
ON THE VOLUME IN HOMOGENEOUS SPACES

MINORU KURITA

Guldin-Pappus's theorem about the volume of a solid of rotation in the

euclidean space has been generalized in two ways. G. Koenigs [1] and J.

Hadamard [2] proved that the volume generated by a 1-parametric motion of

a surface D bounded by a closed curve c is equal to Σ«ίfo+Σβyfy; , where

au aij = - aji (*, j = 1, 2, 3) are quantities attached to D with respect to a rec-

tangular coordinate system, while &/,£// = -bji (i, .7 = 1, 2, 3) are quantities

determined by our motion. It is remarkable that au aij depend only on c and

not on D. The theorem was extended to the case of dimension n by G. Guil-

laumin [3D. Another extension of Guldin-Pappus's theorem was obtained by

the author [7] in the following way. The volume V of a solid B in the eu-

clidean space of dimension n is given by \vdo, where v is an (n - 1)-dimen-

sional volume of a section of B by one of the 1-parametric set of hyperplanes

and da is a component, orthogonal to the hyperplanes, of an arcelement of the

locus of the center of gravitation of the section. An analogous result was

obtained for the spherical space. In the present paper the author generalizes

these results to the case of homogeneous spaces by the method of moving

frames of E. Cartan and applies the results to various spaces, and states formulas

of the integral geometry in the homogeneous spaces.

1. Preliminaries

1. In the first we quote the matters necessary for our purpose from [4D

and [6]. Let G be a group which operates on a space M effectively and transi-

tively. We take an element p0 of M and a set H of all elements of G which

fix po. Any element p of M corresponds to a set aH (σ&G) of G/H and M

can be identified with G/H in natural way. Now we take a set of elements

upon which G operates simply transitively and call each element of the set a

frame of Λf, and to a point p corresponds a set of frames oHRy where R is a
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fixed frame. A relative displacement from a frame TR to SR (S, T G G ) is

defined by T~1S and an absolute displacement by ST'1.

2. Now we assume that G is a Lie group of dimension r and H its closed

connected subgroup of dimension n - r, and consider the homogeneous space

G/H which we call M We denote by Sa an element of G with local parameters

α = (βi, . . . , tfr). Left invariant differential 1-forms ωp = ωp(a, da) (p = 1,

. . . , r)f called relative components, are obtained by taking linear parts in

da = (dau . . . , dar) of the parameters £= {bL, . . , £r) of Sb-S^Sa+da,

which is a relative displacement from SaR to Sa+daR. Relative components

ωp = ωp(a, da) are base of a vector space V dual to the tangent space of G.

By taking a suitable linear combination of ωp with constant coefficients and

denoting them ωp anew we can assume ωi(at cfa)=0 ( ί = l , . . . , « ) for the

elements S«, Sfl+</* of //. These ω/'s are called principal relative components

of M. We can take suitable local parameters xit . . . , xn> un+u. . . , ur, such

that x = (#t, . . . , Xn) are considered as local coordinates of M and principal

relative components are represented as

ω f = Σ β f / ( * i » . . . , * « , M»χi, . . . , ur)dxj. (i, y = l , . . . , n) ( 1 . 1 )

Hereafter we take the indices in the following manner:

p, qt s, u = 1, . . . , /

U » * = l » α, ft r = » + 1, . . - , r.

Then we have

> = Σ -o ŝ/> [ω^s], where cqSp = - c s^,

especially, Jω, = Σ o Cjki ίωj ωk] + Σ caki lωaωkl. (1.2)

jfc -^ αfc

When we take frames SaStR and Sa+daSt+dtR instead of SaR and Sa+daR,

(SaSt) (Sa+daSt+dt) — St (Sa Sa+da) St * St St+dt (1.3)

and denoting the relative components of (SaSt)~1(Sa+daSt+dt) by πp we have

πp = 'ΣtpQωQ(a, da) + ωp(t, dt), (1.4)

where (tpQ) is a matrix representing an element of a linear adjoint group of G

corresponding to St. We have
dtpq = Σ^«s/>ω2ίit, dt)ts<j. (1.5)
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If Sίt St+dt belong to the connected subgroup H of G, we have

ω, U, dt)=O U.6)

and as a special case of (1.5)

and by (1. 4) m = Σfeyωy (1. 7)

dUj = 5>dwωΛ(#, Λ) ίjy (1.8)

and f,<* = 0. (1.9)

(tij) is a matrix representing an element of a linear group of isotropy.

2. Main theorems

1. An invariant volume can be defined in M= G/H when and only when

the linear group of isotropy is unimodular, namely

det(f/, ) = l for St^H, (2.1)

in another words,

Σ ί - « = 0, (2.2)
i

as we see by (1.7) and (1.8) (we have assumed that H is connected). The

volume element dV is an exterior product of principal relative components

dV=lωκύ2 • • • © « ] (2.3)

with disregard to a constant multiplier.

Now we define an algebraic volume in M. Let En be a euclidean space of

dimension n and K be a measurable set of En Let a differentiable mapping

of TΓ into M be f, then a mapping ^* of differential forms in M into forms in

K is naturally defined. We define I ίωιω2 * ωrt] by \ φ*[ωιω2 * ωn] and

call it an algebraic volume of (φ, K) in M. We define an equivalence relation

between (ψ,K) and (<f\ K') by the existence of a differentiable homeomorphism

/ such that

κ'=f(k), φ'^φf'1.

An algebraic volume is a quantity defined for the equivalence class.

2. We take cartesian coordinates xu . . . , xn-i, u in 2?n and consider a

domain D on a hyperplane defined by u = 0. Let 0 be a 1-1 mapping of D

into M which is univalent on tangent spaces. ψ(D) is then an n - 1 dimensional

submanifold, namely a hypersurface. By a 1-parametric motion represented by
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St (eG, t=t{u)) for an interval / (O^u^l) φ(D) generates a set of M.

Putting

K=DxI

ψ(p) = &(#(*)) for ί = (*i, . . . , xn-u u) such that

x= (χu . . . , *«-i, 0 ) e D

an algebraic volume can be defined for (φ9 K). When we take an Λ - 1 -

parametric set of frames SaR attached to each point ψ{χ) of Φ(D), StSaR is

attached to a point St(ψ(x)). Let the relative components of

(StSa) (St+dtSa+da)y St St+dt> Sά Sa+da

be πpy τp, ωp

respectively, then by the relation

{StSa) (St + dtSa+da) = Sa (SΓ St+dt)Sa S^Satda

we have TΓ* = ω/ + *Σaipτp, (2. 4)
P

where (aqp) is an element of a linear adjoint group corresponding to Sa.

As a volume element dV of (^, Λ") we have

< / F = C7T17Γ2 * πnl

and by (2.4)

[7Π7Γ2 * πnl

because the set of frames SΛ/? is w - 1-parametric and St is 1-parametric.

Putting

l)1"1^//)^! - - ώ, ω j , (2.5)

where ώt means that a term α>, does not appear in the product, we have

(2.6)

We call an algebraic volume V of (ψ, K) a volume generated by a hypersurface

φ(D) under a 1-parametric motion St (t = t(u), O ^ w ^ l ) . Putting

j ^ ^ C - l Γ ^ f Ωp, YP=[ τp (2.7)

we get the following theorem by integrating (2.6).

THEOREM 1. An algebraic volume V generated by a 1-parametric motion of

a hypersurface φ(D) is given by
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tυhe/e Xp's are quantities determined by ψ(D) and Yp's are those determined by

our motion.

This is a generalization of the theorem of Koenigs-Hadamard.

3. We consider Ωp in detail. Until now SaR has been attached to a point

of ψ(D), and Sa has been of n - 1-parameters. Now we consider Sa which is

r-parametric, and construct forms

Ωp = ̂ LJ ( -" 1) OipLcoi ' ' * o)i * ' ' ίθ«J, (2.9)
i

where <Vs are principal relative components of M corresponding to S^Sa+da

and iaqp) is an element of a linear adjoint group corresponding to Sa. Then

we get

THEOREM 2. Differential forms Ωp are closed and are forms on M.

Verification runs as follows by the use of (1.5) (1.2):

(ύnl

• ώi ωn2

- - dωj - ωn2

i ' ' ' ωnl

' ώj ύ)»]

' ώi ' ' ' (βfϊ\

' ωj-iωa(όk<tij+i ' ' ' ώi ίθn3

+ Σ ( -
+ Σ ( -
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aki

+ Σ ( -
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+ Σ ( -
aki

+ Σ
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ij
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1 ώi ωj-iωaωkcΰj+ι * * * ω w ]

α i ωj-i(ύhωk(ύj+i ώ/ α>w]

ChkjajpZωi ' ' ώi ' m ωj-ιωh(θk(θj+i ωnl

' ' m ώj * * * α?«]

Ί~ ^ j Ciaiaap[_(ύι ' * * OJ^J
ot*

i ^ l * * ώi ' ' CύnΊ

+ Σ ( - lYcΛjjaipίωjjaipίωaωx ώi • ω n ]
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-f Σ ( - lYCaijCtipicuaCU! - ώj O)«]

= Σ ( Σ £ * y y ) ( Σ ( —lY^aipLiOtiOi - - - ωi - - ωn} + a*p[.ωi - * (Onl),

a j i

and so by virtue of (2.2)

0. (2.10)
When we take local parameters xit . . . , #«, W«+I, . . . , «r, for which (1.1)

holds good, we have

Ωp = *Σbip(x> u)ίdxi - - - dxi - - dxnl
i

and by virtue of (2.10) bip(x, u) do not contain u, which proves Ωp are forms

on M=GIH.

Ωp are forms on M, but they depend on Sa and are not invariant for dis-

placement. They are not intrinsic in this sense. In a simply connected domain

in M there exist forms TTP such that Ωp-dΠp. If the domain D has regular

boundary C and ψ(D) is in the domain above stated, we get

p \ Πp (2.11)
) Jψ(C)

and Xp depend on (φ, C) and not on (ψ, D).

4. If we take Sc(ψ(D)) in stead of ψ(D) with Sc constant in G, frames

SaR=ScSaR are attached to it, and if we take St such that

we have StSa = StSa,

and the motion of ^(D) by S/ is the same with that of Se(ψ(D)) by Si. Owing

to the relation

an element of a linear adjoint group corresponding to Sa is a product of those

of Sa and &, and

Osp = Σ βs<? Cqp, (2. 12 )
α

where (asp), ( ^ ) , (£«?/>) correspond to Sa> Sa, Sc respectively. By the relation

Sa1Sa+da = S^Sa+da we have ωi = ωi, and putting
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Ωp = Σ ( - l ) 1 " " 1 ^ ^ ! a)/ ωnl
i

we get ίf = ΣflΛί (2.13)
q

and also for Xp = (- I)"'1 j £/,, 5> = ( - D"" 1 J fi#,

(2.14.)

By the use of (2.14) we can nomalize Xp> namely by taking Sc suitably we

reduce Xp's to a system which is as simple as possible. Examples will be

given later.

5. Next we turn to another generalization of Guldin-Pappus's theorem.

We assume M-GIH has an n — 1-dimensional submanifold L which is trans-

formed into itself transitively by a certain connected closed subgroup of G.

We call L a FΓ-hypersurface. L is derived from a solution of a set of com-

pletely integrable system

pP = 0 (t; = l, 2, . . . , ft) (2.15)

by E. Cartan's theory, where pv's are linearly independent linear combinations

of relative components with constant coefficients. As L is of dimension n-l,

principal relative components ωι are not independent along L, and so by taking

a suitable linear combination of them and suitable linear combinations of rela-

tive components ωp, both of constant coefficients, we can assume anew

ωi = 0, ωλ = 0 U = n + 1 , . . . , n + k - 1) (2.16)

instead of (2.15). As this system is completely integrable we have

Ciji = 0 Ciox = 0 Cσpi = 0

Cijx = 0 Cioλ — 0 Cov\ = 0,

where i, j = 2, . . . , n

λ = n + l, . . . , n + k-l σ, ρ = n + k, 1, . . . , r. (2.17)

We take up a solution of (2.16) which contains an identity of G and denote

each element of the solution by Sa which generates a subgroup / of G. Then

a set of frames SaR is attached to all points of a submanifold of M which we

can assume to be L. If / is connected we have by virtue of (1.9)

flip = 0, tfλp = 0, au = 0, an = 0 (2.18)

with the indices as in (2,17), where (aPq) is an element of a linear adjoint
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group corresponding to S Λ e / . The forms (2.9) reduce to

Ωp = Clip L(θ2 ' * O)nl

on the manifold L and we get

Ωi = 0, Ω? = 0 (2.19)

(i, j = 2, . . . , n, p - n -f- k, . . . , r)

by virtue of (2.18).

We consider a euclidean space of dimension n with coordinates Xu . . . ,

#,ι-j, M and a 1-parametric set of domains D(u) (O^u^.1) contained in a

domain D on the hyperplane « = 0. Let ^ be a differentiate mapping which

maps D on the W-hypersurface L, and Sf (t ==/(w), O ^ ^ ^ l ) be a 1-parametric

motion on M. Then St(ψ{D(u)) generates a part of Λf and a volume element

J F is given by

(2.20)

by taking an n - 1-parametric set of frames SaR along L. If K is a set of points

p = (ΛΓI, . . . , *n-i, w) such that x= (xi, . . . , ΛΓM-!, 0) <= D(u) and ^ is defined

by ψ(p) =St(ψ(x))t an algebraic volume of (ψ, K) is given by

> (2.21)

when we put

Xp = ̂ ( « ) = ( - I)""1 f i?/,. (2.22)
Jψ(D(W))

By virtue of (2.19) we have .Y, = 0, X? = 0 and so

V= jΆiTi + Σ J - X λΓλ α = w + l , . . . , Λ + * - 1 ) . (2.23)

Thus we get

THEOREM 3. Aw algebraic volume generated by a 1-parametric set of W-

hypersurf aces is given by (2.23).

Xp's are quantities depending on (ψ, C(u)), where C{u) is a boundary of

Diu).

We can simplify the formula (2,23) in the following manner. If we take

So, and Si such that
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Sa = Sc Sa St = St Sc

where Sc (c = c(«)) belong to the subgroup /, we have

Xl = XlCn + Σ-XλCλl, ^λ = XlClX + ΣZμCμλ. (2. 24)
λ μ

iλ, μ = n + l, . . . , n + k-ί)

By taking c-c(u) suitably we can simplify Xp. Especially if the linear group

defined by linear transformations (2.24), namely a linear group of isotropy on

a homogeneous space G/J, is transitive, we can reduce in such a way that

Xι = 0 hold good, and we get from (2.23)

(2.25)

Examples will be given in the following section.

3. Applications

We take in the euclidean space of dimension n rectangular coordinates

x = (xu . . . , Xn). A displacement from a point ? = (ξu . . . , ξn) to ξ1 = (fί>

. . . , £ « ) is given by

y = l , . . , Λ), (3.1)
3

where (pij) is a proper orthogomal matrix. Let the fundamental frame R be

given by a set of vectors

A° = (0, . . . , 0), el = (1, 0, . . . , 0), . . . , e°n = (0, . . . , 0, 1) (3.2)

and a frame derived from (3.2) by the displacement (3.1) be

A = ( X ι , > X n ) , β\ = ( i n , . . . , p i n ) , . . . , β n = ( p n U . . . » P n n ) .

When we put

/ A° \ / A\ 11 Xί • Xn

R"J f , RJ e: \, s= l o . f » ; ; :? : -
\ e°n ) \e«) \θ Pnl --Pnn,

we get R=SR°. (3.4)

We take another displacement represented by

v + Λ (3,5)
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and denote a corresponding frame transformation by

R=TR°.

To the displacement ζ -* £", which is a composition of (3.1) and (3.5), corre-

sponds a frame transformation from R° to R such that

R=STR°.

Relative displacement from SR to TR is given by TS"1 and by virtue of

relative components ωi, ωij = — ωji (i, j — 1, . . . , n) are coefficients of dSS'1,

namely

U 0)i " ' Wn \

j (3.7)

0 ωn\ ' ' ωnn I

This is usually represented as

dA = Σ^/^ίj dβi = Σ®i;^" (it j — 1> » w).

Next we take a fixed displacement represented by a matrix C. Relative

components of the displacement from CSR to C(S + dS)R are given by the

coefficients of a matrix

We denote as

C =

\0 Cnl' ' Cnn/ \ 0 ω»i

with a proper orthogonal matrix (c/;), and we get

0)/ = 2LiCik\(ύk ~f ijO"O)_/Jb) — ̂ jdk(Ok -h i j (CjCik ~ CkC%j) (ϋjk ( 3 . 8 )

1 C\ cn \ I 0 w\ ' ωn

0 Cii * * * Cm I J / / > C \ / Λ Γ \ - I I ^ ω n * * * ωm

W/i = Σ Cik Cjh (Okh = Σ ( C/fe ί/Λ — C/Λ Cjk) (Okh ( 3 . 9 )

This is a transformation of a linear adjoint group corresponding to C.

Let S be as in (3.3) and T be a matrix representing a 1-parametric motion

and put
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( 0 TΓi * * Tin \ I 0 ri * * * Xn \

0 Γ:u..'.'" ?T )• ^TΓ"1 = ( ° ! " *.'" .Γl.Λ I (3 10)

0 7Γni * ' ' Tίnn I \ 0 r»i ' * * Tnn I
Γ.ij = ~ πji XΊj ~ — Xji.

By the relation

d(ST)iST)-1 = dSS"1 + SidTT'1) S"1

we have
τr, = ω, + Σ Ay (r; + Σ Xk Tkj) (3.11)TCij = ίOy + ^Σpikpjh Tkh. ( 3. 12 )

/c/ι

(a) Euclidean spaces with points as its elements

In this case a group G in the general theory is a group of displacement

and H is a group SO(n). Principal relative components of our spaces M= G/H

are ωu . - , ωΛ. We take a hypersurface F to whose points we attach frames

SR of w — 1-parameters. As a volume element of a part generated by a 1-

parametric motion T of the hypersurface we have by the use of (3.11)

dV=lm - - τr»l

Putting #, = Σ ( - l ) 7 " 1 ^ ^ ! ίv ωnl (3.13)

Ωij = xtΩj-XjΩi (3.14)

we have rfV=ΣCτl i2, ]-f Σ C ^ v ^ l (3.15)

By the relation ωi = Σpijdxj (3.13) reduces to
0

Ωi=(- lY^ίdXi - - - dXi - - - dxnl (3.16)

When we put

Πi 1 Σ ( - l)t+JXjldxi din - - - dxj dxΔ (3.17)
γ

— 1

dxj

we have Ωt - 7̂//, Ωi} = ̂ /// (3.18)

and i2,, ̂ ,7 are forms on M, though they depend on a coordinate system.

If we take a domain D on the hypersurface, an algebraic volume V

generated by a 1-parametric motion T of D is

v=Σx y, + Σ x i y, ; (3.19)
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where we have put JYi = ( -1)*" 1 j j?/, ̂ y = ( - l Γ ~ 1 J #/y, ̂  = j Γ ^ Yi/ = $rί/.

JYV, X> depend on the boundary of D and not on D itself. This is the theorem

of Koenigs-Hadamard-Guillaumin.

If we take frames SR = SCR and a motion T = C"*1 T with a constant matrix

C, we get the same generation of D and we have

ij (3.21)

and by (2.13), (3.8), (3.9) relations between Xi, Xij and X,, Xij are

(3.22)

y cίC*y - cyc^ ) 4- *ΣXkh(ckiChj - ChiCkj). (3.23)
k fc<Λ

By taking (c/y) suitably, we can assume

X2 = 0, . . . , .YM = 0.

For c/y = δij and X2 = 0, . . . , Xn = 0 we have

Xn^CiXi+Xn ( f # l ) . (3.24)

Hence by taking a suitably we can assume Xn = 0 in case Xι # 0. If frames

are so chosen from first, we have

V = XίYί + 'ΣXijYij (i, j = 2, . . . , n) (3.25)

and by taking (c/y) suitably we can simplify in such a way that Xij (i<j)

except ^23, X*45, . . . vanish. If Xι = 0, we have

F = S X ; T / i (3.26)

where Xij (i < j) except X12, Xu, . . . vanish.

Next we turn to an application of the Theorem 3. We take a hyperplane

En-i and denote by / the set of all displacements which fix En-i. If we take

a fundamental frame (A°, el, . . . , e°n) with A°, e%, . . . , βn on En-i, we have

for a displacement S of J represented as in (3.3)

Xι = 0, i>n = 1, A2 = 0, . . . , pin = 0. (3.27)

Hence ωi = 0 and by (3.13), (3.14)

Ωi =pίiί<02 ' ' ' (Onl, Ωij- XiΩj ~ Xj Ωi

and so
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For a domain Diu) (O^u^l) on 2?«_i we take a suitable frame SC/?

( C ε / ) , then we have by (3.24) Z i = 0. Thus a volume generated by D(«)

under a motion T=T(u) ( O ^ w ^ l ) for a suitably chosen frame on Diu) is

given by

V= j-Xkri. (3.29)

Xι = I [ω2 * * ω,J is an n - 1-dimensional volume and n is a component,
J D{U)

orthogonal to the hyperplane on which Diu) under T lies, of an arcelement of

the locus of center of gravitation of Diu) (c.f. [7] p. 113).

We give another application of the Theorem 3. Let Kn-ι be a hypersphere

of radius r and / be the set of all displacements which fix Kn-i. We take an

origin A° of the fundamental frame at the center of Kn-i and (A, eu . . . , en)

with A on Kn-u and ex on an outer normal at A. Then we have Xi = rpu in

(3.3). By the relation d(A - rβi) = Σ ω , e, - fΣωi/ft• = 0 we have along ifn-ι

0 ( i = 2 f . . , , n ) . (3.30)

Hence by (3.13), (3.14)

= 0.

We take a domain Diu) on # n - i and an algebraic volume gemerated by D{u)

under a motion T=T(u) (O^w^l) of iΐΓw-i is

Kin, where Xι= ( - \Y~Λ ft. (3.31)

If v is an w-l-dimensional volume of Diu) and k=(—l)n~1rv~1, ikXu - - , &X"n)

are coordinates of a center of gravitation of Diu). By taking on each Diu)

a suitable frame we can reduce Xi to such ones that X2 = 0, . . . , Xn = 0. Hence

iri (3.32)

Thus we get (3.32), where F is an algebraic volume generated by a set of

domains of Diu) on a hypersphere ϋΓ«-i of radius r under a motion T=T(tι)

and r '^Xi is a distance from the center of Kn-i to a center of
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gravitation g(u) of D(u), and n is an orthogonal component of an arcelement

of the locus of center of the hypersphere Kn-\ to the direction from the center

of Kn-ι to g(u). According to the general theory a formula

+ Σf(Xί-rAki)(r ί-rr i , )

should appear in the first on account of (3.30). A modification has been made

by taking an origin A° at the center of Kn-ι from first.

(b) Euclidean space with hyperplanes as its elements

In this case we take frames (A, ei, . . . , e») with A, e2* . . . , en on a

hyperplane. Then principal relative components are ωi, ωi2, . . . , ωm. We

take an n—1-ρarametric set D of hyperplanes to which we attach an w—1-

parametric set of frames SR and a 1-parametric motion T=T(u) ( O ^ w ^ l ) .

Then an element J F of an algebraic volume generated by D under a motion

T is given by

dV = [7Γ17Γ12 * * ' 7Γin],

where 7π, πi, a re given by (3.10). We put

i>/ =i>i/, ft = (A, £i), dσ = Lcoi2 ' ' ωm]>

A = Σ ( - I)*"1**;Cωi2 •'•«!*••• ωιnl (3. 33)

and also

Ωi=pido (3.34)

% = Xi Ωj - Xj Ωi -f pi ίωi Af\ - pj ίωi Ail. (3.35)

Then we get by (3.11) (3.12)

dV= Σ C Γ . A ] + ΈίTijΩiβ. (3.36)

ί/j is an n - 1-dimensional volume element of spherical representation of normals

of hyperplanes belonging to A and h = (A, *i) is a distance from the origin of

a fundamental frame to a hyperplane. By the general theory Ωi, Ωij are closed

forms, which can also be verified directly. As for Ωij we have

Ωij = ίdh, pi Λj - pj Ail (3.37)

because of the relations

dh = rf(A, 0i) = (ύΓA, ei) -I- (A, cfc) = ωi + 'Σ

and £,>• are closed forms on account of the formula



ON THE VOLUME IN HOMOGENEOUS SPACES 215

Λi = ( - 1 ) ' Σ ( - lΫ^Pjίdpi • • • dpi- • • άPj • • dpnl. (3.38)
3

An algebraic volume V generated by a domain D of hyperplanes under a 1-

parametric motion T is

tf, (3.39)

where X, Xy, Yi, Yij are as in (3.20) and a simplification of (3.39) are quite

the same as in (3.25), (3.26). We take a set of all hyperplanes through one

point and a rotation group SO(n) around the point. Then for frames SR

(S^SO(n)) with an origin A at the point we have

Xi = 0, . . . , Xn = 0, ωι = 0, , ωn = 0

and for these frames X?y in (3.35) vanish and J¥o=0. Hence an algebraic

volume V of a set £>(#) of hyperplanes passing through A~A(u) (O^u^

is given by

where X ^
J D{U)

We take a spherical representation of normals of hyperplanes, and the center

of gravitation of the representation of Diu) has coordinates (kXu . . . , kXn)>

v being an n - 1-dimensional volume of the spherical representation, and

k = ( - l)w~1zΓ1. By a assuitable choice of C for which ct = 0 we have

-XV = Σ Xj Cji

by (3.22) and by a suitable choice of (cij) we get a formula

(3.40)= J-XΊn,

where z;"1^ is a distance from i4(«) to a center of gravitation g(u) of Z>(«) and

τi is a component of an arcelement of the locus of a center A(u) to the di-

rection from A(u) to g(u).

(c) Euclidean space with straight lines as its elements

We take an origin A and ei of a frame on a straight line. Then principal

relative components of the space with straight lines as its elements are

CO 2, , (On, <^12, > ωln-

For an element dV of an algebraic volume generated by a 2#-3-parametric set

D of straight lines under a 1-parametric motion we have
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dV~\jZ2 7ΓΛ, 7ΓI2 " 7Γl»]

in the notation as in (3.10). We put

Pi-Pit, dS = ίω2 * cύnl> dσ

Mi = Σ ( - ly'-^/iCflto " ώy
i

• * ωinl,

(3.41)

(3.42)

and also

Ωi = lMidσl (3.43)

Ωu = XiΩj-XjΩi+ (-DnldS, piΛj-pjΛβ. (3.44)

These are closed forms by the general theory although they are also verified

by

M ; = ( - i y Σ ( - l ) y ~ ^ tei ' dki •'• dk} * „ ]

and (3.38). An algebraic volume generated by a set of straight lines under a

1-parametric motion is given by (3.19).

If we consider a set of all straight lines which are perpendicular to a fixed

direction which we take as en> we have

Pin = 0, . . . , pn-\n = 0, pnn = 1, <Om = 0, . . . , (On-w = 0

and so by virtue of (3.43) (3.44) we get

i2t=0, Ωij = 0 (i<j<n).

We consider a 2w—3-parametric set D(u) of straight lines which are perpen-

dicular to a fixed direction each. An algebraic volume V generated by a set

D(u) ( O ^ w ^ l ) is given by

j (3.45)

A transformation C which fixes a direction en satisfies the relation cm = 0, . . . ,

Cn-m = 0, Cnn = 1 and by (3.23) we can reduce Xln, . . . , Xi-m to I/« = 0 (ί ̂ 2 ) ,

and we get a formula

J . (3.46)
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