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TRANSLATION-INVARIANT OPERATORS
OF WEAK TYPE

DANIEL M. OBERLIN

Let G be a locally compact group and let m be a left
Haar measure on G. For 0 < p < oo, let L?(G) be the usual
Lebesgue space of functions f on G for which

Fll,= (galﬂw) I"dm(x))w <oo.

If T is a linear operator which takes L?(G), or a subspace
of L?(G), into measurable functions on G, then T is said
to be of weak type (p, p) if there exists a positive constant
C such that

m{xeG: | Tf@)| = a} = ClIfI3/a? for feL?@),a>0.

We are interested in the translation-invariant operators of
weak type (p, D).

To be more precise, for x € G we define the left and right trans-
lation operators L, and B, by L.f(y) = f(xy) and R.f(y) = f(yx) for
functions f on G and y € G. An operator T will be called translation-
invariant if T commutes with each R,: TR, = R,T for each z¢e(.
We shall prove the following theorems.

THEOREM 1. Suppose that the locally compact group G 1is
amenable. If 0 < p < qg=2and T is a translation-invariant operator
of weak type (p, p) on L*(@), then T is a bounded linear operator
on LY@).

THEOREM 2. Let G be an arbitrary locally compact group and
suppose that 0 < p < 1. Then T is a translation-invariant operator
of weak type (p, p) on L*(G) if and only if T has the form X5, a,L,,
for distinct x,€G and complex numbers a, satisfying |a,| = 0(n~7),

To state Theorem 3 we need some additional terminology. For
a compact group G, let >, denote the dual object of G. For 0 <
p < = and a subset F of >, let Li(=L%(G)) denote the closure in
L?(G@) of the set of trigonometric polynomials with spectrum in E.

THEOREM 3. With motation as above, suppose 0 < p < q¢ < 2 and
that T is a translation-invariant operator of weak type (p, p) on
L. Then T is bounded on L.
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Theorem 1 should be compared with a previous result of M.
Cowling [2]. Cowling’s result states that if 7 is a continuous trans-
lation-invariant operator between two rearrangement-invariant Banach
function spaces on G, then T is automatically bounded on L¥G). We
note that the hypothesis of amenability is necessary to Theorem 1:
N. Lohoue has proved that for 1 < p < 2 there are translation-
invariant linear operators bounded on L?(SL(2, R)) which are not
bounded on L*SL(2, R)) [5].

Theorem 2 is an analogue of the result of [7] for operators of
weak type. For the circle group T, Theorem 2 was established in
[8]. But the methods of [8] do not seem to generalize beyond the
case of compact G.

Theorem 3 is a partial answer to question (ii) of [6]. We mention
that if 2 < q¢ < p» = 2m(m = 2, 3, - --), a translation-invariant operator
on L% may fail to be bounded on L% [1].

2. The proofs. We begin with some preliminaries from pro-
bability theory. Our probability space will be the unit interval I
equipped with Lebesgue measure, which we shall denote by P.

Fix ¢ with 0 < ¢ £ 2. A complex-valued random variable g on
I is said to be ¢-stable of type k& > 0 if its characteristic function
1,z = S exp(—i Re [zg@®)])dP(t) is equal to exp(—k?|z|)(z€C). Now

I
suppose that {g,)2. is a sequence of independent g-stable random
variables of type 1 defined on I. We shall need the facts that given
n and complex numbers ¢, ---, C,,

(1) g, + -+ +e¢,9, 1is g-stable of type <§n] ]cil‘?>w s
and

(2) | |Seao|ap® = (Sier)”| l0®rePe), 0<p<q.

LEMMA 1. For fized q with 0 < q < 2 there exists a decreasing
nonnegative function ¢, defined on (0, ) such that if g is a q-stable
random variable of type k on I, then

Pltel: |gQ)| = a} = g, (a’/k") .

Proof. This follows from the fact that g/k is g-stable of type
1 if g is g-stable of type k.

Our next lemma is a result for operators of weak type analogous
to Lemma 2 of [4].



TRANSLATION-INVARIANT OPERATORS OF WEAK TYPE 157

LEMMA 2. Fix p and ¢ with 0 <p < qg=2. Let T be a linear
operator of weak type (p, p) on a subspace S of L*(G). There exists
a positive constant C such that the following holds: If f(x,¥y) is a
continuous function of compact support on GXxG such that f(-, y)eS
for each ye@, then, for a > 0,

m{zeG: (| IS¢, @ Fam@) " z af

(3) ora
= c| (| 1r@ v ram) am@ye .
[ed [ed

Proof. For each n =1, 2, --. there exist m( = m(n)) pairwise
disjoint Borel sets E,, ---, E,, S G and continuous compactly-supported
functions %, - - -, k, € S such that if X, is the characteristic function
of E, and if

Sal2, y) = 2 k(2)X(y) ,

then
(4) support (f,) £ K for some compact K < G and all n, and

sup {|fu(@, ¥) — f(x, ¥)|: (x, ¥) €G X G} = o(n™") .

In the following, C will denote a positive constant which is
independent of f but may increase from line to line. The hypothesis
on T implies that C may be chosen large enough to insure that

mlxe G: [Tf(-, (&) — Tf.(-, N@)| = a}
= c| 17@ v) - fi@, WPam@)je @eG a>0).
Integrating this inequality over G with respect to ¥, applying Fubini’s
theorem, and taking into account (4), we find that
m X m{(x, ) e G X G |Tf(-, y)(&®) — Tf.(, @) =20} —0.

It follows that, by passing to a subsequence if necessary, we can
assume T .(-, ¥)(x) — Tf(-, y)(x) almost everywhere on G X G. Thus,
by Fatou’s lemma,

lim | | 77,0, D@ 'dm() = | |77, v)(@ Pdm@) for almost
all xeG .

Let ¢, be the function in Lemma 1 and let a, 8> 0 be arbitrary.
Since ¢, is decreasing, it follows from the inequality above and
another application of Fatou’s lemma that
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{90 (81,1 5C, w)@) 1 dm(y) )am()
> < 1i~ | g, (6] ) 7.0, @ Pamiy) Jamea) .
Fix a number M > 0 such that ¢, (M~ > 0. Then

|| 77 0@ dm(y) 2 a

implies

so(la/may [ {77, v)@) dm@)) Z oM7) .
With 8 = a/M in (5) it follows that

m{x eG: SG} Tf(, p@)dm(y) = a"}
< (3.1 tim [ g (/20 [ | | 1.0, w(@) rdmey) ama)

and so (3) will be established when we show

(6) o Sa¢" (Bq/ SGI T7a(+5 ¥) (@) ]"dm(y))dm(x)
< ¢\ (1,17 v kdm@) ) ama)

To this end, suppose that A, ---, h, are functions in S and that
gy, -+, 9. are independent g-stable random variables on I of type 1.
For each t eI we have

m{x cG: 'f‘, gi(t)Thi(w)} 2 8} < cg Lli g,-(t)hi(x)'pdm(x) .

Integrating this over I, using Fubini’s theorem, and recalling (2),
we find that

SGP{t el ]z gi(t)Th,-(ac)] > B}dmm
( 7 ) m 2/q
= ca | (Sin@ ) ame@ .
G\ 1
For fixed e G, (1) implies that >\" g,()Th,(x) is symmetric g-stable
of type O™ |Th(x)|9)?. Thus Lemma 1 and (7) yield

o6t | 21 Th@1 )amiz) = c | (31w o) dmz) .

Now (6) follows from (4) and the representation
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m
Jal@, ¥) = X k(@)2(y) -

LEMMA 3. Fix p and q with 0 < p < q < 2. Let S be a subspace
of L*(G) such that R,S Z S for each x € G and let T be a translation-
invariant operator of weak type (p, p) on S. There exists a positive
constant C such that the following holds: Fix a compact symmetric
KC G and a nonvoid compact set US G. Suppose uw is a compactly
supported con tinuous function such that w =1 on KKU. Suppose
heS is a continuous fumction supported in K such that

(8) u-(R,p)eS, yeG.
Then

(I 17h@) ram@)” = ¢ | ju@ pam@({ 11w ram@) pem@) .

Proof. Let V = (KU)™. By the translation-invariance of T we
have, for arbitrary z €@,

(9) | 1T@OR-p@Ndn@) = | | T@-y™1)ay) dn) .

Since y € V implies u(-y™) = 1 on the support of 4, it follows that
the latter integral is

(10) §V| Th(zy)|dm(y) = Sel Th()Xy(x™'y) |*dm(y) .

Here X, denotes the characteristic function of the set V. Now if
xc U, then X,(x7'y) =1 as long as ye K = K*. Thus, for ze U,

[,/ Tr@pdm@) < | | T @) rdm) -

Together with (9) and (10) this gives

1/,

({17 1ram@))” = (]| 7@ ¢ 1)@ Fram@)
if xeU. It follows that

mive G (| |T@Ch(-v)@ rdmw) "
11
w z (| 1 Tr@ram@) )"} 2 m) .

On the other hand, Lemma 2 (With flx, ) = w@)h(zy) and a =
1/
(S | Th (y)l"dm(y)) ") implies that the LHS of (11) is
K
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= c| (| Ju@rey) ranw) " an@ [ (] 1100 Fam@ )"
That is,

2/q

m(0) = ¢ | Juw)fdmeo)({ 1w lam@))” [(] 1700 ram@)"
which completes the proof of the lemma.

Proof of Theorem 1. Let h be any continuous compactly-sup-
ported function on G, and let K be any compact symmetric subset
of G containing the support of Z. A characteristic property of
amenable groups [3] implies that there exists a compact subset U of
G with m(KKU)/m(U) < 2. It follows that there exists a continuous
compactly-supported function # on G with =1 on KKU and
Salu(w)l”dm(x)/m( U) < 2. Taking S = L*?(@) in Lemma 3 (it is obvious
that (8) is satisfied) we conclude that

»/q

({1 mn@ram@) )™ = 20({ v pamw)

Since K can be any compact symmetric subset of G containing the
support of &, it follows that || Th||? < 2C||k||2. Since & is an arbitrary
continuous compactly-supported function on G, the theorem follows.

Proof of Theorem 3. We apply Lemma 3 with S = L% and K =
U=G. Then v =1 on G and so (8) is satisfied for any continuous
heS. Since such h are dense in L%, Theorem 3 follows immediately
from the conclusion of Lemma 3.

To establish Theorem 2 we require two more lemmas.

LEMMA 4. Let G be a locally compact group. Let V< G be o
measurable set with 0 < m(V) £ 1, and fix r with 0 < r <1. Given
a positive number C, there exists anmother positive number C, such
that if F is a nonmnegative measurable function on G satisfying

12 mlzeG | Fot@ nimw) zal = Clar @>0),
then
| Fwdm(w) = G,

Proof. Choose nonnegative measurable functions F, on G with
F, 1 F and SGF,,(x)dm(x) = a, < . Write

H(w) = Fxly(a) = | F)t@-)dm)
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and, similarly, H, = F}X,. Then H, < H, so m{x: H,(x) = a} < C)/a’
by hypothesis. Also H, < a,, S0

a,m(V) = San*XV(x)dm(x) - SGH,L(:c)dm(x) - S:”m{x: H.(z) = a}da

= S:nCla"daf = Cay" /(L — 7).

Thus
a, = [C/m(V)A — )" =G,
and so
|, Fainw = c,
also.

LEMMA 5. Let {f,}n- be a sequence of momnegative measurable
functions on G having the same distribution function F(a) =
mix e G: |f,(x)|=ala>0). Fix p with 0<p<1l. Then if a>0 we
hawve

(1) m{zeG: 3 n7f,@) 2 af = Cllfle,
1
where C is a constant depending only on p.
Proof. Let C denote a positive constant depending only on p,

but which may increase from line to line. Fix a > 0. For n =
1,2 --- let X, be the characteristic function of the set

{x e G: f,(x) > an''?}

and let X, be the characteristic function of {x € G: f,(x) < an'?}. We
will establish (14) by estimating separately the two quantities

mize G 3 n of, (o)) = a} and
o m o e G: 30 @) = b
We have

mlzeG: S @@ 2 o} £ Simlze 6 f@) > an'?)

= a7 S ornmiz € G: an' < fi(@) < aln + 17} < a Al

To estimate (15) we begin by writing H(\) = F(\'?), so that
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full2 = —S:hdH(),) for each #n. Then

|3 @+ D er@t@dne = 3o+ 1>-“P§WM  Fo(@dm@)
16) =-3@+ 1 S:aphl’”dH(x) < —-Sjy""’ S:apx“pdﬂ(x)dy
= [Ty S:pxl"’dﬂ(),)dy =\ yrrayamey .
Now (15) is
< Ca™ SG i (n + )7 @) X @)dm(x) ,

so, by (16), it suffices to establish

an —a [Tye | Pveamo0dy = Clf e
and
(18) —a [T |y day aBO) S Gl

For (17) we note that

B Sapxl/de(N) - S{fl(x)salfl(x)dqn(x)

0

and

f@im@ sa~|  fr@dm) .

-1
S(fl(:c)éa {f1(@)=a}

Since ry‘”” dy < oo, this establishes (17). On the other hand
1

Sw y—llpdy . (p—l — l)kl—llpal—p .
2/aP
Thus

g rpw g:“ yedydHO) < —Car? §°°p>udH<>»> < Cl\fillzlar .

o

This is (18) and so the proof of the lemma is complete.

Proof of Theorem 2. The “if” part of Theorem 2 is an immediate
consequence of Lemma 5. So suppose T is a translation-invariant
operator of weak type (p, p) on L*(G) (0 < » < 1), and we will show
that T has the form X5 a,L,, |a,| = 0n"?). Fix q with 0 <p <
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q < 2. We will begin by showing that 7 is “locally bounded” on
LYG).

Let U and V be neighborhoods of the identity in G with U
relatively compact, V symmetric, V2 U, and m(V) < 1. Let u be
a continuous function with compact support satisfying w(x) =1 for
2e U, and let » be an arbitrary continuous function with support
contained in V. According to Lemma 2, where we take S = L?(@)
and f(z, ¥) = u(x)h(xy), we have

1/q
m{we6: (| | T@ERC )@ dmw)” = 8}
(19) .
= ¢ | ju@ ram@({ v ranw)” [ 6> 0.

Since T is translation-invariant,
[ | TR )@ dm) = | 1Ty R )Ew Fam)

Since V*C U, V is symmetric, and % is supported in V, it follows that
u(-y™*) is equal to 1 on the support of % as long as y€ V. Thus the
last integral is equal to

|| Th@w ram@) = | | Th@) 12 @ w)im)
where we have used V = V™. Thus
|| TR @ nim) < | | T@ERC )@ rdm)

With (19) (where we substitute a for B’) we have
m{we@: | | Thw) 17 0)dm) = of

= ¢ Ju@ Pam@)(| (1w Fam@) e

Taking » = p/q, C, = C SGIu(x)]”dm(x), and F(y) = |Th(»)]* in Lemma
4, we see that ||k|| =1 implies ||Th||? < C, for some fixed positive

number C, and any continuous % supported in V. It follows that
(20) | Th|lf = GRS

holds for any measurable A supported in V. (Thus T is “locally
bounded” on L*G).)

If 0<p<ag<l, it follows from (20), from the translation-
invariance of T, and from the subadditivity of || - || that T is actually
bounded on L%(G). Now the theorem in [6] shows that T has the
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form > a,L,, for distinct x, € G and numbers a, satisfying >.°|a,|* <
. Using the fact that T is actually of weak type (p, ), it is easy
to see that

card{n: |a,| = a} = 0(a™®) (a>0).

Thus if {ja}|};-, is a decreasing rearrangement of the sequence
{la, |}o=1, it follows that |ay| = 0(n~?). This completes the proof of
Theorem 2.
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