following theorems.

THEOREM 1. Suppose that the locally compact group G is
amenable. IfO<p<q^2 and T is a translation-invariant operator
of weak type (p, p) on LP(G), then T is a bounded linear operator
on Lq(G).

THEOREM 2. Let G be an arbitrary locally compact group and
suppose that 0 < p < 1. Then T is a translation-invariant operator
of weak type (p, p) on LP(G) if and only if T has the form ΣϊU <&»£»»
for distinct xneG and complex numbers an satisfying \an\ = Q(n~1/P).

To state Theorem 3 we need some additional terminology. For
a compact group G, let Σ denote the dual object of G. For 0 <
p < oo and a subset E of Σ> let LP

E(=LP

E(G)) denote the closure in
LP(G) of the set of trigonometric polynomials with spectrum in E.

THEOREM 3. With notation as above, suppose 0 < p < q <; 2 and
that T is a translation-invariant operator of weak type (p, p) on
LV

E. Then T is bounded on L\.
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Theorem 1 should be compared with a previous result of M.
Cowling [2]. Cowling's result states that if T is a continuous trans-
lation-invariant operator between two rearrangement-invariant Banach
function spaces on (?, then T is automatically bounded on L\G). We
note that the hypothesis of amenability is necessary to Theorem 1:
N. Lohoue has proved that for 1 < p < 2 there are translation-
invariant linear operators bounded on LP(SL(2, R)) which are not
bounded on L2(SL(2, JB)) [5].

Theorem 2 is an analogue of the result of [7] for operators of
weak type. For the circle group T, Theorem 2 was established in
[8]. But the methods of [8] do not seem to generalize beyond the
case of compact G.

Theorem 3 is a partial answer to question (ii) of [6]. We mention
that if 2 < q < p — 2m(m = 2, 3, •••)»* translation-invariant operator
on L\ may fail to be bounded on h\ [1].

2* The proofs* We begin with some preliminaries from pro-
bability theory. Our probability space will be the unit interval I
equipped with Lebesgue measure, which we shall denote by P.

Fix q with 0 < q ^ 2. A complex-valued random variable g on
I is said to be g-stable of type k > 0 if its characteristic function

^ 0 ) = \ exp( — iΈLe[zg(j£)])dP(f) is equal to eχ-p(-kq\z\q)(z e C). Now

suppose that {βrJJLi is a sequence of independent g-stable random

variables of type 1 defined on /. We shall need the facts that given

n and complex numbers cl9 , cnf

(
n \l/q

1 /

and

7 Σ ciOi(t) dP(f) = ( Σ k \q) )) δi(jt) \pdP(t) , 0 < p < q .

LEMMA 1. For fixed q with 0 < q ^ 2 there exists a decreasing
nonnegative function φq defined on (0, 00) such that if g is a q-stable
random variable of type k on I, then

Proof. This follows from the fact that g/k is g-stable of type
1 if g is g-stable of type k.

Our next lemma is a result for operators of weak type analogous
to Lemma 2 of [4].
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LEMMA 2. Fix p and q with 0 < p < q ^ 2. Let T be a linear
operator of weak type (pf p) on a subspdce S of LP(G). There exists
a positive constant C such that the following holds: If f(x, y) is a
continuous function of compact support on GxG such that /(•, y)eS
for each y e G, then, for a > 0,

m\xeG: (\ | Γ / ( , y)(x)\qdm(y))1/9 ^ a
( 3 ) ( V J * '

Proof, For each % = 1, 2, there exist m( = m(n)) pairwise
disjoint Borel sets El9 , EmQG and continuous compactly-supported
functions fc^ , &m e S such that if Z< is the characteristic function
of ^ and if

then

support (fn) Q K for some compact Kξ^G and all n, and

sup {\fn(χ9 y) - f{x, y) |: (a?, |/)e(?x(ϊ} = o^"1) .

In the following, C will denote a positive constant which is
independent of / but may increase from line to line. The hypothesis
on T implies that C may be chosen large enough to insure that

m{x e G: I Tf( •, y)(x) - Γ/.( , y)(x) \ > a)

^c\\ f(x, y) - /.(x, y) \*dm(x)/a* (y e G, a > 0) .
JG

Integrating this inequality over G with respect to y, applying Fubini's
theorem, and taking into account (4), we find that

m x m{(x, y)eGx G: |Γ/( , y)(x) - ΓΛ( , y)(x)\ ^ w1} >0 .

It follows that, by passing to a subsequence if necessary, we can
assume Γ/Λ( , 2/)(&) —> Γ/( ,!/)(«) almost everywhere on G x G. Thus,
by Fatou's lemma,

IJm ( |ΓΛ( , y)(x)\qdm(y) ^ ( |Γ/( , y)(x)\qdm(y) for almost

all α e G .

Let ^g be the function in Lemma 1 and let α, β > 0 be arbitrary.
Since ^ς is decreasing, it follows from the inequality above and
another application of Fatou's lemma that
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( 5 )
L1 Tf{''v){x) \

^ 1H \
JJG * V f JG

Fix a number M > 0 such that φq(M~q) > 0. Then

implies

Φt([a/Mγ/\g\Tf(', y)(x)\"dm(y)) ^

With β = a/M in (5) it follows that

m\xeG: \\Tf( , y)(x)\gdm(y) ^

^ [ίi^M-')]-1 ljm j ^ g (α/ilί)'

and so (3) will be established when we show

ljm \φq (β j Jj Tfn{ , y) (x) |

P L ( L l / ( s B f( 6 )
=

To this end, suppose that hl9 - , hm are functions in S and that
9u % % , 9m are independent g-stable random variables on I of type 1.
For each t e I we have

m UeG: gi(t)Tht(x) dm(x) .

Integrating this over 7, using Fubini's theorem, and recalling (2),
we find that

^ β\dm(x)

Cβ-' \ (ϊ
JG\ I

P/Q
( 7 )

For fixed a; 6 G, (1) implies that Σ f g^Th^x) is symmetric ^-stable
of type (ΣΓ I ΓÂ C*) \ψ". Thus Lemma 1 and (7) yield

(/,(/3< / Σ I ThAx)\")dm(x) S Cβ~» j β ( Σ IΛ4(aj)| )*Λdm(α) .

Now (6) follows from (4) and the representation
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LEMMA 3. Fix p and q with 0 < p < q ^ 2. Let S be a subspace
of LP(G) such that RXS £ S for each xeG and let T be a translation-
invariant operator of weak type {p, p) on S. There exists a positive
constant C such that the following holds: Fix a compact symmetric
KζZG and a nonvoid compact set UQG. Suppose u is a compactly
supported con tinuous function such that u = 1 on KKU. Suppose
heS is a continuous function supported in K such that

(8) u-(Ryh)eS, yeG.

Then

Proof. Let V = (KU)~\ By the translation-invariance of T we
have, for arbitrary xeG,

(9)

Since y e V implies u{ y~x) = 1 on the support of h, it follows that
the latter integral is

(10) S \Th(xy)\«dm(y) = \ \Th{y)Xv(χ-ιy)Ydm(y) .

Here Xv denotes the characteristic function of the set V. Now if
xe U, then Xyίx^y) = 1 as long as yeK= K~\ Thus, for xe U,

[ \Th(y)\'dm(y) ^ \ \Th(y)Xv(x~1y)\9dm(y) .

Together with (9) and (10) this gives

if x e U. It follows that

m\xeG: (\ \T{u{.)h{-y)){x)\«dm(y)

^ m{U) .

On the other hand, Lemma 2 (with f(x, y) = u(x)h(xy) and a =

\Th{y)\"dm(y)\ ) implies that the LHS of (11) is
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- C L(L' u{^h^xy) \qdm{y)J/9dm{x) / ( j J Th(y) \«dm{y) J'* .

That is,

m{U) S C\\u(x)\'dm(x)§\h(y)\<dm^ ,

which completes the proof of the lemma.

Proof of Theorem 1. Let h be any continuous compactly-sup-
ported function on G, and let K be any compact symmetric subset
of G containing the support of i A characteristic property of
amenable groups [3] implies that there exists a compact subset U of
G with m(KKU)/m(U) < 2. It follows that there exists a continuous
compactly-supported function u on G with u = 1 on KKU and

[ \u(x)\pdm(x)/m(U) < 2. Taking S = LP(G) in Lemma 3 (it is obvious
JG

that (8) is satisfied) we conclude that

P/Q

Since K can be any compact symmetric subset of G containing the
support of h, it follows that || Th\\p

q <; 2C|| h\\p

q. Since h is an arbitrary
continuous compactly-supported function on G, the theorem follows.

Proof of Theorem 3. We apply Lemma 3 with S — LP

E and K =
U — G. Then u = 1 on G and so (8) is satisfied for any continuous
heS. Since such h are dense in Lq

E9 Theorem 3 follows immediately
from the conclusion of Lemma 3.

To establish Theorem 2 we require two more lemmas.

LEMMA 4. Let G be a locally compact group. Let V £ G be a
measurable set with 0 < m( V) ^ 1, and fix r with 0 < r < 1. Given
a positive number Cx there exists another positive number C2 such
that if F is a nonnegative measurable function on G satisfying

(12) m \x e G: ^F(y)Xv(y"1x)dm(y) ^ αj ^ Cx/ar (α > 0) ,

then

\ F(y)dm(y) ^ C2 .
JG

Proof. Choose nonnegative measurable functions Fn on G with

F and ί Fn(x)dm(x) = αw < oo. Write

F*ZF(α0 = ( F(y)Xv(y-1x)dm(y)
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and, similarly, Hn = FUV. Then Hn ^ H, so m{x: H%(x) ^ a} ^ C1/αr

by hypothesis. Also Hn <Ξ αn, so

Fn*Xv(x)dm(x) = \ Hn(x)dm(x) = \ m{x: JHΓΛ(α?) ^ α}ώα

0 J(? JO

^ Γ'dα- tfα = CX-7(1 - r) .
Jo

Thus

and so

( F(y)dm(y) ^
Jc?

also.

LEMMA 5. Lei {/n}ϊ=1 6e α sequence of nonnegative measurable
functions on G having the same distribution function F(a) =
m{£ e G: \fn(x) \ ^ α}(α > 0). Fix p with 0<p<l. Then if a > 0 we
have

(14) m{* e G: Σ ^^Λ(^) ^ α | ^ CH/JU/α' ,

where C is a constant depending only on p.

Proof, Let C denote a positive constant depending only on p,
but which may increase from line to line. Fix a > 0. For n =
1, 2, let %„ be the characteristic function of the set

{xeG:fn(x)> an1/p}

and let %i be the characteristic function of {^eG:/^) <; cm1^}. We
will establish (14) by estimating separately the two quantities

m\x 6 G: Σ n-ί/pfΛ(x)Xn{x) ^ αl and

( i 5 ) : ~ .

We have

TO {x e G: Σ n-Vpfn(x)XΛ(x) ^ αj ^ Σ m{x 6 G: Λ(x) > an1'"}

= α-» Σ α^mίίt; e G: α»"» < Λ(a ) ^ O(Λ + 1)"»} ^ α"'||/i||; .

To estimate (15) we begin by writing H(X) — F(X1/p), so that
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11/,||; = -\\dH(X) for each n. Then
JO

Σ (n + ΐ)-llffn(x)Ά(x)dm(x) = £ (n + lΓ'λ fn(x)dm(x)
Ί Jifnte)£a»l'P\

(16) = - Σ (n + IYVP \n"\VpdH(X) ^ - Γ i Γ 1 " [ya\VpdH(X)dy
i Jo Ji Jo

= -Γ^/"1/ί? (βV*diΓ(λ)rf» - ("λ1^ Γ y~VpdydH(X) .
Jl Jo JccP Jλ/aP

Now (15) is

JG I

so, by (16), it suffices to establish

(17) - a-1 \ V 1 / p [\1/pdH(X)dy ^ CWM'/a*
Ji Jo

and

(18) - α ^ Γ V ' Γ y~1/p dy
Jα?> J^/αP

For (17) we note that

- \"\1/pdH(X) = ( f ^
Jθ Jί/jUJ^α}

and

α"1 ( fί(x)dm(x) ^ α~p ί fx

p{x)dm{x) .
Jί/^ίcJ^α} Jί/ifαJ^α}

S OO

/̂~1/p dy < oo, this establishes (17). On the other hand

Γ v~1/pdy = (ί?"1 - ljλ1-17^1-*.

Thus

- α ' 1 ! " X1/p Γ y-v*dydH(X) ^ -Ca~p V XdH(X) ̂  CWMHa* .
JαP )X/aP JaP

This is (18) and so the proof of the lemma is complete.

Proof of Theorem 2. The "if" part of Theorem 2 is an immediate
consequence of Lemma 5. So suppose T is a translation-invariant
operator of weak type (p, p) on LP(G) (0 < p < 1), and we will show
that T has the form Σϊ=i0*lrβ| l, \

a«\ = 0(^"1/3>). Fix g with 0 < p <
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q <; 2. We will begin by showing that T is "locally bounded" on

L<(G).

Let U and V be neighborhoods of the identity in G with U
relatively compact, V symmetric, F 2 £ U, and m( V) ^ 1. Let u be
a continuous function with compact support satisfying u(x) = 1 for
xe U, and let fe be an arbitrary continuous function with support
contained in F. According to Lemma 2, where we take S = LP(G)
and f(x, y) = u(x)h(xy), we have

m\xeG: (\ \T{u{.)h{ y)){x)\qdm{y))Vq ^ β
(19) l KiG ' /

^ C J J u(x) |'dm(a?)( j J Λ(i/) \^dm(y)γq / β» (β > 0) .

Since Γ is translation-invariant,

Since F 2 £ C7", V is symmetric, and A is supported in F, it follows that
ui-y"1) is equal to 1 on the support of h as long as ye V. Thus the
last integral is equal to

\ \Th{xy)\«dm(y) = \ \Th(y)\^v(y-ίx)dm(y) ,
JF JG

where we have used V = F""1. Thus

ί IThiy^XAy-^dmiy) ^ \ \T(u( )h( y))(x)\«dnι(y) .
JG JG

With (19) (where we substitute a for βq) we have

^ C j J w(α?) | ^ m ( x ) ^ | h(y) \q

Taking r = p/q, Cx = c ί |^(x)|pdm(x), and ί 7^) = \Th(y)\q in Lemma

4, we see that ||/&||J <; 1 implies ||Γλ||J ^ C2 for some fixed positive
number C2 and any continuous h supported in F. It follows that

(20) | |Γλ | | ;^C 8 | |Λ | | ί

holds for any measurable h supported in F. (Thus T is "locally
bounded" on Lq(G).)

If 0 < p < q < 1, it follows from (20), from the translation-
invariance of T, and from the subadditivity of || ||J that T is actually
bounded on Lq(G). Now the theorem in [6] shows that T has the
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form XΓ anLXn for distinct xneG and numbers an satisfying XΓ | an \q <
00. Using the fact that T is actually of weak type (p, p), it is easy
to see that

card{w: | α j ^ a} = 0(aΓp) (α > 0) .

Thus if {|α*|}ϊ=1 is a decreasing rearrangement of the sequence
{|α»|}SU> it follows that | α ί | = 0(w"1/2)). This completes the proof of
Theorem 2.
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