ON THE VOLUME IN HOMOGENEOUS SPACES

MINORU KURITA

Guldin-Pappus’s theorem about the volume of a solid of rotation in the
euclidean space has been generalized in two ways. G. Koenigs [1] and J.
Hadamard [2] proved that the volume generated by a 1-parametric motion of
a surface D bounded by a closed curve ¢ is equal to D) aib; + > ai;bi;, where
ai, aij = —a;i (i, j=1, 2, 3) are quantities attached to D‘ with n:.;;)ect to a rec-
tangular coordinate system, while bj, b;j= —bj; (i, j=1, 2, 3) are quantities
determined by our motion. It is remarkable that a;, a;; depend only on ¢ and
not on D. The theorem was extended to the case of dimension # by G. Guil-
laumin [3]. Another extension of Guldin-Pappus’s theorem was obtained by
the author [7] in the following way. The volume V of a solid B in the eu-
clidean space of dimension # is given by jvda, where v is an (n— 1)-dimen-
sional volume of a section of B by one of the 1-parametric set of hyperplanes
and dos is a component, orthogonal to the hyperplanes, of an arcelement of the
locus of the center of gravitation of the section. An analogous result was
obtained for the spherical space. In the present paper the author generalizes
these results to the case of homogeneous spaces by the method of moving
frames of E. Cartan and applies the results to various spaces, and states formulas

of the integral geometry in the homogeneous spaces.

1. Preliminaries

1. In the first we quote the matters necessary for our purpose from [4]
and [6]. Let G be a group which operates on a space M effectively and transi-
tively. We take an element p, of M and a set H of all elements of G which
fix po. Any element p of M corresponds to a set ¢H (s€G) of G/H and M
can be identified with G/H in natural way. Now we take a set of elements
upon which G operates simply transitively and call each element of the set a

frame of M, and to a point p corresponds a set of frames ¢HR, where R is a
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fixed frame. A relative displacement from a frame TR to SR (S, T€G) is
defined by T7'S and an absolute displacement by ST

2. Now we assume that G is a Lie group of dimension r and H its closed
connected subgroup of dimension 7z —7, and consider the homogeneous space
G/H which we call M. We denote by S; an element of G with local parameters
a=(a, ..., a). Left invariant differential 1-forms ws= wp(a, da) (Pp=1,

., 7), called relative components, are obtained by taking linear parts in
da = (das, ..., da,) of the parameters b= (b, . .,b) of Sy=Sz'Ssrda
which is a relative displacement from S;R to Ss+scR. Relative components
wp = wpa, da) are base of a vector space V dual to the tangent space of G.
By taking a suitable linear combination of w, with constant coefficients and
denoting them w, anew we can assume wi(a, da)=0 (i=1, ..., n) for the
elements S;, Sz+da of H. These w;’s are called principal relative components
of M. We can take suitable local parameters i, ..., %n, #s+1,. .., %, such
that x= (%, ..., %) are considered as local coordinates of M and principal
relative components are represented as

wi=2ai(%, ..., Xn, Unet, o . ., Ur)dXj. (4, 7=1,...,n) (1.1)
J
Hereafter we take the indices in the following manner:

i’,q,S,u=1,---,f

i, j,k=1,...,n a, B, r=n+1,...,7

Then we have

da)p = zs:% Cgsp [wq U)s], where Casp = — Csgp,
Q
especially, dwi =>) 1 cirilwjwrd + D) caki Lws wr]. (1.2)
Ik 2 ak

When we take frames S.S:R and Su:daSt.at R instead of S;R and Sg+de R,
(S2S1)™(Sa+daSt+at) = S;'(Sz" Sarda) St * St Star (1.3)
and denoting the relative components of (SzSt) '(Sz+daSt+at) by mp we have
mp = %“.t,,qwq(a, da) + wp(t, dt), (1.4)

where (#;,) is a matrix representing an element of a linear adjoint group of G

corresponding to S;. We have

dtpq = Z}Cusj) (I)u(t, dt) tsq. (1 5)
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If S;, Si+4: belong to the connected subgroup H of G, we have

wit, dt) =0 (1.6)

and by (1.4) = ]Etijwj (1.7)
and as a special case of (1.5)

dtij = %‘]chki we(t, dt) tj (1.8)

and tie =0. (1.9)

(t;) is a matrix representing an element of a linear group of isotropy.

2. Main theorems

1. An invariant volume can be defined in M= G/H when and only when

the linear group of isotropy is unimodular, namely

det (¢;) =1 for S H, (2.1)

in another words,
2caii =0, (2.2)
as we see by (1.7) and (1.8) (we have assumed that H is connected). The

volume element dV is an exterior product of principal relative components
aV=Lwiw: - * * ol 2.3

with disregard to a constant multiplier.

Now we define an algebraic volume in M. Let E, be a euclidean space of
dimension # and K be a measurable set of E,. Let a differentiable mapping
of K into M be ¢, then a mapping ¢* of differential forms in M into forms in
K is naturally defined. We define L(K)[w“"z -+ ws] by SKSD*[ w010+ + - wn] and
call it an algebraic volume of (¢, K) in M. We define an equivalence relation
between (¢, K) and (¢', K') by the existence of a differentiable homeomorphism
f such that .

K'=f(K), ¢=¢
An algebraic volume is a quantity defined for the equivalence class.

2. We take cartesian coordinates %, ..., %»-1, # in E, and consider a
domain D on a hyperplane defined by #=0. Let ¢ be a 1 -1 mapping of D
into M which is univalent on tangent spaces. ¢(D) is then an # — 1 dimensional

submanifold, namely a hypersurface. By a 1-parametric motion represented by
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St (G, t=t(u)) for an interval I (0<% <1) ¢(D) generates a set of M.
Putting

K=Dx1I
¢(p) =Si(¢(x)) for p=(%1, ..., %n-1, u) such that
x=(%, ..., %n-1, 0)€D

an algebraic volume can be defined for (¢, K). When we take an n-—1-
parametric set of frames S;R attached to each point ¢(x) of ¢(D), S:SzR is
attached to a point S;(¢(x)). Let the relative components of

(stsa)-l(SHdts«H-da), St_lshdt, S;ISa+da
be Tpy Tps wp

respectively, then by the relation

(St sa)-l(St+dtSa+da) = S;l(S;l St+dt) Sa* Sa_ISa +da
we have i = 0 + 2\ AipTp, (2.4)
14

where (ag) is an element of a linear adjoint group corresponding to S..

As a volume element dV of (¢, K) we have

dV=[mm *** 7nl
and by (2.4)

[71’1712 A "n]=zaip[wl T Wi-1Tp Wi+ wnl
i

because the set of frames S;R is # — 1-parametric and S; is 1-parametric.
Putting

2p=20( -1 aiplwr - - - &+ +* wal, (2.5)
where &; means that a term w; does not appear in the product, we have
av = E[Tpgp]. (2. 6)
]

We call an algebraic volume V of (¢, K) a volume generated by a hypersurface
¢(D) under a 1-parametric motion S; (¢ =t{(%), 0<#<1). Putting

Xp= (- 1)71-15‘”[”!21,, Y= josuil ) 2.7

we get the following theorem by integrating (2.6).

TueoreM 1. An algebraic volume V generated by a 1-parametric motion of

a hypersurface $(D) is given by



ON THE VOLUME IN HOMOGENEOUS SPACES 205

V=X2X,Y3,
P

where Xp's are quantities determined by ¢(D) and Yp's are those determined by
our motion.

This is a generalization of the theorem of Koenigs-Hadamard.

3. We consider £, in detail. Until now S;R has been attached to a point
of ¢(D), and S, has been of # — 1-parameters. Now we consider S, which is

r-parametric, and construct forms

Qp=20(~— l)i—laip[wx e it wal, (2.9)

L
where ©,’s are principal relative components of M corresponding to Sz'Sz+da
and (ag) is an element of a linear adjoint group corresponding to S,. Then

we get
THEOREM 2. Differential forms 25 are closed and are forms on M.
Verification runs as follows by the use of (1.5) (1.2):
A2 =23 ( =1V [daipwr - - = &i -+ * wn)
+ 2 (=Daploc- - - doj =+ &i -+ oal

i>j
+2( —1)i+j‘laip[w1 s Do dwy et wal
i<j
== copiarpLwawr « =+ Hi + -+ wnl

aki

+h2k'( 1) eppiarpLonwr » + + &+ wnl
{3

+ 2 =1 ehgiaeplonws = =+ &+ -+ wnl

ahs

+a">2j’k( —]_)”ic,,kjaip[a)l e W1 We @R W eyt Bt  wnl

+ i} .g,} k( 1) eriaipls -+ - & - - 0jm1 0a OB D21 - -+ ]

+ i>§,k( -1 %-Chkjdip[wl S W WROEW Lt Bt @]

+i<],2h’k( —1)itit %.chkjaip[wl e i wjeronwR©jer -+ o]
:%;( —1)j—10aijaip[a)gu)1 e B wnd

+$cﬁiaiﬁ[w1 t o wn]‘f'zciaidap[wl SR |
2 ai

'*" 2 (_l)i-lcajja[p[wua)l o 0. {[)i PRI wn]

a,i>j

+ 2 (=1 cwijaiploswr - - - & - - - wnl
@, >3

+ 2 (= Diegjjaiplocwy, = - - @i+ - - wn)

@, §<)
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+ 2 (=1ecjaislwews - - - &; - - - wal

@, i<j
= 2¢ciij@iplor - - - wal = 2ciijaiplor - - - wal
[>21 1<]

=2(20¢jj)(§‘,( — 1) giplwsws - - - &i - - - wnd+ @eplon - - - wnd),
e

and so by virtue of (2.2)
d2y=0. (2.10)

When we take local parameters %, ..., %n, #%n+1, ..., %, for which (1.1)

holds good, we have
Qp=Dbip (%, wds - - - 3% - - - da)
and by virtue of (2.10) bip(x, %) do not contain », which proves 2, are forms
on M=G/H.
2, are forms on M, but they depend on S; and are not invariant for dis-
placemerit. They are not intrinsic in this sense. In a simply connected domain

in M there exist forms 7, such that 2, =dIl,. If the domain D has regular
boundary C and' ¢(D) is in the domain above stated, we get

Xp=(- 1)""11‘@) £ = “‘.,,(D) ally = S My (2.1D)

¢(C)
and X, depend on (¢, C) and not on (¢, D).

4. If we take S.(¢(D)) in stead of ¢(D) with Sc constant in G, frames
S:R=S:S:R are attached to it, and if we take S; such that

Si=S:S:Y,
we have §: §a =S Sa,

and the motion of ¢(D) by S; is the same with that of S.(¢(D)) by S;. Owing
to the relation

Sz (S5 Ssran) Sa=Sz'S: (S5 'Sbrdn) SeSe

an element of a linear adjoint group corresponding to Sz is a product of those
of S; and S;, and

Gsp = 2,GsqCqp, (2.12)
q

where (@sp), (a@sp), (cgp) correspond to Sa, Sa, Sc respectively. By the relation

S7'Sa+da= Si'Sa+da We have »; = w;, and putting
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2, =21 —l)i_lﬁipl:El e t%)i e
T

we get Qp=D3824Cqp (2.13)
q
and also for Xp=(—~ 1)“"S32p, Xp=(- 1)"'15 2,
?p = ZXGCGP' (2. 14_)
q

By the use of (2.14) we can nomalize X,, namely by taking Sc suitably we
reduce X,’s to a system which is as simple as possible. Examples will be
given later.

5. Next we turn to another generalization of Guldin-Pappus’s theorem.
We assume M= G/H has an 2 — l-dimensional submanifold L which is trans-
formed into itself transitively by a certain connected closed subgroup of G.

We call L a W-hypersurface. L is derived from a solution of a set of com-
pletely integrable system

pv=10 (v=1,2,...,%) (2.15)

by E. Cartan’s theory, where p,’s are linearly independent linear combinations
of relative components with constant coefficients. As L is of dimension 2 —1,
principal relative components w; are not independent along L, and so by taking
a suitable linear combination of them and suitable linear combinations of rela-

tive components wp, both of constant coefficients, we can assume anew
w1 =0, wor=0 (A=n+1,...,n+k-1) (2.16)

instead of (2.15). As this system is completely integrable we have

cij1=0 Cic1 =0 Cop1 =0
ciin=0 Ciox=0 Copr =0,
where 4, j=2,....7m
A=n+1l,...,n+k-1 s, o=n+k 1, ..., (2.17)

We take up a solution of (2.16) which contains an identity of G and denote
each element of the solution by S, which generates a subgroup J of G. Then
a set of frames S;R is attached to all points of a submanifold of M which we
can assume to be L. If J is connected we have by virtue of (1.9)

a;, =0, a =0, a; =0, ai=0 (2.18)

with the indices as in (2.17), where (ap) is an element of a linear adjoint
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group corresponding to S;<=/J. The forms (2.9) reduce to

2 =aiplws * * + wal
on the manifold L and we get
2i=0, 2 =0 (2.19)
(4, /j=2,...,mn, po=n+k ...,7
by virtue of (2.18).

We consider a euclidean space of dimension n# with coordinates %, . . .,
%n-1, # and a l-parametric set of domains D{(#) (0<#=1) contained in a
domain D on the hyperplane #=0. Let ¢ be a differentiable mapping which
maps D on the W-hypersurface L, and S, (#=#(%), 0<% =<1) be a 1-parametric
motion on M. Then S:(¢(D(u)) generates a part of M and a volume element
dV is given by

dv=§[rp9p] (2.20)
by taking an # — 1-parametric set of frames S;R along L. If K is a set of points

p=(x1, ..., %n-1, u) such that x= (%1, ..., %s-1, 0) € D(%) and ¢ is defined
by ¢(p) = S:(¢(%)), an algebraic volume of (¢, K) is given by

V= ijm, (2.21)
1 4

when we put

Xp= Xp(u) = (- 1)"“S 2. (2.22)

¢ (D(u))

By virtue of (2.19) we have X;=0, X,=0 and so
szxlrl-»zASXm A=n+1 ..., n+k=1). (2.23)

Thus we get

TueOREM 3. An algebraic volume generated by a l-parametric set of W-
hypersurfaces is given by (2.23).

Xp’s are quantities depending on (¢, C(%)), where C(#) is a boundary of
D(u).

We can simplify the formula (2,23) in the following manner. If we take
Se, and S; such that
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Se=S:Sa Si=S:S:t
where S. (¢ =c(«)) belong to the subgroup J, we have
f,=qu+?qu, )—(A=chu+§u]XucM. (2.24)
(A4 u=n+1, ..., n+k-1)

By taking ¢ = c(%) suitably we can simplify X,. Especially if the linear group
defined by linear transformations (2.24), namely a linear group of isotropy on
a homogeneous space G/J, is transitive, we can reduce in such a way that
X =0 hold good, and we get from (2.23)

V=jxm. (2.25)

Examples will be given in the following section.

3. Applications

We take in the euclidean space of dimension 7z rectangular coordinates
x=(%, ..., %). A displacement from a point &= (&, ..., &) to & = (&),

., &) is given by
545’:52':2?]'1'6]""-”1' (i:j':lv'-"n)r (3.1)
7

where (p;;) is a proper orthogomal matrix. Let the fundamental frame R be

given by a set of vectors
A°=(0,...,0), ee=(1,0,...,0),...,e3=(0,...,0,1) (3.2

and a frame derived from (3.2) by the displacement (3.1) be -

A=(x, .., %),  e=(pu, ..., Din)s...,en=(bu, ..., Dsn)
When we put
AO" A 1 x Xn
rol E) mel ) se0nn) e
e e 0 Pas + * Pun
we get R = SR°. (3.4)

We take another displacement represented by

e g =0gi8 + i (3.5)
7
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and denote a corresponding frame transformation by
R=TR".

To the displacement £ — &”, which is a composition of (3.1) and (3.5), corre-

sponds a frame transformation from R° to R such that
R =STR".
Relative displacement from SR to TR is given by 7S™' and by virtue of

(S+dS)S™*=E+dSS™!

relative components wji, wij= —wj; (4, 7=1, ..., n) are coefficients of dSS”},
namely
0 w wn
dsst=| O en i em ), (3.7)
0 wm Wnn

This is usually represented as
dA = Dlwie;, de; = D\ wije; (2, 7=1, ..., n).
i J

Next we take a fixed displacement represented by a matrix C. Relative
components of the displacement from CSR to C(S+dS)R are given by the

coefficients of a matrix

d(CS)(CS)™' =C(ass™ ™

We denote as

le *°-cn 0w **"° on
c=({%mIiam) acsics=f 0o o
0 ¢t cnm 0 oni** Onn

with a proper orthogonal matrix (¢;;), and we get

ai = 2 cir(or+ 2ciwin) = Dicikor + 20 (¢jcik — Cheis) wjk (3.8)
k J k 1<k

Oij = 21 Cik Cih Okl = F_’\l(l)ik Cih — CinCjk) Wkh. (3.9)
Ih k<

This is a transformation of a linear adjoint group corresponding to C.

Let S be as in (3.3) and T be a matrix representing a 1-parametric motion

and put
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0 7 n 0 7 Tn
asTIST) = O Fn ) gppio| Ot T 3.10)
0 nt* * * man 0 tar:* * Ton
Tij= T Tij= —Tji.

By the relation _
d(ST)(ST) ™' =dSS™ + S(dTT™") S™"

we have
m=wi+EPij(rj+Ekxkrkj) (3.11)
J
i = wij + %}Pik?jh Thh. (3.12)

(a) Euclidean spaces with points as its elements

In this case a group G in the general theory is a group of displacement
and H is a group SO(n). Principal relative components of our spaces M= G/H
are o, . .., wn. We take a hypersurface F to whose points we attach frames
SR of n—1-parameters. As a volume element of a part generated by a 1-

parametric motion 7 of the hypersurface we have by the use of (3.11)

dV="[m - 7al

Putting Qi=33=1)""pjlw -+ &+ +* wil (3.13)
7
Qij=%82;—%; Qi (3.14)
we have dV =2 Q1+ 20 2] (3.13)
i ]

By the relation w; = >)p;;dx; (3.13) reduces to
7

Q= (=17 ldxy -+ &% -+ dial, (3.16)
When we put
Hi= Y S (= 1)"aildes - dx - Qg -+ - dxad (3.17)
n—1
;= é(x?—kxf-)[dx, e é}j o dxa)
we have 8, = dlII;, O =adll;; (3.18)

and 2, £; are forms on M, though they depend on a coordinate system.
If we take a domain D on the hypersurface, an algebraic volume V

generated by a 1l-parametric motion T of D is

V=X Yi+2Xij Yi; (3.19)

t=17
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where we have put X;=(— 1)”"‘51)!2;, Xi=(- 1)”'1jDQ;j, Yi=\t, Yij= STij.
X;, Xi; depend on the boundary of D and not on D itself. This is the theorem
of Koenigs-Hadamard-Guillaumin.

If we take frames SR = SCR and a motion T = C™' T with a constant matrix

C, we get the same generation of D and we have

V=2)(£Yi+§j)(ijyif (3.21)

and by (2.13), (3.8), (3.9) relations between X;, X;; and X;, X;; are
X;= ;ch,',- (3.22)
Xij= zk]Xk(c,'ij —cjcri) + kqukh(Ckichj — ChiChj). (3.23)

By taking (ci;) suitably, we can assume

)_(2=0, o s ey ano.
For ¢;j=4di; and X,=0, ..., X,=0 we have
Xo=caXi+Xn  (Gx1). (3.24)

Hence by taking ¢; suitably we can assume X;;1=0 in case X;= 0. If frames

are so chosen from first, we have

V=X1Y,+§X;1Yij (G,7i=2...,n (3.25)
and by taking (ci;) suitably we can simplify in such a way that X (i <j)
except Xa, X5, . . . vanish. If X; =0, we have

V=§Xij Yi; (3.26)
where X;; (i < j) except Xz, Xu, . . . vanish.

Next we turn to an application of the Theorem 3. We take a hyperplane
E,_, and denote by J the set of all displacements which fix E,-:. If we take
a fundamental frame (A°, e5, ..., en) with A° e5, ..., e» on E,-;, we have
for a displacement S of J represented as in (3.3)

%=0, pPu=1l  De=0,..., pn=0. (3.27)
Hence w; =0 and by (3.13), (3.14)

Qi =piilws -+ wal, Rij=xi85 — % %
and so
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.91=[(D2 .« e ll)n], £2:;=0 (122)
2i1= %21, ij=0 (j>i=2).

For a domain D(#) (0<#<1) on E,_; we take a suitable frame SCR
(Ce]J), then we have by (3.24) X;;=0. Thus a volume generated by D(x)
under a motion T=T(u) (0=<#<1) for a suitably chosen frame on D(u) is
given by

V:SXm. (3.29)

Xl:jD‘u)[(l)z - - ws] is an # — 1-dimensional volume and r; is a component,
orthogonal to the hyperplane on which D(x) under T lies, of an arcelement of
the locus of center of gravitation of D(%) (c.f. [7] p. 113).

We give another application of the Theorem 3. Let K,-: be a hypersphere
of radius 7 and J be the set of all displacements which fix K,-;. We take an
origin A° of the fundamental frame at the center of K,_; and (A4, e, . .., es)
with A on K,-i1, and e; on an outer normal at A. Then we have x =7pi in
(3.3). By the relation d(A — re,) =2w,~e,——r2wuei=0 we have along K-

=0, wi— 7w =0 (i=2,...,n). (3.30)
Hence by (3.13), (3.14)

Qi=pilw: « * - wal
gij = ngj - x].gz = r(pli!)j —PIJ-QI) =0.

We take a domain D(u) on K,-; and an algebraic volume gemerated by D(x)
under a motion T'=T(u#) (0=u=<1) of K,—; is

V=3[Xr, where Xi=(-1"7f o (3.31)

D(u)

If v is an »—1-dimensional volume of D(#) and k=(-D""'ro"", (BXi, . . ., kX»n)
are coordinates of a center of gravitation of D(#). By taking on each D(#)

a suitable frame we can reduce X; to such ones that X,=0, ..., X»=0. Hence
V=[x (3.32)

Thus we get (3.32), where V is an algebraic volume generated by a set of
domains of D(%) on a hypersphere K,-; of radius  under a motion 7 = T(#)

(0Su=<1) and 7 'vX; is a distance from the center of K.- to a center of '
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gravitation g(x) of D(«), and 7, is an orthogonal component of an arcelement
of the locus of center of the hypersphere K.-; to the direction from the center
of Kun-1 to g(u). According to the general theory a formula

V= jX1r1+ ZS(X,'—- X))t — r71i)

should appear in the first on account of (3.30). A modification has been made
by taking an origin A° at the center of K-, from first.

(b) Euclidean space with hyperplanes as its elements

In this case we take frames (A, e;, ..., es) with A, e, ..., e, on a
hyperplane. Then principal relative components are wi, wi, . . . , win. We
take an »—1-parametric set D of hyperplanes to which we attach an n-1-
parametric set of frames SR and a 1-parametric motion T=T(%) (0s#=<1).
Then an element dV of an algebraic volume generated by D under a motion
T is given by

AV =[mnys * -+ mal,

where m;, m;; are given by (3.10). We put

bi = bu, h=(A, e), do=[ww -+ wi1al,
-‘1i=;( ~ ¥ priloe -+ @kt *  o1a] (3.33)
and also
Q; = pido (3.34)
Qij=%:2; — % Qi + pilwi 4;]1 = pilwi 4. (3.35)

Then we get by (3.11) (3.12)
av =221+ 2[1;;‘!2;‘;‘]. (3.36)
3 <J
ds is an n-—1-dimensional volume element of spherical representation of normals
of hyperplanes belonging to D, and h = (A, &) is a distance from the origin of

a fundamental frame to a hyperplane. By the general theory 2;, 2;; are closed

forms, which can also be verified directly. As for 2;; we have
Qi; =Ldh, pidj— p; i) (3.37)
because of the relations
dh =d(A, e) = (dA, e) + (A, de) = U)1+‘2jw1ipijxj,

and 2;; are closed forms on account of the formula



ON THE VOLUME IN HOMOGENEOUS SPACES 215

A= (=1 SN =1V pLadps -+ - dpi -+ - dpj - - - dpul. (3.38)

An algebraic volume V generated by a domain D of hyperplanes under a 1-
parametric motion T is

V=2X:Yi+ 2 Xi; Yij, (3.39)
i i<j

where X;, Xij, Yi, Yi; are as in (3.20) and a simplification of (3.39) are quite
the same as in (3.253), (3.26). We take a set of all hyperplanes through one
point and a rotation group SO(n) around the point. Then for frames SR
(Se SO(n)) with an origin A at the point we have

%=0,...,%:=0, =0, on=0

and for these frames £;; in (3.35) vanish and X;;=0. Hence an algebraic
volume V of a set D(u) of hyperplanes passing through A= A(x) (0<#<1)
is given by

V=§SX,«T,», where X,~=(-1>""S 9.

D(u)

We take a spherical representation of normals of hyperplanes, and the center
of gravitation of the representation of D(%) has coordinates (&Xi, ..., &Xn),
v being an »n—1-dimensional volume of the spherical representation, and

k=(—-1)""1p"". By a assuitable choice of C for which ¢; =0 we have
Xi=>\Xjcji
7
by (3.22) and by a suitable choice of (¢;;) we get a formula

V=jX1'L'1, ("3.40)

where v™'X; is a distance from A(%) to a center of gravitation g(#) of D(z) and
71 is a component of an arcelement of the locus of a center A(z) to the di-
rection from A(#) to g(u).

(c) Euclidean space with straight lines as its elements

We take an origin A and e; of a frame on a straight line. Then principal

relative components of the space with straight lines as its elements are
W2, « « «, Wn, W12y o o« « 4, Win.

For an element dV of an algebraic volume generated by a 2# —3-parametric set

D of straight lines under a 1-parametric motion we have
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dV=[ny " tn, 2+ * mnl
in the notation as in (3.10). We put

Di = pui, dS=[w; * - - wnl, do=[ow - w1n],

M=§( 1Y piilws + -+ &5+ + - wnl (3.41)
4i=33( = 1Y " piilwn -+ By +* * w1n] (3.42)

and also
9; =[M;do] : (3.43)
Qij=x;2;— %; 2i+ (= 1)"[dS, pidj— p; A4:]. (3.44)

These are closed forms by the general theory although they are also verified
by

M:__(__l)iz( _l)f—lpj[dxl e é}i PN ‘/1}1. <o o denl
J

and (3.38). An algebraic volume generated by a set of straight lines under a
1-parametric motion is given by (3.19).

If we consider a set of all straight lines which are perpendicular to a fixed
direction which we take as e,, we have

p1n=0,...,pn_1n=0, Pnn=1, w1n=0,...,a)n—1n=0
and so by virtue of (3.43) (3.44) we get
2;=0, Rii=0 (i< j<n).

We consider a 2#-—3-parametric set D(%#) of straight lines which are perpen-
dicular to a fixed direction each. An algebraic volume V generated by a set
D(u) (0=su#<1) is given by

V= zjx,, Tin. (3.45)

A transformation C which fixes a direction e, satisfies the relation ¢i» =0, . . .,
Cn-1n=0, ¢an=1 and by (3.23) we can reduce Xin, . . . » Xn-1n to Xin=0 (1=2),

and we get a formula

V':lenTln. (3.46)
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