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CONGRUENCES BETWEEN CUSP FORMS AND LINEAR
REPRESENTATIONS OF THE GALOIS GROUP®

MASAO KOIKE

Let f(z) be a cusp form of type (1,¢) on I'y(N) which is a common
eigenfunction of all Hecke operators. For such f(z), Deligne and Serre
[1] proved that there exists a linear representation

0: G—> GL,(C) where G = Gal (Q/Q) ,

such that the Artin L-function for p is equal to the L-function associated
to f(2). In this paper, we shall show that, for almost every prime 4,
the subfield of @ corresponding to the kernel of p is realized as a field
generated by the coordinates of certain points of finite order of an abelian
variety attached to a certain cusp form of type (2,ey) on I'(N¥¢), where
4 is a character of (Z/4¢Z)* of order ¢ — 1. (See Theorem (2.4).)

We apply the above result to the theory of Shimura [8] to obtain
further theorems in §4.

The proof is based on an idea of Shimura which is very useful for
proving congruences between cusp forms. The author wishes to express
his hearty thanks to Prof. G. Shimura for suggesting these problems.

Notations and Definitions

§0-1. We denote by Z, Q, R and C, respectively, the ring of rational
integers, the rational number field, the real number field and the com-
plex number field. The algebraic closure of @ in C is denoted by Q. If
2 is a complex number, T denotes its complex conjugate. For an associa-
tive ring A with the identity element, A* denotes the group of all in-
vertible elements.

For a Dirichlet character y defined mod N, 7 denotes the Dirichlet
character defined mod N such that 3(a) = y(a) for all aec Z, (a,N) = 1.
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There is a natural one-to-one correspondence between such Dirichlet
characters defined mod N and the C*-valued characters of the multiplica-
tive group (Z/NZ)* of the residue class ring Z/NZ. We identify a
Dirichlet character defined mod N with the corresponding character of
(Z|NZz)*.

Let k& be an algebraic number field of finite degree. We denote by
o, the maximal integer ring of k. For a fractional ideal of a in %, N(a)
denotes the absolute norm of a. For a formal product { of an integral
ideal f, in k£ and archimedian primes of k, we denote by I(f) the group
of all fractional ideals in k prime to f, and by P(j) the subgroup of I(})
consisting of all the principal ideals generated by the elements « of k&
such that « is positive at all archimedian primes involved in f, and =1
(mod f,) for all finite prime factors p of f, where {, is the p-closure of f,
in the p-completion of k. For a real archimedian prime p. of %, (x/9.)
=1 or —1 according as x is positive or negative at p...

We shall be discussing homomorphisms y of the Ideal group I(f) into
a finite group ¢ whose kernel contain P(f). The conductor of y is defined
to be the divisor {/ of { such that: (i) y is trivial on I(f) N P(f); (ii) no
proper divisor of i/ has the property (i). Then y can be extended uniquely
to a homomorphism y’ of I(j) into g whose kernel contains P(f). We
often denote y’ by the same symbol .

Let ¢ be a rational prime and let { be a prime divisor of @ lying
above 4. We denote by |z|, for z ¢ @, the absolute value on f-adic com-
pletion of @ normalized so that

4] = ¢ .
§0-2. We denote by £ the complex upper half plane:
O={xeC|Imz > 0}.

For a positive integer «, a holomorphic function g(z) on $ and an element
a= (‘z Z) of GL,(R) with deta > 0, we define a function g|[«], by

gllal, = det () (cz + d)-'g(j: i 2) .

Let N be a positive integer and let ¢ be an arbitrary C*-valued character
of (Z/NZ)* such that
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e(—=1) = (=1)-.
Let

I'(N) = {(‘; Z) e SL(Z)|¢ = 0 (mod N)} ,

) = {(‘c‘ Z) el(N)a=d=1 (mod N)} ,

V) = {(‘: Z) e I(N)|b = 0 (mod N)} :

Let f(2) be a modular form of weight « with respect to I',(N) satisfying

f( az + b) = (cz + dyed)f(z)  for all (“ b) e Ty(N) .
cz +d c d
We call such f(z) a modular form of type (x,¢) on I'(N). When f(z) is
a cusp form, we call f(2) a cusp form of type (x,¢) on I'(N). We denote
by S.(NV,e) the vector space of all cusp forms of type (x,¢) on I'y(N).
Then we can define the Hecke operator T(p) or U(p) as follows. Let
@) = > a6 be a modular form of type (x,¢) on I'(N). For each
prime p, we put

J@|T®P) = 3 0, + (@)D 3 a7 if pyN,
S@|UD) = 3] ap,e™ if p|N .

Thus we obtain another modular form of type (x,¢) on I'(IN), which is
a cusp form if f is a cusp form.

We define the essential part SUN,e¢) of S.(N,¢) as follows. Let S{N,¢)
denote the subspace of S.(V,¢) spanned by all the functions of the form
g(mz), where g € S,(M,¢) for a divisor M (< N) of N, modulo which ¢ can
be defined, and m is a positive divisor of N/M. Then we denote by SYN, ¢)
the orthogonal complement of S}V,¢) in S.(V,¢) with respect to the
Petersson metric.

§0-3. Let f =2 a,e and g = } b,e*""* be formal power series with
coefficients in @. Let { be a prime divisor of @. We write

f =g (modi)

when a, — b, are [-adic integers satisfying a, — b, = 0 (mod {) for all n.
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§1. Preliminaries
§1-1. FKisenstein series of weight one

Let £ be an odd prime. We fix a prime divisor { lying above £ in
the algebraic closure @ of @. Let 4 be the Dirichlet character defined
mod ¢ satisfying

Y(@ae=1 (modi) foralacZz (@,4)=1.

In [4], Hecke showed that the space of Eisenstein series of weight
1 with respect to I'(¥) is generated, for all pairs (a,,a,) of rational in-
tegers, by

271
G.(z; a5, ay, £) = Clay, ay, £) — sgn mLgmertiimmale)
memy>0
mi=ai (mod ¢)
with
a, sgn m 7l sgnm
C(a,l, @, 0 = 5<_.l.) Z/ g 2 _ T ’ ogn m, ,
ﬂ me=az (mod ¢) 111'1,2,“'s =0 Z mi=ay (mod ¢) Imlls $=0

C‘ — 621:11/4 ,

where >/ denotes that the term m, = m, = 0 is to be omitted. Then

Gl( az J+r Z 3 gy Uy Z) = (cz + d)G\(2; aa, + ca,, ba, + da,, £) ,
(74
for (0’ b) e SLy(Z) .
c d

For any Dirichlet character y defined mod ¢ such that y(—1) = —1, we put
G, = 2 1@Gi(;0,0,9),
Gy, = 2. 20)Gy(z;a,b,0) .

a,b mod £

Then both G,,, and G,, are Eisenstein series of type (1,x) on I'y(¢), and
their Fourier expansions at the cusp o are as follows:

Gl,z — 2L(1, Z) _ 471"55(2) Z;o x(m)ehimmxz s
m1>0

Gy, = —2riL(0, ) — 4xi 3 x(m)erimm=
30
where L(s,y) is the Dirichlet’s L-function for the character y and C(y) =
> icage— x(@)e* i@, By the functional equation of L(s,y), we have L(0,y)
= (C(y)/x1)L(A, 7). Since C(y)C(x) = —4¢, we have
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C
GI'Z = (gz) (;2.x .
Put
_ Gy, _ 2riC(x) _ 2
B,=—1_, ¢=-— = :
2LQ1, ) ¢L(1, y) L0, y)
So we have
E.,,=1+ ¢, > y(m)e*imm=
30
Since
Li,p=-L0. 7 > v,
Z 14 1<a<e-1
it follows
_ 24
6= ———.
2. x(@a
1<a<é-1

For each y, there exists a unique odd integer » with 1 < < 4 — 1 such
that y(a) = ¢ (mod D) for all ae Z, (a,4) = 1. Therefore we have
> oy@e= > ot (modl),

1<a<t-1 1<a<é-1
(-1 (@modl]) ifr=+¢-2,
- { 0 (modf)  otherwise .
Hence ¢, = 0 (mod {) if and only if y = . When 1 < r < £ — 4, we have
the following informations about ¢,. In [5], it is proved that |>],c.<,1 x(@)a]
> 2 if and only if the Bernoulli number B,,, is divisible by ¢, and it is
also proved that, for ¢ < 4001, |>ic.<,1 x(@)a] < 2 for any y. Hence we
obtain
¢ ify=+,
le,l =41 if y=+""and ¢/B,,, with 1 <r<¢—-4,
>4 otherwise .

(o)

(: ~oh=.Zeee 0wl ) ).

We calculate G,,

G,
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= 4" 3 1a)Gy(42;a,0,9),
']

a mod

= g—l/sz,z B

G o=l o
= 2LL,Y Vi g
2L, p Ch "’

= G Ve

=2 E, . .

¢ C v

We summarize these as follows for the later use:

For any character y of (Z/4Z)* such that y(—1) = —1, put

B, =1+¢ 2, y(mpenme, _ _ 2rC®

>0 * ¢Ld,y)

Hence we have

E

Ly

Then E,, is the Eisenstein series of type (1,%) on I'(¢) and satisfies

(0 —1)1=ﬂ &g

E t g, .
¢ 0 CQ e

1,x

Especially for the character 4, we have the following congruence:
E,,=1 (modf).

We should remark that the Eisenstein series F, ,(z) of weight ¢ — 1
on SL,Z) satisfies the same congruences:

E,_l(z) = 1 —_ M Z ml—ﬂeﬁximmﬂ s

B - m>0
-1 mi>0

E, (2 =1 (modi) if ¢>5,

where B,_, is the ¢ — 1-th Bernoulli number. FE,_(?) was used by Serre
in [7] to develop the theory of p-adic modular forms and was also used
by Deligne and Serre to prove a theorem about which we shall make a
remark in the next section. OQur idea, which is due to G. Shimura, is
to use E,,, instead of E, ,(2).

§1-2. A theorem of Stickelberger.

The ¢-adic absolute value of the Gauss sum C(y) is calculated in [10].
We recall only the simplest case.
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Let K = Q(,,{,.1) where {, = V) and ¢,_; = e™'¥¢-D, Tet [ be a
prime factor of ¢ in K. Then Nl = 4. Let 4 be a C*-valued character
of (Z/£Z)* such that

(@)oo = 1 (mod ) for all ae Z, (@,4) =1.

LEMMA (1.1) (Stickelberger). The notations being as above, we have,
for any C*-valued character ¢~ with 1 < r < £ — 2 of (Z/4Z)%,

COM = =1 modn.
¢ — D r!

From this follows immediately

PROPOSITION (1.2). We have

axe
C(‘;‘)Cq;

= g-V-@/e-n) |

§1-3. Lemma of Deligne and Serre.

LEMMA (1.3) (Deligne and Serre, [1]). Let f(z) = > 7., 0,6 be a
cusp form of type (k,e) on I'y(N) such that a, are {-adic integers for
every n > 1. Suppose a, satisfy the following congruences for every
prime p

Cully = Gy + @YD" nyp (mod D) if pAN,

Cnlly = Qpyp (modl) if p|N.
Then, there exists a cusp form gR) = > o, b6 of the same type (x,¢)
as f(z) on ['(N) such that

1-1) g(2) s a common eigenfunction of the Hecke operators T(p) and

U(q) for all primes pYN and q|N.
1-2) b, =a, modi) for all n > 1.

§2. Remark on a theorem of Deligne and Serre

§2-1. We recall a theorem of Deligne and Serre.

THEOREM (2.1) (Deligne and Serre, [1]). Let N > 1 be an integer
and let ¢ be a Dirichlet character defined mod N such that ¢(—1) = —1.
Let

J@ = Z; e, ao=1,
n=
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be a cusp form of type (1,¢) on I'(N) which is a common etgenfunction
of Hecke operators T(p) for all primes pfN with eigenvalues a,. Then
there exists a linear representation

e: G—> GLC), where G = Gal (Q/Q) ,
such that p is unramified outside of N and satisfies
Tr(F,,,) = a,, det(F, ) = ) for all primes piN ,
where F, , is the image by p of the Frobenius element related to p.

The representation p associated with f by Theorem (2.1) is irredu-
cible and the image of p is finite. We denote by K, the subfield of @
corresponding to the kernel of p. Then K, is a finite Galois extension
over Q.

§2-2. We recall a theorem of Shimura.

Let N > 1 be an integer and let yx be a Dirichlet character defined
mod N such that y(—1) = 1. Let

h(z) = Zi c el =1,
=

be a cusp form of type (2,y) on I'y(N) which is a common eigenfunction
of Hecke operators T'(p) and U(g) for all primes p/N and ¢q|N. We
denote by M the subfield of C generated over @ by the coefficients c,
for all n.

THEOREM (2.2) (Shimura, [8]). The notations being as above, there
exists a couple (A, 6) with the following properties:

2.1) A is an abelian subvariety, of dimension [M: Ql, of the Jacobian
variety of the modular function field with respect to I'\(N).

2.2) 6 is an isomorphism of M into End (4) @ Q.
2.8) A and the elements of 6(M) N End (A) are rational over Q.

(2.4) For every prime p,0(c,) coincides with the homomorphism of A
naturally induced from the Hecke operator T(p) or U(p).

Changing (A, by an isogeny over Q, if necessary, we may assume

6(o,) C End (4) .
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§2-3. We fix an element
J(@) = 2 ae™, e =1,

of SYN,e) which is a common eigenfunction of Hecke operators T(p) and
U(qg) for all primes p/N and ¢|N. Let N’ be the least common multiple
of N and 4. If /£ does not divide N, f(z) is replaced by f(2) — af(4z)
where « is a solution of the equation X? — a,X 4+ ¢(4) =0. For any
prime p # ¢, f(2) and f(2) — af(42) have the same eigenvalues for the
Hecke operators T'(p) or U(p).

Put

9@) = f()-E, () = ,,2 b, i |

Then ¢(z) is an element of S,(N’,ey). Since

Cpp = Oplly + (D) for any prime p/N’,

we have
bup = baby + )by (mod 1) ,
= b,by + V@)D by  (modl) .
Since
Gpg = Ay, for any prime q|N’,
we have

bpg = byb, (modl).
Hence, by means of Lemma (1.3), we obtain the following proposition.

PROPOSITION (2.3). The mnotations being as above, there exists an
element

h(z) = Zl c e, =1,
pe

of S,(N’,e\yr) such that

(2.5) h(z) is a common eigenfunction of Hecke operators T(p) and U(q)
for all primes p{N’ and q|N’.

(2.6) ) = f(z) (mod {) .



2 MASAO KOIKE

Now we assume that ¢ is greater than 3 and is prime to the order
of Gal(K,;/Q). Let h(z) be such a cusp form of type (2,ey) on I'(N)
corresponding to f(z) as in Proposition (2.3), and let (4,6) be a couple
associated with h(z) by means of Theorem (2.2). We denote by [ the
prime ideal of M which is the restriction of { to M. Put

Alll = {te Ajo()t = 0} .

We denote by L, the subfield of C generated over @ by the coordinates
of all points of AIl].

THEOREM (2.4). The notations being as above, we have
L[ = Kf .
We shall use the following two results in our proof of Theorem (2.4).

PROPOSITION (2.5) (Serre, [6]). Let F be a commutative field. Let
H be a finite subgroup of PGL,(F) whose order is prime to the charac-
teristic of F. Then H 1is cyclic or dihedral or is isomorphic to one of
the groups U, S, and U,

PROPOSITION (2.6) (Dickson, [2]). Let £ >5 be a prime and let F' be
a finite field in characteristic £. Suppose that G is a subgroup of PSL,(F)
which has order divisible by ¢ and which is irreducible in the sense that
it acts without fixed points on P'(F). Then there is a subfield F’ of F
such that G is conjugate in PGL,(F) either to PGL,(F’) or to PSLy(F").

Proof of Theorem (2.4). Put G, = Gal(L,/@). Taking a basis of
A[ll, we obtain an injective homomorphism

R Gy —> GLy(0y/D) .

Let p be a prime which does not divide N’. Then p is unramified in
L,. We denote by o, the Frobenius element in G, related to p. Then
we have

det (XI, — R(a,)) = X* — ¢, X + pe(@)y(®)  (modl),
=X — a,X + e(p) (mod 1),
= det (XI, — F,,) (mod {) .

If p is decomposed completely in L, over @, we have det (XI, — R(c,) =
(X — 1).. Hence we have
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det (XI, - F,,)=(X —1?® (modi).

Since the order of F,, is prime to ¢,F,, is proved to be equal to the
identity. Therefore K, is contained in L,. If the order of G, is prime
to ¢, the same arguments show that L, is contained in K,. Therefore
we may suppose that the order of G, is divisible by 4. We denote by
g the subgroup of G, corresponding to K, by Galois theory. Put F = o4/L.
Let ¢: GL,(F) — PGL,(F) be the natural homomorphism. Put G{ = ¢-R(G,)
and ¢’ = poR(g). Also put H = G{ N PSL,(F) and © = ¢’ N PSLy(F).

GL,(F)
PGL,(F)

—_ ]
8 j!\

\g,
1 \b

R(G PSL,(F)

R( H

Since G,/g =~ Gal (K;/Q), the order of g is also divisible by ¢. Hence the
orders of § and H are divisible by &.

The case where H is irreducible. By Proposition (2.6), there is a
subfield F’ of F' such that H is conjugate in PGL,(F) either to PSL,(F)
or to PGL,(F’). Since Y is a normal subgroup of H, H/) has at most
order 2; this contradicts to Proposition (2.5).

The case where H is not irreducible. H is conjugate in PGL,(F) to
a subgroup of

{(“ b)la,deFX,beF}.FX/Fx.
0 d
Since the order of H/Y is prime ¢, H/Y is a cyclic group; this contradicts
to Proposition (2.5).

Therefore the order of G, is proved to be prime to ¢4, and the proof
of (2.4) is completed. Q.E.D.
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§3. Congruences between cusp forms

§3-1. We briefly recall Shimura’s theory concerning the relation between
the arithmetic of real quadratic fields and the cusp forms of ‘Neben’-
type in Hecke’s sense from his article [8].

Let N be a positive integer and y be an arbitrary C*-valued charac-
ter of (Z/NZ)* such that

We assume y is a non-trivial real character, and we denote by k& the real
quadratic field corresponding to y. We denote by ¢ the non-trivial auto-
morphism of k. We fix a non-zero element h(z) = > 7., a,e*™ of SYN, ),
which is a common eigenfunction of Hecke operators T(p) and U(q) for
all primes p/N and ¢|N. Replacing h by its suitable constant multiple,
we can assume ¢, = 1. For a fixed f, we denote by K the subfield of
C generated over @ by the coefficients a, for all n. K is an algebraic
number field of finite degree and contains the roots of unity y(n) for all
n. Moreover, since y is not trivial, K is a CM-field, namely, a totally
imaginary quadratic extension of a totally real algebraic number field.
We denote by F the maximal real subfield of K, and denote by p the
complex conjugation. Let b, be the ideal of o, generated by all = in og
such that z* = —x. Then we can define the ‘odd part’ b of b, by the
properties: (i) b is a divisor of b, prime to 2; (ii) N(b'-b,) is a power
of 2. Then b, divides the different of K relative to F, b is square-free,
b = b, and B? = co, with a square-free integral ideal ¢ in F'. The follow-
ing result is a fundamental theorem in [8].

THEOREM (3.1) (Shimura, [8]). Let [ be a prime factor of ¢ in F.
Then, there exist (0y/)*-valued characters r, and s, of an ideal group of
k satisfying the following properties:

3.1) flrJ = fls]). Ewvery finite prime factor of flr] divides N(()N.
3.2) r/(a) = s(a*) for every aec I([r]d).

3.3) r(mo) = s(mo,) = (m/p.)-(mmodl) for every me Z prime to {lr]
where p. is the archimedion prime of Q.

3.4) r(a)s(a) = (N(@ modl) for all acI(jlrd) N IGLsD).
3.5) If p is a rational prime that is prime to N()-N, and that decom-
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poses into two distinct prime ideals p and p* in k, then
r(p) + s(p*) = (a, mod ) .

The properties of these characters r, and s, are connected with the
reciprocity law of a certain abelian extension of k& which can be generated
by the coordinates of certain points of finite order on an abelian variety
associated with A(2).

We define a formal power series by

he(2) = 2 rd@)e s

where the sum is extended over all integral ideals prime to {[r,]. Then,
from Theorem (3.1), it follows a formal congruence between partial sum
of R(z) and h,(2), namely,

anerinz = Z Tl(a)e%'iN(a)z (mod b!) s
(7, N([)N)=1 (@, N()N)=1

where b, is the prime factor of [ in K such that b2 = lo;. Shimura con-
jectured that the congruence holds between entire sums:

3.6) ) = ke (2) (mod b,) .

It was also proved that the right hand side of (8.6) actually coincides with
reduction mod 1 of a cusp form of weight 1, which is the Mellin trans-
form of a L-function of k£ with a certain class character.

The purpose in this section is, by means of the same idea used in
§2, to prove directly, not by way of abelian varieties, congruences be-
tween cusp forms of weight £ with £ > 2 and cusp forms of weight 1 which
is the Mellin transform of L-functions of real quadratic fields with certain
class characters, and we shall apply this to prove the above conjecture
in several cases in the next section.

§3-2. Let m be a positive integer prime to ¢. Let g; = ((1) 2), 1<ji<é,
_f bz 1

and let W, = (Zmy Z)’

determinant 4. Then we have

(1) ‘;)ro(m) = I'mW, U U T'ma,,  (disjoint sum) .
j=1

Put p; = W;e;,, 1<7< ¢ and p,,;, =1. Then we have

with some integers z and ¥y, be a matrix with

3.7 Fo(m)(

3.8) I'm) = () I'(emyp,,  (disjoint sum) .
i=1
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LEMMA (3.2). Let y(n) be a C*-valued character of (Z/mZ)*. For
any element f(2) of S.(I'\(m¥),yx), both

3.9) S+ OV UE)
and
(3.10) SIIW I + ¢ 1U) ,

are elements of S.(I"{(m), y).

Proof. For y = (c:@ g) e I'y(m), we have pp;i* = (g Z) (mod m).

Hence 3 4% f|[p,l. is an element of S,(I'(m),y). We have

:P:Z:fl o). = + jz 71 Lo,
= + (O C-F W U,

since f|[W, i = x(&)f. It is easily proved that f|[W,], is also an element
of S, (I'md),y). Hence we obtain (3.10), applying (3.9) to f|[W,]..
Q.E.D.

For any element of S,(I'\(m¥),y), we define
(3.11) Tr(f) =F + x(O) 2 f|[W, 1.1 U¥) .

Remark (8.8). In [7], Serre defined the trace of modular forms on
I'(4). The above lemma gives a slight generalization of Serre’s definition.

§3-3. Letk = Q(y/'N) be a real quadratic field and let N be the discrim-
inant of k. Let £ >5 be a prime which decomposes into two prime
ideals in k. We fix a prime factor {, of ¢ in %k such that [, is lying
under [. Let p. be an archimedian prime of & and let m be an integral
ideal of %k such that m is prime to 4. Put m = N m. Let 2 be a C*-
valued character of the ideal group of % whose conductor is p.-m-[,.
With such a 1, we associate a function f,(z) by

@) = S a@eer,

where a runs over all integral ideals of % prime to m(,. On account of
the functional equation of the corresponding L-function

L(s, ) = 2 AaN(@)*,

fi(?) is proved to be an element of SY(¢mN,y) with x(e) = (N/a)i(ao,) for
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acZ, (a,/mN) =1, where (N/a) is the Legendre symbol. Moreover, on
account of that L(s,2) has an Euler product, f,(2) is a common eigen-
function of Hecke operators T'(p) and U(g) for all primes pfémN and
q|émN. Then y is decomposed into the product of y, and y, which are
characters of (Z/£Z)* and of (Z/mNZ)* respectively. Since + is a
generator of the character group of (Z/4Z)%, there exists a unique in-
teger x with 1 <« < ¢ — 1 such that

(312) B=vr,
where 4 is the Dirichlet character introduced in §1-1.

THEOREM (3.4). The notations being as above, there exists an element
h(z) of S,..(mN,yx) such that

B.13) h(z) is a common eigenfunction of Hecke operators T(p) and U(q)
for all primes pfmN and q|mN,

3.14) h) = fi(  (modl) .

Proof. Put g(z) = fi(2)-E, ,(2)*. By (3.12), g(z) is an element of
S.i(dmN, x,). We shall show that Trg = g (mod I). For that purpose,
we shall prove that

(38.15) 0 2g | [W],,, =0  (modl) .
We have
IIIW esr = FIIW - (B | WD),
= 1WA (YL ) By

C(‘T’)'cy
because
_ 0 -1\ ( my, 1) _ (0 —1)
E"”[W‘]‘_E"*‘(e o>1 (—Zx, ) At VYA

By Proposition (1.2), we have
\/?m\,, ‘ — g-Ve-uE-n |
C(\l’)'cw

Since f(2) is a common eigenfunction of Hecke operators T(p) and U(q)
for all primes ptémN and q|émN by means of Asai’s calculation [9], we
have
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JIW,) = a,r°,
with
@ {C(xl)e"/zd, ifete—1,
M e ifr=0—1,

where f@(2) = > >, aPe™, a¥ =1, is an element of S¥(¢mN, y.7) which
is a common eigenfunction of Hecke operators T(p) and U(q) for all
primes pfémN and ¢q|émN, and a, is the eigenvalue of f,(z) for the Hecke
operator U(¢). In [9], the explicit relations of Fourier coefficients of
both funections f(2) and f(z) are given. We should remark the follow-
ing: in [9], every computation was done under the condition that the
level N is square-free, but it is not always necessary. It is easily checked
that we can apply his result in our case. Hence we have

lgl—(:i—l)/z,zd.( ’\/?c\k )‘| — {e_l Ia_ll if & * £—1 ’
CW)ey e, ifk=46—1.

Therefore (3.15) is proved. Q.E.D.

Remark (8.5). We should remark that x need not be restricted to
the interval 1 <x¢ < ¢ —1. We may take arbitrary positive » which
satisfies (3.12).

Remark (3.6). Starting from any new form in S%(mé,y) with » > 1,
we can obtain the similar results to Theorem (8.4).

§4. The case of square-free level NV with the character (N/ )

Let k = Q(wN) with a positive square-free integer N = 1 (mod 4).
Let u, be the fundamental unit of k. Suppose N;,(u,) = —1. Let ¢>5
be a rational prime which divides N (%, — 1). Then ¢ decomposes into
two prime ideals in k. Moreover, %, — 1 is divisible by only one of the
two prime factors of ¢ in k. Hence we may assume that %, = 1 (mod /)
with a prime factor [, of ¢ in k which is lying under I. Let p. be an
archimedian prime of %k such that (%/p.) =1. Then, there exists an
ideal character 2 of k& with conductor p.-l; satisfying

Aaoy) = (Taa_) o a mod X))

£

for every « in k prime to [,. Here ¢: (0,/0,)* — (Z/£Z)* is the natural
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isomorphism such that «(@a mod ) = a mod ¢ for every ac Z, (a,4) = 1.
We fix such a 2 and, with 1, we associate a function f,(2) by

fi2) = 20 Aa)e s,

where a runs over all integral ideals of k& prime to [,. Then f,(z) is an
element of S;(N4,(N/ )v~!) which is a common eigenfunction of Hecke
operators T(p) and U(q) for all primes ptN¢ and ¢|N¢. Applying
Theorem (8.4) to fi(z), we obtain the following

PROPOSITION (4.1). The notations being as above, there exists an
element h(z) of Sy(N,(N/ )) such that

4.1) h(z) is o common eigenfunction of Hecke operators T(p) and U(qQ)
for all primes pfN and ¢q|N,

4.2 h2) = fi(2) (mod 1) .

We fix such a A(z) obtained in Proposition (4.1) and, to such A(z),
we can apply Shimura’s theory a part of which is explained in §3-1,
namely, we consider (4,6), K, F,¢, etc, for the fixed h(z). "As a corollary
of Proposition (4.1), we immediately obtain the following

COROLLARY (4.2). The notations being as above, ¢ is a prime factor
of N(o).

Hence the prime ideal [ of F which is lying under 1 is a prime factor
of ¢. Let b, be a prime ideal of K such that 0t} = (0. Put

Afb] = {te Aj6(b)t = 0}

and denote by L, the field generated over @ by the coordinates of all
points in A[6]. From Theorem (2.4) follows

COROLLARY (4.3). The notations being as above, we have
L"X == de ’
if the class number of k is prime to £.
Proof. We have to check only the condition that ¢ is prime to the

order of Gal (K, /Q) is satisfied. The order of I(pL) /(L) is equal to
h(¢ — 1), where h is the class number of k. Since the order of Gal (K,,/Q)
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divides h%¢ — 1)?, the above condition is satisfied if % is prime to 4.
Q.E.D.

We give a relation between the characters 2 and r, or s,. We denote
by ¥ the residue field of @ with respect to I. Hence o0z/! is canonically
imbedded into ¥. For any fractional ideal a of I(p.-!,), we define i(a) by

@) = A(a)(mod §) .

It is obvious that 1 is a §*-valued character of I(p.[)) which is trivial on
P(p.!l) and that the conductor of 1 is equal to p.l,.

COROLLARY (4.4). The notations being as above, either r, or s, coin-
cides with 1. Especially the conductor flr] of r. is equal to p.-l, and the
following congruence holds:

4.3) Wz) =f,,  (modT).

Proof. Let p be a rational prime not dividing N()-N, p a prime
ideal in % dividing p and B a prime divisor of @ which extends p. Con-
sider reduction modulo &8 and indicate reduced objects by putting tildes.
Let =, denote the Frobenius endomorphism of A of degree p and o, a
Frobenius element of Gal(Q/k) for 8. We suppose (N/p) = 1. Then ap
is also a Frobenius element of Gal(Q/Q) for B. We denote by % and
R the b,-adic representations of End (4) ® Q and End (4) ® @ respectively.
Then it is known that

R(o,) = R(r,)
if we take a suitable choice of basis of A[b°] and fi[ﬁ‘;“]. We have
() 0 )
0 s(p))

On the other hand, if we restrict ) to all such g, with (N/p) =1, we
can obtain diagonal matrices simultaneously, namely,

Ap) 0)
0 ap9)’

where ¢ is the non-trivial automorphism of k. When (N/p) = —1, we
have

R(z,) (modb,) = <

gR(o'p) ~ (
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A(poy) = Yy odpmodl)  (mod)
=p (mod 1)
= 7(po;) = s(poy) .

Therefore, either 7, or s, coincides with A.
Since it is clear that

@ =7 (@modl,
(4.3) follows immediately from (3.14). Q.E.D.

Now we go back to the general theory and explain another conjecture
of Shimura. Assume N is a prime. Accordingly (@) = (N/@#) and N =1
(mod 4), so that & = Q(+/N). Let u, be the fundamental unit of k.. In
[8], Shimura conjectured that

(4.4) N(c) and Tryq (u,) consist of the same prime factors, if we disregard
2 and 3.

We can give a partial answer for his conjecture as a direct consequence
of Proposition (4.1).

PROPOSITION (4.5). Let N be a square-free integer such that N =1
(mod 4), and let u, be the fundamental unit of k = Q(WN). Suppose Ny
= —1. Let £>5 be any prime which divides Tr,qou, Then there
exists an element h(z) of S,(N,(N/ )) which is & common eigenfunction
of Hecke operators T(p) and U(q) for all primes pYN and q|N such
that ¢ divides N(c) for h(z).

§5. The micellaneous cases

In the preceding section, we reconsidered Shimura’s result in the
case of square-free level N with the character (N/ ) from our view
point, namely, congruences between cusp forms of weight one and of
weight two. We can also find various detailed examples in the case of
arbitrary levels in [3] and [8]. For some of these, we can make the
similar arguments to §4, but we should remark that there are also some
cases for which Theorem (8.4) is not effective.

In this section, we choose three of these examples and analyze them.

§5-1. The case of level 4NV
Let k = Q(+/N) with a square-free integer N =5 (mod8). Let u,
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be the fundamental unit of k. Suppose N,,(%) = —1. We also assume
Triet #+ 0 (mod 4). We denote by ¢ the non-trivial automorphism of &
throughout this section.

PROPOSITION (5.1). The mnotations being as above, u, (mod2) is a
generator of (0,/20,)%.

Proof. Since 2 remains prime in k, (0,/20,)* is the cyclic group of
order 3. If w,=1 (mod2), we have (u, — D —1) = —Tryou, =0
(mod 4); this contradicts our assumption. Q.E.D.

Let £ > 5 be a prime such that
Tryeus = 0 (mod 4) , Trye % %= 0 (mod £) .

Then ¢ decomposes into two prime ideals in k. Let [, be a prime factor
of £ in k such that u}=1 (mod!)). We may assume that [, is lying
under {.

Let p. be an archimedian prime of k& such that (%,/p.) =1. Then
there exists a C*-valued character A of the ideal group of %k with the
conductor p.,-2-1; satisfying

Aaoy) = (pi)¢(a mod 2)¢~ o (e mod 1)

oo

where ¢ is the character of (0,/20,)* such that ¢(u, mod 2) = +» o ¢(u, mod [)).
With such a 2, we associate a function f,(2) by

Ji@) = 2 Aa)e* vz,

where a runs over all integral ideals of k& prime to 2.(,. Then f,(2) is
an element of S;(4N4,(N/ )v!). Applying Theorem (8.4) to fi(z), we
obtain the following

PROPOSITION (5.2). The mnotations being as above, there exists an
element h(z) in S,(AN,(N/ )) such that

5.1) h(z) is a common eigenfunction of Hecke operators T(p) and U(q)
for all primes pYAN and q|4N,

5.2) hz) = f.2) (mod {) .

Remark (5.3). Some numerical examples in this case are given by
Doi and Yamauchi [3].
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§5-2. The case of level 3*N

PROPOSITION (5.4). Let k = Q(+/N) with a positive square-free integer
N =1 (mod4). Let u, be the fundamental unit of k. Suppose Ny, ()
= —1. Q) If N =2 (mod3), the order of u, in (0,/30,)* is 8. (2) Let
¢ be a prime. Then N,,oui + 1) = 0 (mod ¢) if and only if Trqe (Uw/N)
= 0 (mod 4).

Proof. Since (N/3) = —1,3 remains prime in %, so (0,/30,)* is a
cyclic group of order 8. Put u, = (¢ + b4/N)/2 with rational integers a
and b. If w,=a/2 (mod3), we have u; = a/2 (mod3). Hence wu; =
a?/4 =1 (mod 8); this is a contradiction because N,u, = —1. Since %]
= (& + bNv/N)/2 (mod 3), we have u} = o> + N?b* = —1 (mod 8). There-
fore the order of u, in (0,/80;)* is proved to be 8. Since N, u, = —1,
we have o’ — 0N = —4. N3 + 1) =2 4 Tryeu; =2 + (af + b°N)/2
= b’N. Hence (2) is proved to be valid. Q.E.D.

Let &k = Q(wN) with a positive square-free integer N = 5 (mod 12).
Let u, be the fundamental unit of k. Suppose N,u, = —1. Let £ >5
be a prime such that N,,(u; + 1) = 0 (mod ¢) and £YN. Also suppose ¢
is completely decomposed in k. Let I, be a prime factor of £ in k£ such
that #2 + 1= 0 (mod[,). We may assume [, is lying under 1. Let y be
a character of (o0,/30,)* such that y(u,) = Yy odu, modl). Let p. be an
archimedian prime of % such that (#,/9.) = 1. Then, there exists an
ideal character 2 with conductor p.-3-[; satisfying

Aaoy) = (?“—)x(oz mod 30y o d(emod 1)
for every « in k prime to 3{,. Here ¢: (0,/1)* — (Z/¢Z)* is the canonical
isomorphism such that t(e mod!) = a (mod ¢) for every rational integer
a prime to Z4.

With such a 1, we associate a function f,(z) by

Fi(2) = 2] A@)e s,

where a runs over all integral ideals of k& prime to 3[,. Then f,(2) is an
element of S;(3°N¢,(N/ )v™"). Applying Theorem (3.4) to f,(2), we obtain
the following:

PrOPOSITION (5.5). The mnotations being as above, there exists an
element h(z) in S,(8°N,(N/ )) such that
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(5.3) h(2) is a common eigenfunction of Hecke operators T(p) and U(q)
for all primes pY3:N and q|3°N,

(5.4) nz) = fi2) (mod {) .

Remark (5.6). Some numerical examples in this case are found in
H. Hijikata’s article in Japan-U.S. Seminar on Modern Methods in
Number Theory, Tokyo, 1971.

§5-3. The case of level 5°

The preceding two examples are concerned with the cusp forms of
‘Neben’-type. We give here an example concerned with the cusp forms
of ‘Haupt’-type. This example was found by Doi and Yamauchi [3], and
here we analyze this from our view point, namely, the congruences be-
tween cusp forms.

Let k= QWW5). Take the fundamental unit %, = (1 + +¥5)/2 in k.
Then we have u5 = (11 4+ 54/ 5)/2. The prime 11 decomposes into two
prime ideals in k. Let [, be a prime factor of 11 in %k such that

=1 (mod 1) .

We may assume that [, is lying under {. Let p. be an archimedian prime
of k such that
(ﬂ) = _1.
Peo

PROPOSITION (5.7). There exists a C*-valued character A of the ideal
group of k with the conductor p.-5-1, such that

Aaoy) = (—;L)gp(a mod B)¢~to (e mod 1) ,
for every a in k prime to 5-1,. Here ¢ s the character of (0,/50,)*
such that

(U, mod 5) = —roc(u,mod ) .

Proof. (o,/50,)* is the cyclic group of order 20. Since uj=3
(mod 5), u, (mod 5) is a generator of (o0,/50,)%. On the other hand, Uy
(mod ) is of order 5. Hence —roc(uy,mod(,) is a primitive 10-th root
of unity. Therefore ¢ is well-defined, and satisfies ¢(—1mod5) = 1.
We have
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A(uop) = —1-p(u,mod 5) -4 tor(u,mod(})) =1,
and
A(=Doy) = —-1.1.—-1=1.

Hence 2 is proved to be a character of the ideal group of k with the
conductor p.,-5-1;. Q.E.D.

We should remark that the induced character of (Z/5Z)* given by
the restriction of ¢ to Z coincides with y(n) = (n/5). Hence f(?) is an
element of S,(5°-11,+!). Applying Theorem (3.4) to fi(2), we obtain the
following

PRrOPOSITION (5.8). There exists a cusp form h(z) of weight 2 with
respect to I'y(5°) satisfying

(5.5) n(z) is a common eigenfunction of the Hecke operators T(p) and
U(5) for all primes p45,

(5.6) nz) = fiz) (mod ) .
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