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Abstract. We prove that the relations

2V <*-! Λ
and *=

hold for the usual critical exponents for 2D-percolation, provided the
exponents δ and v exist. Even without the last assumption various relations
(inequalities) are obtained for the singular behavior near the critical point of
the correlation length, the percolation probability, and the average cluster size.
We show that in our models the above critical exponents have the same value
for approach of p to the critical probability from above and from below.

1. Introduction

It is widely believed (see for instance [6,10, 26]; also [25] for critical exponents in
general) that various quantities in percolation behave like powers of \p — pc\ as p
approaches the critical probability pc. To express these conjectures we use the
following notation for site percolation on a periodic graph 9 in Rd (see [13, Chaps.
1-3] for a precise description of the terminology). Pp denotes the probability
measure according to which all sites of 0 are, independently of each other,
occupied (vacant) with probability p (respectively q: = l — p). Ep denotes expect-
ation with respect to the probability measure Pp. W is the occupied cluster of a
certain preselected site vv0, which will be taken to be the origin O whenever
possible.

Φ W=number of sites in W,

A^^B means that there exists an occupied path on ̂
from some site in A to some site in B,

* Research supported by the NSF through grants to Cornell University and to the Institute for
Mathematics and its Applications, Minneapolis
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θ(p) = percolation probability = Pp( φ W= — oo},

pc = critical probability = sup {p: θ(p) = 0} .

Δ(p) = average number of clusters per site

oo i

n= i n

= £ nPp{ΦW=n},
n< oo

= correlation length

1 i/2

JtίP)

where

(ί)|:l^i^d} when y = (y(l),...,y(d)).

(This choice of distance is the most convenient one for our purposes, but the results
would be the same with the Euclidean distance instead.) The correlation length is
thought to be a "typical radius" of a finite cluster. It is roughly the root mean
square average distance to w0 of points in the finite cluster of w0, where the
averaging refers to averaging over the finite cluster (see also Corollary 2 below).

We shall abbreviate Ppc to Pcr.
Stated in this notation, the principal conjectures concerning power laws are as

follows:

ξ(p)~\P-Pc\~v for some v>0, (1.1)

\Am(p)\^\p — pc\~1~a for some — l<α<0, (1.2)

θ(p)π(p-pc)
β, P>Pn, for some 0<j8<l, (1.3)

l(p)~\P-Pc\~y for some y>0, (1.4)

for some zlk>0, (1.5)

for some (5>0, (1.6)

and finally, if *§ is a d-dimensional graph,

τ(PvW&x) = PCr{wo^χ}~\x\2~d~η9 M->OO, for some η>0. (1.7)

The meaning of A(p)π\p — pc\
ζ is that

=c

Often one distinguishes approach to pc from the right and left and associates
exponents ζ+ and C_ to the limit as p I pc, or p f pc, respectively. In the results here
the exponents always come out to be the same for the two sides, so we shall not
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distinguish the plus and minus versions of the exponents. Equations (1.6) and (1.7)
are meant similarly as limit relations for (logrc)" 1, or (log|x|)~ 1, respectively, times
the logarithm of the left-hand side.

In addition to the power laws (1.1)-(1.7), it is believed that the exponents satisfy
the following so-called scaling laws for low enough d:

α-2-rfv, (1.9)

(LID

(1.12)k ~,

«ί=2-*fπ (1.13)

The values of these exponents are even supposed to be universal, i.e., dependent on
d only, but not on the specific graph.

As far as we know none of the power laws has been proven for percolation, and
the only scaling law which has been proven so far is (1.13) for d = 2 [14] under the
assumption that η and δ make sense, i.e., that (1.6) and (1.7) hold. [Actually it
suffices to assume (1.7).] A number of inequalities between the exponents have
been proven (again under the assumption that the appropriate power laws hold; cf.
[8, 9, 17, 19]) but these do not imply any of the equalities (L.9)-(IΛ3). The above
conjectures are based on a more fundamental scaling ansatz (see [26, Sect. 3.1.1]
and [10, Sect. 4.6]) of the form

(1.14)

or

(1.15)

as «->oo, respectively, |x|->oo, p-+pc for some constants τ,σ,η and some decent
functions /, g. g is assumed to satisfy

limg(sHg(0)>0, lim g(s) = 0. (1.16)
s I 0 s-> oo

Equations (1.14) and (1.15) are supposedly standard asymptotic relations - that is
the ratio of the right- and left-hand side tends to 1 - when p-*pc and n-*oo or
|x|->oo such that (p — pc)nσ or IxK^ίp))"1, respectively, converge to a constant. In
particular, (1.15) and (1.16) show that

Pp{w0->x, φW<oo} and Pc,{w0->x, φW<ao} (1.17)

should be approximately equal when |x| is small with respect to the correlation
length. This may be the basis for the folklore that in some vague sense the whole
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percolation picture on a scale small with respect to the correlation length looks like
percolation at criticality.

Throughout this paper we take d = 2. We shall prove (1.10)-(1.12) for a number
of two-dimensional percolation models under the assumption that (1.1) and (1.6)
hold. Actually, we shall replace (1.6) by

n(n) = n(pcin)^n-^ (1.18)

for some (5r>0, where

π(p,n): = Pp{w0^dS(n)} (1.19)

and

S(n) = [-tt,rc]x[-tt,rc]. (1.20)

It was shown in [14] that (1.18) is equivalent to (1.7) in the two-dimensional case.
Either one of these power laws implies (1.6) and (1.13) with 2δr = (δ + l). At this
moment we are unable to prove any scaling relation involving α, but this paper
shows that for two-dimensional percolation all the scaling relations (1.10)-(1.13)
are valid, once the appropriate power laws hold. Actually, the basis of our results is
a number of useful inequalities which do not rely on the power laws (see Theorems
1-3). The most fundamental one is Theorem 1 which gives a weak form of the
above mentioned folklore belief on the behavior on a scale small with respect to the
correlation length.

For simplicity we restrict ourselves here to bond- or site percolation on Z2 or
percolation on their matching graphs (see [13,2.2] for matching pairs of graphs). As
done in [13, Sects. 2.5 and 3.1], we treat bond percolation on Έ2 as site percolation
on the covering graph of Z2. For the remainder we take w0 = O, the origin, so that
W stands for the occupied cluster of the origin. Site percolation on ΊL2 is in a sense
more interesting than bond percolation on Z2, because the former is not self dual.
As we shall see in Sect. 4, this will call for special arguments to prove equality of the
critical exponents for p I pc and p | pc.

Our arguments seem to go through for site percolation on any matching pair of
two-dimensional graphs which are invariant under reflection in one of the
coordinate axes and under rotation around the origin by an angle φ e(0, π). This
includes all standard two-dimensional lattices, and in particular, the triangular
and honeycomb lattices. The main thing to check is that (2.15) below and the
Russo-Seymour-Welsh lemma hold for such graphs. This can be done by the
methods of [13, Appl. (v) on p. 66 and Chap. 6] and [21-23].

Despite the preceding definition of correlation length we shall work with
another length, L(/?), defined in terms of the crossing probabilities of squares. Only
later will we show that1 L(p) x ξ(p). We note that L(p) was already introduced in
[5, Sect. 3], where it was shown to be equivalent (up to logarithmic factors) to the

1 A(p) X B(p) for two functions A and B means that

A(p) A(p)
0 < lim inf ^ lim sup < GO ,

P-+PC B(p) p->Pc B(p)

so that A(p) and B(p) are of the same order of magnitude
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correlation length defined in yet another way. When we are dealing with site
percolation on the graph < ,̂ let (̂ , ̂ *) be the corresponding matching pair of
graphs (see [13, Sect. 2.2]). We then define for n = (n1??ι2) the "sponge crossing
probabilities"

= Pp{3 occupied crossing in the i-direction on ̂  of [0,7^] x [0,n2]},

σ*(n; i, p) = σ*(n; i, p, 0) = σ(n; i, 1 -p, #*)

= Pp{3 vacant crossing in the i-direction on <$* of [0,̂ ] x [0,n2]}.

Here i = 1 or 2 and a crossing in the 1 (2) direction will usually be called a horizontal
(vertical) crossing. We remind the reader that a horizontal (vertical) crossing of
[0, nt] x [0, π2] i

s a Path with a^ its vertices, except for its endpoints, in the interior
(0,n1)x(0,n2). We define

:σ((n,n);l,p)}^l-β if p>pc,'. (1.21)
[mm{n: σ((n,n);l,p)}^ε if

For the graphs which we are considering there is symmetry between the horizontal
and vertical direction so that L(p) would not change if we used vertical crossing
probabilities instead of horizontal crossing probabilities in (1.21). Furthermore, it
holds for our graphs that

n n l σ * n n 2 l
(1.22)

Therefore, L(p,ε,^) for p<pc = pc(
(&) is essentially the same as L(l— p,ε, ̂ *) for

1— p > l — pc(
(£) = Pc((£*)> For the self dual case of bond percolation on Z2 (for

which pc = i) we find that L(| + δ, ε) ~ L(i - δ, ε), (5>0. However, it is far less
obvious that even for site-percolation on TL2

L(pc + <5,ε)xL(pc-(5,ε), < $ J O , (1.23)

for fixed ε^some small ε0, defined below. This implies v+ = v _ , where v+ and v_
are the exponents in (1.1) corresponding to p I pc and p f pc, respectively. This is
also the reason why the other critical exponents (assuming they exist) are the same
for p|pc and p\pc. Equation (1.23) will be proven in Sect. 4, (see Theorem 4),
where it will also be shown that

L(p,εt) xL(p,ε2) for fixed 0<ε 1 ?ε2^ε0. (1.24)

It should be noted that no symmetry between p<pc and p>pc is used in Sects. 2 and
3. These sections only have to deal with p on one side of pc at a time.

Here are our other principal results.

Theorem 1. There exist constants2 0<C 1 ?C2<oo such that

2 In the sequel Q will always stand for a strictly positive finite constant whose precise value is of
little importance. The value of Ct may be different at different appearances. Practically all these
constants depend on ε0, to be fixed in Sect. 2
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Theorem 2. For p>pc

φc, L(p, ε0)) £ -!- π(p, L(p, β0)) ̂  C3θ(p) ̂  C3π(p, L(p, ε0))

Corollary 1. // (1.18) holds, then

θ(p) « [L(p, β0)] -!/*• = [L(p, β0)]

// m addition (1.1) to/ds, ίten 0 = 2v/(<5 + l).

Theorem 3. For £ > 3-

EP{LΦWJ; #W<oo}x[L(p,ε0)]2ί[π(pc,L(p,e0))]ί+1, (1.25)

and for all ί>0

0)]t+2[π(pc,L(p,ε0))]2. (1.26)

Corollary 2. ξ(p) x L(p, ε0),

^ -> ^ Γ^n^2Wn ^nYi £> _
3'

and

Γ 1

LX(P)

// (1.1) and (1.18) /zo/d

, ί>o.

-i Γ i Ί1/fe

-log — -^\y\kPp{O^y and φW<w}\ =v, fc^l.
Pcl LMPJ y J

The proof of Theorem 1 is in Sect. 2. Theorems 2 and 3 and Corollary 1.2 are
proven in Sect. 3. The proofs in Sect. 3 reinforce the idea that L(p) is the
fundamental length scale; contributions to (1.25) and (1.26) from points y with \y\
much larger than L(p) are negligible.

To close this introduction we tabulate some rigorous bounds which were
already known or follow from the results here for the critical exponents. We also
include in the table the exact values predicted by the theories of den Nijs [7],
Nienhuis et al. [18], and Pearson [20], as well as the exact values on the Bethe tree.
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Rigorous bounds
for 2£>-percolation

α<0
β<\
1^8/5
δ^5
v>l

"Exact" values
of [7, 18, 20]

α=-2/3
0 = 5/36
7-43/18
5 = 91/5
v = 4/3

Bethe
tree

α=-l

j8 = l
y = l
(5 = 2
v = l/2

In particular, none of the exponents /?, y, δ, v have in dimension 2 the same values as
on a Bethe tree. Section 5 contains some comments to this table.

2. The Behavior of π(p, n)

This section contains the proof of Theorem 1. The proof is based on a differential
inequality. Aizenman and Newman [3] seem to have been the first to apply such a
method in percolation theory; they used it to obtain the inequality y^l .
Differential inequalities have also been used recently with great success by Chayes
and Chayes [4] (to prove /?^1) and by Aizenman and Barsky [1] (to prove
PT = PH)- To obtain an estimate for a derivative one starts with Russo's formula
[22; 13, Chap. 4.2]. We shall need later a simple extension of this formula which we
state here as Lemma 1 without proof. No essential change in the original proof is
needed for this extension.

We remind the reader of some standard notion which we shall use and a couple
of definitions. For a rectangle R

dR = (topological) boundary of R,

R = interior of R,

IA = indicator function of the event A.

A site v is pivotal for an event A if IA(ω) changes its value when v is changed from
occupied to vacant or vice versa. Here ω stands for the configuration of occupied
and vacant sites. The event {υ is pivotal for A} depends only on the sites other than
v. A is an increasing (decreasing) event if changing any site from vacant to
occupied can only increase (decrease) the value of IA. We shall consider a family Pt

of product measures (i.e., measures under which all vertices are independent) and

with probability p(v,t) that v is occupied. p'(v, t) denotes — p(v,t\
at

Lemma 1. Let A and B be an increasing and decreasing event, respectively, each of
which depends on finitely many sites only. Then

-~-Pt{AnB} = Σp'(v,t)[Pt{v is pivotal for A, but not for B, and B occurs}
dt v

— Pt{v is pivotal for B, but not for A, and A occurs}^ . (2.1)



116 H. Kesten

We apply this lemma here with B = the certain event (which is the original
Russo formula) and A = A(n) = {O — > dS(n)}. It follows from Whitney's theorem (cf.
[24, Theorem 2.1]; also [13, Proposition 2.1]) that a site v is pivotal for A(n) if and
only if all of the following hold (see Fig. 1):

there exists a path r on ̂  and inside S(n) from O to some point
on dS(n) which passes through v, and has all its vertices other
than v occupied
there exists a circuit C on ^* and inside S(n) which passes
through v, contains O in its interior, and has all its vertices other
than υ vacant.

(If v = O, then the third condition - requiring the existence of C - should be
dropped.) Therefore, if O φ υ e S(n) is pivotal for A(ri), then for any rectangle R for
which O lies outside R, v lies inside R, and R C S(n), the following two events must
occur (see Fig. 2):

a) Γ(v9 R): = there exist two paths r1 and r3 on ̂  from v to dR and two paths rf
and rj on ^* from v to dR such that any two of these four paths only have the
vertex v in common; all vertices of r^r3 other than v are occupied and all vertices
of r|ur| other than v are vacant; the paths r l 5 r3, rf, and rj all are contained in R

Fig. 1. u is pivotal for A(n)

S ( n )

Fig. 2. Illustration of Γ(u, R) and Ξ(R)
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except for their endpoint on dR; r1 and r3 separate rf and rj (i.e., r1ur3 forms a
crosscut of £ such that rf \u and rj\υ lie in different components of R\r1ur3).

b) Ξ(R) : = there exist two disjoint paths r' and r" from O to dR and from dR to
55(71), respectively, and except for their endpoints on dR, r' and r" have only
occupied vertices, all of which lie in S(n)\R.

To see this one merely takes for r' and r" the pieces of r from O to the first
intersection with dR and from the last intersection with dR to dS(n), respectively. rl

and r3 are pieces of r inside R connecting v to dR. Finally, rf and rf are two pieces
of C, which must exist because C contains O in its interior, so that C must leave R.

Since Γ(v,R) and Ξ(R) depend only on vertices inside R and outside R,
respectively, they are independent. Thus for any fixed choice for R = R(v),

Pt{v is pivotal for A(n)}^Pt{Γ(υ,R)}Pt{Ξ(R)} .

Thus, if we set

then we obtain from (2.1)

-n(t,n)
veS(n)

^ Σ |p'(ί>v)|ίt{Π»,Λ)}Λ{S(Λ)}. (2.2)

We now must make a specific choice of R for each v. For simplicity we take
n = 2k for some large integer k (we later show that this is permissible). It will also

turn out that we can restrict ourselves to families Pt with p'(ί, v)= — p(ί, ι;) = 0 for
at

all v with |ι;| >2k~3. Thus in (2.2) we only have to consider terms with \v\^2k~3. If
v = (vl9 v2) and K| ̂  |t;2| ̂ 2k~3 and 16^2j+ x <z;2 ̂ 2 j+2, then let Il9 12 be such that

^2'- 2 <!>!£(/! + 1)2'- 2, 122J-2<V2^(12 + 1)2J-2, (2.3)

and take

R = R(V) = [(/1 _ 2)2'- 2, & + 2)2'- 2] x [/22''- 2 - 2 ,̂ /22^ 2 + 2 ]̂ . (2.4)

If υ2 < 0, then we choose R(v) as the mirror image ofR((υl9 — v2)) with respect to the
x-axis. Iΐ\v2\ < K I, then we interchange the roles of the first and second coordinates
in (2.3) and (2.4). As will become apparent, the precise choice of R(v) is
unimportant. What matters is that the ratio of the long and short side of R is
bounded (in fact, it is ^2 for our choice), that R C S(2k~ *), and that the distances
from v to dR as well as from O to dR are of the same order as the sides of R in (2.4).
Note that if \vί\^υ2^2j+2^2k~~3 and 2j+1<v2, then under (2.3) we must have

j^k-5 and I/^Π, 8^|/2 |^17. (2.5)

Therefore, our choice of R has the listed properties when 16<|t;|^2/c~3. For
\υ\ ̂  16 take R(v) = R0 : = [- 16, 16] x [- 16, 16]. This contains O, but if v is pivotal
for A(2k) there must still exist an occupied path from dR0 to dS(2k\ so that we still
have (2.2) (even though Oe^o) if we define Ξ(R0) as {dR0~+dS(τ)} and take
P{Γ(v,R0)} = l for H^ 16.
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Fig. 3

We can now outline the main steps of the proof of Theorem 1. We first show
that the probability of A(2k) is not changed by more than a bounded factor if P{v is
occupied} is changed from pc to p for every ι;eS(2k)\S(2k~3) [as long as

0)].
3 We then define Pt as the product measure corresponding to

for υφS(2k-3)9

-φc for vεS(2k-*).
(2.6)

for O^ί^l. Thus p'(t9v) = p-pc for veS(2k~*) and =0 otherwise. We next show
that

Pt{Ξ(R(υ))} ^ C3π(ί, 2k) (2.7)

for some constant C3 independent of p9 v9 k, t. These first two steps are easy and
were essentially proved in [15]. Combining these results with (2.2) yields, after
dividing by π(ί, 2fc),

j=3
Σ Pt{Γ(υ9R(v))}\. (2.8)

+1<\v\^2J + 2 J

Now the occurrence of Γ(v, R(v)) means that v is connected to dR(v) by four paths,
which have only the vertex v in common. Two of these paths, rί and r3, are
occupied while rf and rj are vacant (outside v). If the endpoints of r1 and r3 would
lie on the left and right edge of R(v)9 respectively, and rj and rj would have
endpoints on the top and bottom edge of R(v), respectively (see Fig. 3), then v
would be pivotal for the event

C(R) : = {3 an occupied horizontal crossing on ^ of R} .

The principal step in our proof is to show that the additional restriction on the
endpoints of r1?r3,r|,r| does not lower the probability of Γ(v,R) too much, i.e.,
that

ί>{Γ(v,R(vJ)}^C4Pt{v is pivotal for C(R(v))} (2.9)

3 This first step is a technicality. Unfortunately, the form of our main estimate (Lemma 4) forces us
to treat vertices "near the boundary" of S(2k) differently from vertices in the "central part" of S(2k).
The latter fact will continue to plague us throughout the paper
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when vεS(2k 3), 2/c^L(p,ε0). Once we have this we can continue (2.8) with

d. A / . Λt, ^C5|p-pc| Γl + Σ Σ?t{v is Pivotal for C(R(v))}~]
I J v J

*t{v is pivotal for C(R)}~]

-

R R(v) =

with the slightly abusive notation,

(2.10)

Note that the equality in the last step of (2.10) is just (2.1) applied to A = C(R) and
B = certain event. For the sake of argument take p>pc. Then each σ(R; l,ί) is
increasing in t. Moreover, Pi = Pp. Integration of (2.10) from t = 0 to t — \ then
gives

. vί^' / ^ r^ V\ i > Π I ^ / D . Ί Ί \ Δίπ.Λ A\Π C911)log
π(0,2fc)

Finally, we note that the rectangles R which can occur as an R(v) are of the form
(2.4) (or rotations or reflections of these) and that j/J, and |/2 | in (2.4) are at most 17.
It follows that the right-hand side of (2.11) is at most

(2.12)

Since L(p) is chosen such that

If (2.13) would hold, then we would obtain from (2.11), (2.12) that

;l,p)-σ((2L(p),2L(p));l,pc)

lies somewhere strictly between 0 and 1, it stands to reason that for 2j small with
respect to 2k ̂  L(p) the summand in (2.12) is also small. In fact, we believe that there
exists a constant ζ > 0 such that

~ 2J T
(2.13)

(2.14)

which is essentially Theorem 1. We do not quite prove (2.13), but only the weaker
inequality (2.58). Nevertheless, this is good enough to yield (2.14), essentially by the
indicated route.

Before turning to the nitty-gritty of the proof we assemble some basic tools.
First, there exists some C3 such that

and σ*((n,n);i,

log- for 2k^

^l (2.15)

(see [22] or [13, Theorem 5.1]). Now let p>pc again for the sake of argument.
Then, since σ((n,ri)\i,s^} is increasing in 5, we have from the definition of
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) = L(p,ε0) that

C3^σ((7i,rc); i,s,^)^l— ε0 for pc^s^p and l^

By virtue of (1.22) we then also have

These inequalities plus the Russo-Seymore- Welsh theorem [21-23; 13, Theorem
6.1] imply that for each /c^l there exists a δk = δk(ε0, C3)>0 such that

σ((fcn,n);l,s,0)^<5 fc and σ*((fcn,n); l,s,»)^<5k (2.16)

for pc ̂  s rg p, n ̂  L(p, ε0), and the same holds when the roles of the first and second
coordinate are interchanged. Also, the same argument works for p^s^pc. Even
more, simple monotonicity arguments show that if P is any probability measure
according to which the site v is occupied with probability p(v) and all sites v are
independent, then, if p(v) lies between pc and p for all v and n^L(p,ε0), one has

P{3 occupied horizontal crossing of [0,/cw] x [0,«] on 9}^δk9 (2.17)

P{3 vacant horizontal crossing of [0, kri] x [0, n] on ^*) ̂  δk , (2.18)

and the same holds for vertical crossings of [0, «] x [0, kn\. It also follows from this
that

P{3 occupied circuit on ̂  surrounding (n,(fc — l)π)2 in [0,fcn]2\(n,(fc —

(2.19)

and similarly for vacant circuits on ̂ *. By the same argument as used to prove (6)
in [15] we now have

P{O -> dS(ri)} is decreasing in n, but P{O -> dS(2n)} ^ C4P{O -
(2.20)

for a suitable 0 < C4 < oo independent of p, P, and n, as long as n ̂  L(p, ε0) and

p(v) lies between pc and p for all i;. (2.21)

(We stress that p <pc is allowed here.) It is also easy to obtain from this the first two
steps of our proof, namely, if Pt is defined by (2.6), then

(2.22)

and (2.7) holds. Equation (2.22) follows for p>pc from

π(pc,2
fe)^π(0,2k)^π(0,2fe-3)-π(pc,2

fc-3)^C4-
3π(pc,2

fc) [see (2.20)] .

[The equality here holds because p(0, v) = pc for t;e5(2fe~3).]
For p<pc similar estimates apply. Equation (2.7) follows by an argument

similar to that for (4) in [14]. Consider the case with OφR = R(v)cS(2k\

Pt{O -> dS(2k)} ^Pt{O^ dR and dR -> dS(2k)

and there exists an occupied circuit in R\R

and surrounding R} ,
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Fig. 4

where R is any rectangle containing jR but OφRc S(2k) (see Fig. 4). Thus by the
Harris-FKG inequality

• Pt{3 occupied circuit in R\R surrounding R} .

By (2.3H2.5) we can choose R such that O φ R C S(2k) and such that R\R has width
at least 27, so that the last factor is uniformly bounded away from 0 by (2.19). Thus
(2.7) holds.

Finally, we fix ε0. It follows from the proofs of Lemma 5.2, 5.3 in [13] or [2,
Lemma 4.12 and Eq. (4.60)] (see also [19, Lemma 1]) that there exist
0< C6, C7 < oo and ε1 >0 with the following property. As soon as for some L

;l,p,^ei and σ((3L,L); 2,p,#)^fil ,

then

(2.23)

(2.24)

Similarly, if (2.23) holds with σ replaced by σ*, then

Pp{3 vacant path on 0* from [-L,L]2 to 3S(fcL)}^C6exp(-C7fc).(2.25)

Finally, by the Russo-Seymour-Welsh lemma [21-23] or [13, Chap. 6] we can
choose 0<e05^C3 [C3 as in (2.15)] so small that σ((L,L — 1); I,p,^)^ε0 implies
(2.23), and similarly with σ replaced by σ*. For the remainder of the paper we fix
ε0>0 with this property. By the definition of L(p,ε0) and (1.22), we then also have
(2.24) for L = L(p,ε0) if P<pc, and (2.25) for L = L(p,ε0) if p>pc.

We now begin our proof of a strengthened version of (2.9), first only for v = O
and R(v) a square centered at O (see Lemma 4). This requires further definitions.
Let r be a path on ^ from O to dS(2k) in S(2fc), for some k^2. Assume that all
vertices of r other than O are occupied. For the sake of argument assume that the
endpoint of r lies on the right edge of S(2fe), i.e., on {2k} x [-2fc, 2fc]. Let r' be the
piece of r from its last intersection with the line x = 2k~ L -f 1 to the right edge of
S(2k) (see Fig. 5). r' is a crosscut of the strip &>R : - [2fe~ 1 + 1, 2k] x [ - 2fe, 2k]. Let
^ = * (r, fc) be the occupied component of r ' on ̂  in 5̂  . Further, denote by α = α(̂ )
the lowest point of # on the right edge of S(2fc). Note that α is not necessarily the
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Fig. 5. r' is the boldly drawn piece of r; # consists of r' and the dashed parts

endpoint of r (cf. Fig. 5). In fact, one easily sees that a = (α(l), α(2)) has to be the right
endpoint of the lowest occupied horizontal crossing & of ZfR in #. Here the lowest
crossing of ί?R in <& is defined as follows. Let &R be the interior of £fR. For any
crosscut r or SfR^ connecting the left edge and right edge of yR, &R\r consist of an
upper and lower component, if + = ¥+(r) and £f ~ = <f ~ (r). Sf + and Sf ~ are those
components with [2k"γ +1,2k] x {2fe} and [2k~1 +1,2k] x {- 2k} as parts of their
boundary, respectively. 0ί is that crossing of Sfκ which lies in ^ and for which
y~(3K) is minimal. For the precise definition and existence proof of J> we should go
over to the planar modification of ̂  as in Sect. 2.3 of [13] and apply Proposition
2.3 of [13]. (See also Lemma 1 of [12].) We do not go into further detail since this
would only obfuscate the argument at this moment.

We use similar definitions if r ends on the top, left or bottom edge of S(2fc). We
define in these cases the component ^(r, k) as the occupied component of the final
piece of r in the strip ^τ: = [-2k,2k] x [2*"^ 1,2*], ^L:-[-2fe,-2/c'1-l]
x[-2*,2*] or 5^: = [-2*,2*]x[-2*,-2*"1-l], respectively, affl in these

cases is the endpoint of the most "clockwise" crossing in ̂  (i.e., the right most,
highest and left most crossing, respectively). For a vacant crossing r* we have
similar definitions, obtained by replacing "occupied and ̂ " by "vacant and ̂ *."
The corresponding component and endpoint will be denoted by #*(r*,fc) and
#*(#*), respectively. We further use the notation

S(fe, n) = [&(!)-n, fe(l) + ri] x [fe(2)-n, 6(2) + rϊ],

ί(6, n) - (6(1) - n, 6(1) + n) x (6(2) - n, 6(2) + n)

when 6-(6(1), 6(2)). ί(n) = S(O,π).
We now define an (?/, k)-fence for r, or rather for .̂ We say that r, or ,̂ has an

(η,k)-fence if all three of the following conditions hold (see Fig. 6):

if t is any path on ̂  from O to dS(2k) which lies in S(2k), except for
its endpoint, and which has all its vertices other than O
occupied, and corresponding component #(t, k), and if ^(t, k)

n#(r, k) -0, then |α(<j?(f, k)) - α(^(r, k))| > 2|/^2k, (2.26)
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Fig. 6. The small rectangle of the right is (α(l), α(l) + j/f?2fc] x [α(2) - η2\ α(2) + η2k]. The crossing &
is connected to # by the dashed path

if r* is any path on Ή* from O to dS(2k) which lies in S(2k), except
for its endpoint, and which has all its vertices other than O
vacant and corresponding component ^*(r*,fc), then

there exists an occupied vertical crossing s on ̂  of the rectangle

(0(1), 0(1) + j/τ/2fe] x [0(2) - η2k, 0(2) + η2k~], which is connected

to #(r, fc) by an occupied path on ̂  in S(0, ]/η2k). [Here 0 = a(

(2.27)

(2.28)

[Equations (2.26) and (2.27) say that other components than #(r, fc) cannot come
too close to 0(^(r, /c).]

As we shall see, the existence of an (η, fc)-fence is useful because it allows, with a
probability bounded away from zero, a "nice" extension of r to an occupied path
from O to dS(2k + ί). Note that the fence is defined in terms of ̂  only, and does not
explicitly refer to r. We can therefore talk about an occupied component # of £fR

having a fence. We can also define an (η, fc)-fence for a vacant component ^* of £fR

on ̂ * by interchanging occupied and vacant everywhere in the above. Of course, if
r* is a path on <^* from O to the right edge of S(2fc), with all its vertices except O
vacant, then we say that r* has an (η, fc)-fence if the component ^* of the last piece
of r* crossing SfR has an (η, fc)-fence. Finally, we define an (η, fc)-fence for a path from
O to dS(2k) which ends on the top edge of S(2k) by replacing <?R by the strip ̂ τ, and
the lowest crossing in ̂  by the right most crossing. Also, in (2.28) we now require a

horizontal crossing of [α(l) — η2k, α(l) + η2k~\ x (α(2), 0(2) + }/η2k~] which is connec-

ted to <β in S(0, ]/η2k). It is similar for paths ending on the left or bottom edge
of S(2k).

We shall now show that for small η the probability that every crossing of ̂ R

has an (η,k) fence is close to 1. More specifically we have the following lemma.

Lemma 2. For each δ>0 there exists an η = η(δ)>0 such that, uniformly in

0) and P satisfying (2.21), we have

P{3 occupied horizontal crossing on $ of ^R = [2k~ί + 1,2*] x [-2fc,2fc]

whose occupied component Ή in έ?R does not have an (η, k)-fence} ^ δ.

(2.29)
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Remark. The same statement holds with "occupied on "̂ replaced by "vacant
on #*."

Proof. Assume that there exists an occupied horizontal crossing on &*R. Let ̂  be
the lowest such crossing and ^ its occupied component in ^R. Let
a1 = (al(\\ a±(2)) be the endpoint of ^?15 and for fixed η consider the events

Ej = Ej(η,k,^ί): = {3 vertical crossings on ̂  of the strips [α^l)
-η2k+j, a1(ϊ)-η2k+j-1~]x[_a1(2)-η2k+j, α1(2) + ̂ 2/c+j] and

_
as well as horizontal crossings of [al(l) — η2k+j, a1(
x[_a1(2) + η2k+j~\ a1(2) + η2k+J] and [α1(l)
+ η2k+j]x[aί(2)-η2k+j, aί(2)-η2k+j~1^ all sites on these
crossings outside the closure of y~(β^ are occupied} .

Figure 1 makes it evident that if Ej occurs for some j ^ 1 with 2j^η~ 1/2, then also
(2.28) occurs. The events Ej are independent of each other since they depend on
annuli with disjoint interiors. Also, conditionally on ̂ 1 (and hence with a1 also
given), the probability of Ej occurring is at least δ* > 0. This follows from (2.17) and
the fact that conditioning on $l = r gives no information about any vertices
outside the closure of 5^~(r) (see [13, Proposition 2.3]). Since there are4

[ — (2 log 2) -1 log 77] values of j with 2 Jrg?/~ 1 / 2, we see that

lowest occupied horizontal crossing

but (2.28) fails for its component «Ί}

of

(2.30)

Now assume that &h ̂ , 1 ̂ z^σ, are given occupied horizontal crossings of
,̂ with their corresponding occupied components in <7R. Assume further that Sti

right edge of

Fig. 7. The inner and outer square centered at a are S(α, η2k+j 1) and S(α, ̂ 2fc+/), respectively. The
solid parts of the four crossings in S(a,η2k+j)\S(a,η2k+j~1) have to be occupied for Ej to occur

^ [αj denotes the largest integer ^ α
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is disjoint from <6j for zΦ j. Then, for z'Φj, (€i lies in &R\3lj, and hence belongs to
exactly one of y~(β^ or ^ + (̂ 7 ). Assume the Stt are ordered such that
q?tC^~(&j) for i<j, so that &σ is the highest crossing among the St^ 1 ̂ i^σ. If

\

σ
J%, let ̂ σ+1 be the
i

lowest such crossing. Denote its endpoint on the right edge of £fR by aσ+1? and its
occupied component in £fR by ^σ+1. Note that ^C closure of ίf~(β0+ύ for
1 ̂  i ̂  σ in this case, and hence fixing 3i{ and ̂  for 1 ̂  j ̂  σ and fixing ̂ σ +! = r still
gives no information about vertices outside the closure of ̂  ~(f). We can therefore
repeat the argument for (2.30) to obtain

P{3 lowest occupied crossing ^σ+1 of ίfR in ^)+(^σ),

but (2.28) fails for its component #σ+1|^ί, ̂ , 1 ̂ i^σ}

^(1 — ̂ 4)~C3lo8i?. (2.31)

Consequently,

P{3 any occupied crossing 0ί of ί̂ R such that (2.28) fails for its component }̂

^P{3 more than ρ disjoint occupied horizontal crossings of ί?R}

+ ρ(l-al)"C310811. (2.32)

By virtue of [28, Corollary 3.10] [or by a direct argument similar to (2.31)] the first
term in the right-hand side of (2.32) is at most

[P{3 at least one occupied horizontal crossing of ̂ }]ρ

^[1—P{3 vacant vertical crossing on ̂ * of [2fc"1 + 2,2fc —1] x [ — 2/c,2fc]}]ρ

-δsγ [by (2.18)].

Combining this with (2.32), and taking first ρ large, then η small, we see that we can
obtain

P{3 any occupied horizontal crossing of ίfR

whose occupied component ^ in ίfR does not satisfy (2.28)}

(2.33)

We next show that a minor strengthening of the derivation of (2.33) actually
yields (2.29). Let ̂  be an occupied horizontal crossing of ^R, with occupied
component ̂  in &*R and endpoint a on the right edge of £fR. Assume that one of the
events Ej occurs with 2η ~ 1/2 ̂  2 j '~ l ̂  η ~ 3/4. It is easy to see (compare Fig. 7 again)
that in this case there can be no vacant path r* on <^*, nor any occupied path s on ̂
which does not intersect #, which connects dS(2k~ *) to dS(2k) [in S(2k)] and whose

endpoint b lies inside S(α, η2j+k~ί) 3 S(a, 2γr\2k) on the counter-clockwise side of α
on dS(2k). To guarantee (2.27) for ̂  we must also make sure that there is no α*(^*)

on the clockwise side of a in dS(2k)nS(a,2]/η2k). Equation (2.26) is a similar
requirement for α(#(f,fc)) with #(ί,fc) disjoint from <β. We restrict ourselves to
(2.27). Assume that r* is a vacant connection from dS(2k~ x) to dS(2k) with endpoint
0*. Define EJ as the analogue of E7 with "α and occupied" replaced by "0* and
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vacant" (and possibly ^R by one of the other three strips «9"Γ, ίfu ^B). Then the
occurrence of EJ for some j* with

prevents α from lying in the clockwise direction of α* and inside

Thus, in this case, 0* cannot lie in S(α, 2|/ί/2fc) in the counterclockwise direction of
a. It now follows that the left-hand side of (2.29) is bounded by (2.33) plus

an occupied component # of one of the strips &*R9 5 Γ̂, ̂ L or
^ for whose most clockwise connection from dS(2k~ 1) to 35(2*)
no EJ with 2η~1/2"^2j~1 ^η~3/4 occurs} + P{3 a vacant com-
ponent Ή* of one of the strips 5 ,̂ ̂ τ, ̂ L or ̂ B for whose most
clockwise connection from dS(2k~1) to 3S(2*) no EJ with 2^~ 1/2

g 2 j~l^η~3/4 occurs}.

These last probabilities can be made ^δ/2 by choosing η small, for the same
reasons as given for (2.33). The lemma now follows.

It will be useful to have the following simple generalization of the Harris-FKG
inequality.

Lemma 3. Let A and D be increasing events, and B and E decreasing events. Assume
that A, B, D, E depend only on vertices in the finite sets j/, ̂ , ̂ , and $, respectively.
If

= 0 , (2.34)

then

P{AnB I DnE} ̂  P{AnB} (2.35)

for any measure P according to which all vertices are independently occupied or
vacant.

Proof. First, we prove that

E} , (2.36)

by conditioning on the configuration in $. For each choice of such a configuration
the Harris-FKG inequality gives P{AnD\E}^P{A\E}P{D\E}. Since A is inde-
pendent of E, by (2.34), this is equivalent to (2.36). Essentially, the same argument
shows that

=P{Br\E |

= P{B}P{AnDπE} [by (2.34)]

^P{A}P{B}P{DnE} [by (2.36)]

^P{AnB}P{DnE} (by Harris-FKG) .

This is equivalent to (2.35). Π
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! < & ( 2 , k )

β(4,k)

Fig. 8. Illustration of A(v, S(2k)). The inner and outer square are S(2k~ l) and S(2k), respectively. The
solidly drawn paths are occupied, while the dashed paths are vacant

We come to a fundamental estimate. Let vεS(2k *). We then define the
subevent A(v,S(2k)) of Γ(v,S(2kJ) as follows (see Fig. 8): A(v,S(2k)}: = Γ(v,S(2k))
occurs with the four paths r1? r3, rf , rf satisfying the four additional requirements

In addition, we require that there exist occupied vertical crossings on & of
j3/(/,/c), z = l,3, and vacant horizontal crossings on ^* of Jf(z,fc), z' = 2,4.

Lemma 4. There exists a constant C0 such that for all P satisfying (2.21) and all
2k ̂  L(p, ε0), we have

P{F(0, S(2fe)} ̂  C0P{ J(0, 5(2k)} . (2.37)

Proo/. Unfortunately, we have to introduce yet other events. Assume that
Γ(O, S(2j)) occurs, so that there exist four paths, r l 5 r3 on ̂ , and rf , r| on ̂ *, from
O to dS(2j) in S(2J), with the additional properties listed before. Let r\ be the last
piece of rt which crosses one of the strips &*R, ^T9 5̂ L or SfE and (βi the associated
component ^(r'bi\ ί=l,3. Similarly, for ^f and <S?J. Define

): = Γ(O, S(2J)) occurs and the paths ri9 r f + { and compo-
nents %, #ι+ i, i = 1,3 can be chosen such that each one has an
0?,7>fence.

We begin by proving the existence of some constant C4(η) for which

P{Λ(S(2j), η)} ^ C4(η)P{A(O, S(2j+2))} (2.38)

[again uniformly in P satisfying (2.21) and 2 /^L(p,ε0)]. We prove (2.38) by
extending the paths r t, r3, rf, r|, when Λ(S(2j)9 η) occurs, as indicated in Fig. 9. We
want to show that such an extension [for which A(O9 S(2j+2) occurs] is possible,
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with a conditional probability bounded away from 0. First partition the perimeter
of S(2J) into approximately 877 -1 disjoint intervals of length ^η2j. We can then
pick four such intervals Iί9I39I*9I* such that

P{A(S(2J\η) occurs with ai\ = a((e^Eli and αί+ί: = α(<ί?ί+ί)e/?+ί, i = l,3}

^C5η
4P{Λ(S(2*),η)}. (2.39)

Define in addition

Θ(S(2J\ η,I): = Γ(O, S(2 j)) occurs with at e It and αf + f e If + 1 and
paths r ί 5rf+ ί with endpoints α ί ?αf+ 1 and components %, ^f+ί

for which (2.26) and (2.27) hold with; in place of fc,ί = l,3.

Also write yl(S(2 7)5 f/, /) for the event in braces in the left-hand side of (2.39). Note
that on Γ(O,S(2J)) the components ^ί9 <$39 |̂, ^J must be pairwise disjoint
because rί9r3 separate rf,rj. It is important to realize that on Θ(S(2j)9η9I)9 (2.26)
and (2.27) for the specific <&l9 Ή*, Ή39 #* imply that there cannot exist any occupied
or closed path from O to dS(2j) whose corresponding component # or %>* in one of
the strips 5 ,̂ < Γ̂, «5^L, ̂ β has its point α(^) or α*(#*) in Ii9 unless ̂  - #,.. Similarly,
for 7f+ I . In particular, I l 9 I 3 9 I $ 9 I % must all be different. Furthermore, the
components ^i9^+i and their points aί9af+i are uniquely determined by the
configuration in S(2J\ for any configuration in 0(S(2J), ?7, /) (recall that the J's and
7*'s are fixed already). We must even have on Θ(S(2j\η,I)

S(ab ]/η2j) and S(αJ + i9 ]/η2j) , i = 1 , 3 are all disj oint . (2.40)

For any configuration for which Θ(S(2j)9 η9 1) occurs, A(S(2J\ η, I) occurs only if

in addition the following events occur for i = 1, 3 (2η < ]/η here):

Dt: = {3 occupied crossing in the short direction of a 2τ?27 by

]/η2j rectangle Rt outside S(2j) but with at in the center of its
short side; this crossing is connected by an occupied path in

and
E1+i: = {3 vacant crossing in the short direction of a 2^27 by

|Λ/2j rectangle R*+ί outside S(2j) but with a%+ί in the center of
its short side; this crossing is connected by a vacant path in

We shall now apply Lemma 3 to the complement of S(2J\ conditionally on the
configuration inside S(2j)9 whenever this configuration, call it ωj9 lies in
Θ(S(2j\η,I). We make the following choices for the various events. Assume
without loss of generality that α1? a39 αf , α| are numbered such that they occur in
the order al9a%9a39a% when dS(2j) is traversed clockwise.

Aί: = {3 occupied path st on ̂  outside S(2j) starting next to the
side of R1 containing α1? and ending on the left edge of S(2j+2)
inside a given corridor K^ of width η2j; KlnS(2j+2)\S(2j+1)
Cj/(l,7 + 2); in addition, there exists an occupied vertical
crossing of j/(l, j + 2)}
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v43 is obtained by replacing the index 1 by 3 and the left edge of S(2j+2) by its right
edge. See the definition of Dt for Rt and the definition of A for jtf

B2 and B4 are defined very much like Aί9 this time requiring vacant connections
from an interval around αf and α| through corridors K% and K$ to the top and
bottom edge of S(2j+2\ respectively. In addition, we require a vacant horizontal
crossing of J>(2,; + 2) for B2 and of ̂ (4,; + 2) for B4. We take B = B2nB4 and

Furthermore, we take D = D1nD3, £ =

The corridors K^K%,K^K% contain Ri9 R%, JR3, and RJ, respectively. Fur-
thermore, they have to be chosen disjoint from each other and such that

(Kί uK3) is disjoint from ffv&(2, j + 2)u J*(4, 7 + 2) ,

is disjoint from

Taking into account (2.40) it is not hard to convince oneself that this can be done in
the manner indicated in Fig. 9 by making η small (so that the width η2j of the
corridors is small), and keeping the corridors inside ^(2J+ x) until their last leg out
to dS(2j+2). For such a choice of the corridors (2.34) will hold [recall (2.40)].
Therefore, by Lemma 3

P{AnB \ configuration in S(2j) = ωp Dr\E]

B \ configuration in S(2J) = ωj} (2.41)

Fig. 9. The inner and outer square are S(2j) and S(2j+2), respectively. Solid (dashed) paths are

occupied (vacant). The small squares around a1 and αf (the endpoints of r1 and rf) are S(al9 |Λ/2j)

and S(dξ,]/η2j), respectively. The corridors K1 and Kf are hatched; they have width η2j
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Fig. 10. The large square is 5(2 j) and the small rectangle on the right is R1

for any configuration ω,- in S(2j) for which Θ(S(2j\ η, I) occurs. Since jtf and J> are
disjoint from each other and disjoint from S(2J), the right-hand side of (2.41) equals
P{AnB} =P{A}P{B}, and this in turn is bounded below by some C6 = C6(η)>0,
by virtue of (2.17), (2.18). This, finally, gives for any fixed configuration ω^ in

^{configuration on S(2j) equals ω p AnBnDnE}

^ C6P{configuration in S(2j) equals ωj9 DnE} . (2.42)

It is easy to see (see Fig. 10) that if^4n£nDnE occurs, then % is connected to st via

some paths in S(at, ]/η2j). Thus, rb #£ together with the latter paths in S(ai9 ]/η2j)
and st contain a path from O to dS(2 j+2) which is occupied, except possibly at O,
and which stays in ja/(z, j + 2) outside S(2j + 1) (i = 1 , 3). A similar statement holds for
r ΐ + ΐ > ^i + ίJ and sί+i Thus the event on the left-hand side of (2.42) is contained in
A(O, S(2j+2}\ We also remarked already that given ω,. in 0(5(2-0, η, /), Λ(8(2j\ η, I)
occurs only if DnE occur. Therefore, summation of (2.42) over ω7 in Θ(S(2j),η,I)
gives

P{A(0, 8(2^2}} ^ C6P{A(S(2^ η, I)} £ C5C6η
4P{A(S(2^ η)} .

We finally proved (2.38). Compared with (2.38), it is trivial to prove that

P{A(v, S(2*))} ^ CΊP{Δ(v, S(2J+ *))} (2.43)

for some 1 <CΊ< oo which does not depend on 7, P, υ or η [again under (2.21),
v e S(2j~ 1), and 2j^L(p, ε0)]. Equation (2.43) merely requires the extension of four
paths from v to dS(2j) to paths up to dS(2j+1) plus insertion of crossings of
«β/(i, j + 1) and &(1 + ij + 1), i = 1, 3. Figure 11 illustrates how this can be done for
one path. Lemma 3 and (2.17), (2.18) then guarantee that

is bounded away from zero, or equivalently, that (2.43) holds.
We shall need below the following inequality, which follows immediately from

iterating (2.43):
P{A(0,S(2*)}^C8Cϊ*. (2.44)

Now for the proof of (2.37). Fix 0<5^(32C^)~1, and then η such that (2.29)
holds for this δ. Obviously,

= P{A(S(2k~ 2), η)} + P{Γ(0, S(2k~ 2)) \A(S(2k~ 2), η)} . (2.45)
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Λ-CU+D

Fig. 11. The three squares are (starting from the inside) S(2J~ 1), S(2j\ and S(2j+ΐ). The solidly
drawn occupied path exist when A(v, S(2j)) occurs, and when the dashed paths are added we obtain

If Γ(O, S(2k~ 2))\Λ(S(2k~ 2), η) occurs, then there exist four paths r1? rf , r3, rj from O
to δS(2fe~2) with the properties listed in the definition of Γ; however, at least
one of the components %, #f+ j does not have an (η,k— 2)-fence. In particular,
Γ(O, S(2k~ 3)) still occurs, while either the event in the left-hand side of (2.29) with k
replaced by k — 2 occurs, or a similar event with 5^ replaced by &*T9 ^L or 5 ,̂ or
occupied replaced by vacant. By virtue of Lemma 2 and symmetry the probability
of any of these events occurring is at most 8δ. In addition, these events depend on
S(2k-2)\S(2k~3) only, and therefore are independent of Γ(O,S(2fc-3)). Therefore,
the last term in (2.45) is at most

so that

P{Γ(09S(2*))}^P{Λ(S(2k-2

We can iterate this argument to obtain

, S(2*-

Now use (2.38), (2.43), and (2.44) to conclude that the right-hand side is at most

, S(2k))} .

Equation (2.37) follows from our choice of δ. Q

Corollary 3. There exist constants C± — C4 such that

CιP{Δ(υ, S(V+2}}} £ P{Γ(υ, R)} £ C2P{A(v, S&+2))} , (2.46)

C3P{ A(v, S&+2))}^P{A(v, S(2i+*))} £ C2P{A(v, S(2'+2))} , (2.47)

uniformly for all P satisfying (2.21), v e 5(2-0, and any rectangle R for which S(2j+ ^

even have
^L(p,ε0). For the measures Pp and veS(2j\ 2 j + 3^

C4Pp{Δ(0, S(2j+ 2))} ̂  Pp{A(v, ^ C2Pp{Λ(O,

we

(2.48)
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Remark. In Lemma 8 we shall obtain a much better version of (2.48).

Proof. From the definitions of Γ and A, it is clear that

P{Γ(v9Rί)}^P{Γ(v9R2) if υeR1cR29 (2.49)

and for any /

P{A(υ, S(21))} ^ P{Γ(v, S(21))}, υ e S(2l ~l). (2.50)

If we write Pv for the measure P translated by v, then S(2j) CR-vC S(2j+4), and the
monotonicity properties (2.49), (2.50) show that

R)} = P°{Γ(O,R-υ)}

^Pv{Γ(0,S(2j+*))}^Pv{A(O,S(2j+*))}

^ Cϊ4Pv{A(Q, S(2j))} [by (2.43)]

*(CtC0Γ
lP {Γ(0,S(2J))} [by (2.37) for P»]

This proves the left-hand inequality in (2.46). For the right-hand inequality we
write

P{Γ(υ, R))} £ P{Γ(υ, S(V+ 1))} £ C0P{A(υ, S(ϊ+ *))} £ C0C7P{A(v, S(2^+2))} ,

using (2.49), (2.37), and (2.43) in succession.
The left-hand inequality in (2.47) is just (2.43). For the right-hand inequality use

(2.50) and (2.46):

P{A(υ, S(2^))}^P{Γ(v, S(2' +3))} g C2P{Δ(

Finally, for (2.48) we use PV

P = PP to get

Pp{A(0, S(ϊ+ 2))} ̂  Pp{Γ(0, S(2' + 2))} = Pp{Γ(ι;,

^C2Pp{zl(t;,S(2^2))} [by (2.46)],

and
2))} - Pp{Γ(O, S( - v9

+2))} [by (2.46)]. D

Next we need an analogue of Lemma 4 for connections from dR to the outside
of R, rather than to a point in R. For a rectangle £ C S(2k) with interior JR, define

Γ(S(2k), R) = {3 two occupied paths r x and r3 on ̂  from the left
and right edge of dS(2k)9 respectively, to dR, and two vacant
paths rξ and r J on ^* from the top and bottom edge of dS(2k\
respectively, to dR\ these paths are pairwise disjoint, and expect
for their endpoint on dR lie in S(2k)\R', r^r^ separates r| from
r* in S(2fc)\,R} .
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9S(2 k )

< B ( 2 , j )

Fig. 12. Two of the required paths for A(S(2k\S) with S = S(v,2j)

We define the analogue of Δ for the present situation only if .R is a square of the
form S(v, 2j) C S(2k ~ 2). In this case let S' = S(v, 2j + 1), and for the analogues of st and
& in the definition of Δ take the following strips in S'\^(r,2J):

0(2, j) = [ι (l) - 2', v(ί) + 2'] x 0(2) + 2', t<2) + 2>+ *] ,

#(4, 7) = Ml) - 2'', Kl) 4- 2^] x |>(2) - 2^+ \ t;(2) - 2'] .

The proper analogue for A(v,S(2j)) is now

Z(S(2k),S(v,2j)): = Γ(S(2klS(v,2j) occurs and the four paths

r.?r*+.? ΐ=l ,3, are such that r^S'υ^C^j) and
rf+/n(S'\^,2 0)cJ(l+i,/), i=l,3; in addition, there exist
occupied vertical crossings on ̂  of j^(i, j) and vacant horizontal
crossings on ^* of J*(l + ij\ i = 1, 3 .

Figure 12 illustrates the definition in part.

Lemma 5. There exists a constant C0 such that for all P satisfying (2.21) and all

0l S(v,2j)cS(2k~2) one has

P{Γ(S(2k\ S(v, 20)} ̂  C0P{2(S(2k\ S(υ, 2*))} . (2.51)

Proof. We only state explicitly what we mean by an (ηj) fence for r1? an occupied
path on ^ from the left edge of S(2k) to dS(v, 2j). As before this depends on the
location of the endpoint of r^ for the sake of argument we take it again on the right
edge of S(v, 2j). Now we take for the analogue of ^R, &R, the right half of the
annulus S(v,2j+ί-l)\S(v,2j) (see Fig. 13). We break d<?R up into the following
four pieces:
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Fig. 13. The inner and outer square are S(v, 2j) and S' = S(v, 2j+1), respectively. &R is hatched; the
part BI of its boundary is boldly drawn, r' and some pieces of Ή are dashed

B^the union of right half of
(υ(ί)9v(2) + 2J+l-l) to (v(l\υ(2)-2j+1

ical segments {v(ί)}x[v(2)-2s+1 + l

dS(υ,2j+1-l) from
with the two vert-

ϋ(2)-2j] and

x [t?(2) - 2', ι<2) + 21 ,B2 =

Note that AvB2vC is just the right half of 6S(v9 2j). For r' we take the piece of rί

from its last intersection with Bί till its endpoint on the right edge of S(v, 2J\ B2.
(β = (β(rl,j) is defined as the occupied component of r' in &R.

o r' is a crosscut of !?R connecting Bί with B2. Again any such crosscut r divides
&R\r into two components «^~(f) and ̂ +(r), which have yl and C as part of their
boundary, respectively. In <g there exists a crosscut 5? from Bi to £2 f°

r which
&'($) is minimal, by virtue of Proposition 2.3 in [13]. α = α(^) is taken to be the
endpoint of ̂  on B2. We say that r1 or # has an (η9j)-fence if all three of the
following conditions hold:

if ί is any occupied path on ̂  from dS(2k) to 5S(t;, 27) which lies in
S(2k)\S(v, 27), except for its endpoints, and with corresponding
component #(ίj), and if ^(t9j)nV(rl9j) = φ9 then

|α(^(ί ,/)) - a(V(rl9m > 2}/η2J , (2.52)

if r* is any vacant path on ̂ * from δS(2k) to dS(v9 2
J) which lies in

S(2k)\S(v, 2s), except for its endpoints, and with the correspond-
ing vacant component %*(r*9j)9 then \a*(Ή*(r*9fi) — a(<#(rl9j))\

(2.53)

there exists an occupied vertical crossing s on ̂  of the rectangle

[β(l)-ί/2j, α(l)]x[α(2)- γη2 { a(2) + \/η2j-]nS(v,2j\ which is

connected to <&(rί9k) by an occupied path on ̂  in S(a,]/η2j). (2.54)
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In (2.54) a = a(^(r 1? ;)), while in (2.53) ̂ * and α* are, as before, defined by changing
"occupied and ̂ " to "vacant and ̂ *" on the appropriate places in the definition of
%> and a.

We can now copy the proofs of Lemmas 2 and 4 without essential changes to
obtain Lemma 5. Only instead of (2.45) we work "outwards" instead of inwards,
i.e., we replace (2.45) by

P{Γ (S(2kl S(υ, 2*)} ̂  P{Γ(S(2kl S(v, ϊ+ 2))}

= P{Ά(S(v9 2^+ 2), ,)} + P{Γ (S(2k), S(υ, 2i+2))\Λ(S(υ, ̂  2), η)}

with an obvious analogue Ά of A. Π

Lemma 6. There exist constants Cx and C2 such that

C,P{Γ(v, S(2k})} ^ P{Γ(S(2k), S(v, 2ty}P{Γ(υ9 S(v, 2'))}

^C2P{zl(t;,S(2fc))}, (2.55)

uniformly in P satisfying (2.21) and veS(2k~3l S(v,2j)cS(2k-2), 2^L(p,ε0).

Proof. By (2.46) and (2.43),

P{Γ(υ, S(2k))} ^ C2P{Δ(v, S(2k^))} ^ C2CΊP{Δ(υ9 S(2k))} .

Now A(v9S(2k)) requires the existence of two appropriate paths rx and r3 from v
to the left and right edge of S(2k), respectively, and two other paths rf and rj to
the top and bottom edge, respectively. It is easy to see that these paths all have
to reach δS(t;52

J'~1) first [so that Γ(v,S(υ,2j~^)} occurs] and then continue to
connect dS(v,2*) with dS(2k] [so that also f (S(2*), S(v, 2j)) occurs]. Therefore,

P{Δ(v, S(2k))} ^ P{Γ(v, S(υ, 2*' ̂  and f (S(2k), S(v, 2^))}

(v, S(υ9 2*- 1))}P{f(5(2fe, S(υ, 2^))} ,

since Γ(v,S(v,2s~1)) and Γ(S(2fe), S(v, 2j)) depend on vertices in S(t;,2 /"1)) and the
complement of S(t;, 2j), respectively. The left-hand inequality of (2.55) now follows
from

P{Γ(v, S(v9 2
j~ 1))} ̂  C2CΓ *P{Γ(v9 S(v9 2j))} , (2.56)

which, in turn, follows for j^k from two applications of (2.46) [once with
R = S(t;,2J'"1) and once with R = S(υ,2j), and P replaced by Pυ].

As for the right-hand inequality in (2.55), observe that if 3(S(2k), (S(v, 2j)) occurs,
then there exists an occupied path r\ on ̂  from the left edge of S(v9 2j) to the left
edge of S(t>,2*). ^(Sty^+^Sty^tycaffaj), and in addition there exists an
occupied vertical crossing si on ̂  of &?(ί9j). Note that, si necessarily intersects r\
in ^(l,τ). If also A(v, S(υ, 2j~ J)) [this is the translate by υ of A(Q, S(2j~ x)) occurs],
then there exists a path r'[ in S(ι;, 2j~ x) from v to the left edge of S(v9 2

j~ x) which
stays in v + jtf(l9j—l) outside S(v92

j~2)'9 r'[ is occupied, except possibly in v.
Finally, there exists an occupied vertical crossing si of v + £/(l9j — ί\ which
necessarily intersects r'[ in v + jtf(l9j — ί). Now recall that j $ ( l 9 j ) = v + j t f ( ί , j + ί )
(see Fig. 14). Therefore, an occupied horizontal crossing cγ on ^ of
t> + l-2j+1

9 -2j~2~] x (-2J'"2,2J'~2) will connect si and si. If such a c{ exists, then
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3+1 xS(v,2 J

Fig. 14. Connecting r'[ to r\ by the dashed path cί

there exists a path r t from f to the left edge of S(2k) which consists of pieces of r'(, s'[,
cl9 s'1? and r\. Since

P{3 occupied horizontal crossing on ̂  of z; + [-2J'+1, -2J'~2] x(-2J'~2,2J'~2)}

S^5

[by (2.17)] we obtain from Lemma 3 that

P{3 path r1 on ̂  from v to the left edge of S(2k) which is occupied
except possibly at v\2(S(2k)9 S(v9 2j)) and A(v9 S(v, 2j~1))} ^<55.

A slight extension of the above argument also allows us to construct a path r3 from
v to the right edge of S(2k) and two paths rf and rj to the top and bottom edges of
S(2k\ respectively. This yields [again by Lemma 3 and (2.17), (2.18)],

P{A(υ, S(2k)) I Z(S(2k), S(v, 2j)) and A(υ, S(v, 2j~1))} ̂  δ4

5.

Finally, then

P{A(v9 S(2k))} ^ δ*P{Δ(S(2k\ S(v, 2>))}P{A(v, S(υ9 V~A))}, (2.57)

which implies the second inequality of (2.55) [by (2.51) and (2.37) for P"]. Π

The next lemma is the promised weakened version of (2.13).

Lemma 7. Assume p0(v) and p^v) both satisfy (2.21) and p^v) ̂  p0(v) for all v. Let Pt

be the product measure with

Pt{v occupied} = pt(v): = tpγ(υ) + (1 — t)pQ(v).

Then for some constants C l 5 £>0 (independent of p, pQ( ), p^( -}).

ί dt (p1(»)-po(w))Λ{Π»,S(2'))}gC12-

for all (2.58)
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If p0(w) = pc and Pι(w) = pc for all w, or vice versa, then for all 2J+1 ^2fe^L(p,ε0)

p
ids

PC

2fe); l,pc)|. (2.59)

Proof. Note that Pt(Γ(y, 5(2-0) depends only on the p((>v) for w e S(2j) and for (2.58)
we may therefore change the pt( - ) outside S(2j) in any way which is compatible
with (2.21). We leave pt{ - ) unchanged in S(2j+ *), but change it outside S(2j+ *) so
that it becomes periodic with periods (0,2J+2) and (2J+2,0). We may therefore
assume that

Of course, if p0(w) = pC9 Pι(w) = p for all w, then no change will be performed in the pt

and we have Pt = Pp(t) with p(t) = tp + (l—t)pc.
Recall that C(S(2j)) denotes the event

{3 occupied horizontal crossing on ̂  of S(2j)} .

With Pt fixed as in the last paragraph we shall prove for j^ k -10, veS(2j~~2\

2ζ(k-j)Pt{A(v,S(2j))}^C9Σ*Pt{v + 2j+2n is pivotal for C(S(2k))} , (2.60)

where £* in (2.60) denotes the sum over the integral vectors n = (n l5«2) with

x \n22
j+ 2 - 2j+ \ n22

j+ 2 + 2j+ ̂  C S(2k ~ 3) .

Equation (2.60) will imply our lemma because by Russo's formula [compare

(2'10)]' Σ [PιW-poW]Σ*^ + 2^+2n is pivotal for C(S(2fe))}
-

Thus (2.46) and (2.60) show that the left-hand side of (2.58) is at most

(2.61)

This implies (2.58) if ^/c-10. For fe-10<j</c (2.58) is automatically valid for
large enough C1 , because the left-hand side of (2.58) is bounded as can be seen from
Russo's formula. Indeed, by (2.46),

Σ (PM-
~2)

2 Σ
v e S ( 2 J ~ 2 )

Σ (Pι(v)-Po(v))Pt{v is pivotal for C(S(2j))}
~

(2.62)

[compare (2.10)].
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The equivalence in (2.59) follows for j < k from (2.46) and (2.48) (with j replaced
by j — 2). The inequality in (2.59) follows for j^(k- 11) from (2.61) with k replaced
by k-1 [recall that σ((2k,2k); l,p) = P1{C(S(2k~1))}]. For k-ll<j<k the in-
equality in (2.59) again follows, by taking C1 large enough, from (2.62) with
C(S(2 0) replaced by C(S(2k"1)). [This requires k-1 -j applications of (2.43).]

We turn to the proof of (2.60). For the remainder we take j ^ k — 10. As in the
second inequality of (2.62), the sum in the right-hand side of (2.60) is at least

* Pt{Γ(v + 2j+ 2n, S(υ + 2j+ 2n,

[by (2.55)]

x Σ* ?t{ f(S(2k), S(v + 2j+ 2n, 2j+ *))} (by periodicity) .

Since for*; e S(2^-2),

Pt{Γ(v9 S(2J+ 1))} ̂  C,Pt{A(v9 S(2*))} by (2.46) ,

we only have to prove

Σ* Pt{Γ(S(2k\ S(v + 2' + 2n, 2j+1))}

10, veS(2j~2). (2.63)

Equation (2.63) can be proved in the same way as Lemma 8.2 of [13]. We shall
indicate why this is so, but leave the details to the reader. Let ̂  denote the lowest
occupied horizontal crossing on ̂  of S(2k), if it exists. 5 The probability that &
exists and lies entirely in the strip T: = [ — 2fc, 2fe] x [ — 2k ~ 4, 2k ~ 4] is bounded away
from 0. To see this note that & will exist and lie in T if there exists a vacant
horizontal crossing r* on <^* of [ — 2 ~ k, 2fe] x [ — 2k " 4, 0) and r* is connected by a
vacant path on ^* in S(2k) to the bottom edge of S(2k) and if in addition there is an
occupied crossing on ^ of [-2fe,2fe] x [0,2k~4]. The ^-probability of all these
events simultaneously is at least δl4 by (2.17), (2.18).

Now assume that {̂  = r0} occurs for some path r0 in T from the left to the right
edge of T. S(2k)\r0 consists then of two components S"(r0) and S+(r0), with the
bottom and top edge of S(2k) in their boundary, respectively. In this situation each
vertex w of r0 is connected by a path r* on ̂ * to the bottom edge of 5(2fc) and with
r* minus its endpoints contained in S~(r0), and r* vacant, except at w. This follows
from Proposition 2.2 in [13] [recall that r0 is the lowest occupied crossing of S(2k)~].
lϊR is any rectangle with w e R C R C S(2k\ then there exist two occupied paths r 1? r3

from dR to the left and right edge of dS(2k), respectively (these are pieces of ̂  = r0),
and there exists a vacant path from dR to the bottom edge of S(2k) (this is a piece of
r*). Thus, if there is in addition a vacant path from dR to the top edge of S(2fe), then
Γ(S(2k), R) occurs for the rectangle R.

Now assume that in addition to {̂  = r0} there is a path 5* on ̂ * from some
αer 0 to the top edge of 5(2*), and that s*\{α| CιS+(r0), and 5* is vacant except at a.

5 Again we are somewhat cavalier in not bringing in the planar modification ^pl for constructing
the lowest crossing (or the left most crossing below)
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Then there is a leftmost such path (again by Proposition 2.3 of [13]). Write £f* for
the leftmost such path. Arguing as above, and using the fact that the vertices in
S+(r0) are independent of {^ = r0} we see that

Pt{&* exists and lies in [0,2fc~4] x [-2fe,2fc] |Λ = r0}^<5|4

(see [13, Lemma 7.4] for similar arguments).
If r0 is a fixed horizontal crossing of T on <S and s*C[0,2*~4] x [-2fc,2fc] a

fixed path on ̂ * from some point α on r0 to the top edge of S(2k) in S + (r0) (except
for the point α), then S+(r)\s* again has two components. Write S' = S'(r0,s*) for
the component which contains the upper right-hand corner, (2k, 2k), of S(2fc), in its
boundary (see Fig. 15).
Denote the piece of r0 from a to the right edge of S(2k) by r. If now S(υ + 2j+2n, 2j+ *)
is a square which intersects r, in a point w say, and

and if there exists a vacant path ί* on ̂ * which lies in S' (except for its endpoints)
and connects a point in S(v + 2j+2n, 2'+ *) with s*, then f (S(2*), S(υ + 2'+2n, 2''+ J)
occurs. Also (2.64) assures that this square is then counted in £* in (2.60). The
existence of such a ί* is independent of the event {& = r0, ϊf* = s*}, because by
Proposition 2.3 in [13], the occupancies of the vertices in S;(r0,5*) are independent
of the event {̂  = r0, e9

9* = s*} (cf. Lemma 7.4 of [13] again). Note that if 5*
intersects S(v + 2j+2n, 2j+ *) then we don't need ί* at all; f (S(2fc), S(υ + 2j+2n, 2j+ x))
automatically occurs in this situation. Also, since we took i;eS(2J'~2), j^k —10,
and a6(r0ns*)C[-2/c-4,2fc~4]2, (2.64) will hold for all n for which

tι2 /+2,2 7+1) intersects S(a, 3.2Z), provided we restrict ourselves to

l^k-6. (2.65)

Finally, for such an I set Y(v, n, α, /, r0, s*) = 1 if S(t; + 27 + 2n, 27 + x) intersects r0 and
S(fl, 3.2Z), and if there exists a vacant path ί* as above, which in addition lies in the
square S(α, 3.2*); set 7(f, n, α, /, r0,5*) = 0 otherwise. The condition on the existence
of ί* is taken as fulfilled whenever s* itself intersects S(v + 2j+2n,2j+1). Define

Z(l) = mm£t {Σ Y(v, n, α, /, r0, (2.66)

where Et denotes expectation with respect to Pt and the min is over all permissible
choices of Pt, periodic with periods (2j+2,0) and (0,2 j+2), v e S(2j" 2), r0 C T, α e r0,

S"(r)

Fig. 15
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S(a, 3.2') C S(2k\ and s* a vacant connection in S+(r) from a to the top edge of S(2k).
Note that the last condition is a relaxation of s*C[0,2*"~4] x [-2fe,2fc]. The
stronger condition on s* is only used to guarantee (2.64) whenever
Y(υ, n, α, /, r0,s*) = 1 with an / satisfying (2.65); for estimating Z it is, however, not
useful to restrict s* so much and relaxing the restrictions on s* moves the min in
(2.66) in the right direction. We have now arrived at the situation of Lemma 8.2 of
[13]. In exactly the same way as in that lemma we can now show

as long as / satisfies (2.65). Moreover, Z(/)>0 for all /^j + 4, since we get a
contribution of size 1 to (2.66) from the square S(v + n2j+2,2j+ *) which contains a.
It is now immediate from (2.67) by iteration, and the fact that Z(/) increases in /, that

Pt{ Y(v, n, α, k - 6, r0, 5*) - 1 1 m = r0, Sf* =

[The conditioning on {& = r, <f* = s*} has no influence, since the Γ's are defined in
terms of vertices in S'(r0,s*), and hence independent of {̂ ! = r0, ^ = 5*}, as
observed above.] Thus (2.63) and (2.60) hold. Π

It remains to put our lemmas together to complete the proof of Theorem 1. Let
n ̂  L(p, s0) and choose the largest k with 2k rg n. It suffices to prove Theorem 1 with
n replaced by 2k, by virtue of (2.20). Also π(p, 2k) = A(l, 2*), and by virtue of (2.22) we
may replace π(pc, 2

k) by π(0,2fc), where

π(ί, 2k) = Pt{0^> dS(2k)} = Pt{A(2k)},

and Pt is defined by (2.6). In addition, we have (2.8). Integration of (2.8) over t from 0
to 1 yields, by the method of (2.10),

log^7τf^

mn P = r0, =
i o.s*

•Σ Σ $Pt{Γ(v,R)}dt
R R(v) = R 0

(2.67)

Now, if jR is given by (2.4), then the only u's with R(v) = R are the ones satisfying
(2.3). Therefore, by (2.46) [after translation by (-/12

J'~2, -/22
j~2) and changing;

to j— 2] for any v satisfying (2.3)

By (2.58) we have

}dt\p~pc\ Σ Pt{Γ(v,(l^-2J22^2) + S(2^}^Cί2-^-^.
0 v satisfying (2.3)

Substitution into (2.67) and using the fact that only IJ with I/J, |/2| ̂  17, j^k-
can occur in (2.3) [see (2.5)] we obtain

log- = ̂ 5

This takes the place of (2.13) and Theorem 1 follows.
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3. Proofs of Theorems 2 and 3 and Corollaries 1 and 2

Proof of Theorem 2. The first and last inequality in Theorem 2 are immediate from
Theorem 1. The second inequality is obvious from

Finally, the third inequality was proven in [19, Sect. 4] [see also proof of (1.25)
below]. Π

Corollary ί is immediate, if one takes into account that (1.18) implies (1.6) with
δ = 2δr-l (cf. [14]).

Proof of Theorem 3. We prove (1.25). Clearly, for L=L(/?,ε0) and any ε^O,

γ; Φ W< 00} ̂  [_z,L2n(p,L)JPp{0^ dS(L)}

x Pp{φW^s1L
2π(p,L)\0^dS(L)}

^ C\+ ̂ [Lfo ε0)]
2ί[π(pc, L(p, ε0))]

ί + 1

x Pp{ * ̂ ειL
2π(p,L) |0^δS(L)} . (3.1)

The proof of (54) in the second part of Theorem 8 of [15] can be copied almost
without changes to show that εt >0 can be chosen to make the last probability in
(3.1) at last 1/2. Thus

EP{L # WJ # W< 0)} ̂ C\+ίs\ [L(p, ε0)]
2ί[π(pc, L(p, β0))]'

 + 1 .

In the opposite direction we first observe that the first part of the proof of
Theorem 8 of [15] gives without essential changes that

Ep{lΦ(WπS(2n))y\0^dS(n}}^Ctln
2π(p,n}J for ^L(p,ε0), (3.2)

and
of vertices in S(L) connected by occupied paths to 3S(L)]f}

[L2π(p,L2)]'. (3.3)

As in [14] we introduce the "radius of W"

and define (n = (w l5n2), L=L(p,ε0)),

β(n) = B(n, p) = [(11!- 1)L, (n, + 1)L] x [(n2 - 1)L, (n2

Then, still as in [14],

(3.4)
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By (3.2) the first sum on the right-hand side of (3.4) is at most

φ^p2*^*)]'

^(C2)
ί+1Ctι<Σ<t2

2fct[π(pc)2
k)]t+1 (3.5)

(by Theorem 1). We claim that for any k0,

•πin 9^\
(3.6)

We postpone the proof of (3.6) till the end of this proof. Once we have (3.6), the
right-hand side of (3.5) is seen to be bounded by

C162
2(£ot[π(pc,2

fc°)]t+1

*°)]'+1, (3.7)

for t > 1/3, where now fc0 is such that

and C17 depends on t only. The second sum in (3.4) has to be treated slightly
differently, according as ί^l or ^<£<1. We only consider the former case; the
case t < 1 is easier, since then

for fln^0. For ί ̂  1, the second sum in the right-hand side of (3.4) is at most

Γ(£p{[*^nS(L))]ί;Λ>L})1/ί+ Σ (Ep{[*(WnB(n))]'; ^<α)})1/ί]ί.
i **o J

(3.8)
By (3.2)

Pp{R^L}Ep{lΦ(WnSW

^ π(p, L)Ct[L
2π(p, L)]f ̂  Ct 8L

2ί[π(pc, L)]f + 1

(3.9)

[since {#^L} = {O— >dS(L)}, and Theorem 1 for the last inequality]. Fur-
thermore, for β(n)nS0(L) = 0,

[φ(PΓnJ5(n))]7[jR<oo]^[φof vertices in B(n) connected by
occupied paths to 3S(n)]7[O->δS(L/2)]/[3S(L) is connected
by an occupied path outside S(L/2) to
dS(l/2(\nl\ + \n2\ -3)L)]/[3 vacant circuit on ̂ * surrounding O
and some point of 9B(n)] . (3.10)

lfp<pc then we estimate the expectation of the right-hand side of (3.10) by ignoring
the last factor and using the independence of the other factors. This gives by virtue
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of (3.3), (2.20), and (2.24)

Ep{lΦ(WnB(n)J]t;

^ CtlL
2π(p, L)]'π(p, L/2)Pp{dS(L) ~> 3S((K | + \n2 \ - 3)L/2)}

I + ̂ DA. (3.11)

Similarly, if p>pc we ignore the third factor in the right-hand side of (3.10) to
obtain, by using the Harris-FKG inequality,

Ep{ φ ( Wnfiίn))]'; R < oo } ̂  Ep{[_ # of vertices in £(n) connected
by occupied paths to 5B(n)]7[O-> δS(L/2]}Pp{3 vacant circuit
on ^* surrounding O and some point of dB(n)}

^C20L
2ί[π(pc,L)]ί+1 £ Pp{3 vacant paths on &* from

/= ~ 00

(/L,0) + [-L,L]2 to d((jL,Q) + S(jL)) and to the complement
ofS((K| + |rc2|-3)L/2)}. (3.12)

In the last inequality we used the fact that any circuit surrounding the origin must
intersect the x-axis in some square [(;' - 1)L, (j -f 1)L] x [ - L, L] = ( jL, 0)
+ [ — L, L]2, as well as the j -axis. By (2.25) the right-hand side of (3.12) is for p >pc

at most
l). (3.13)

Putting together the estimates (3.9)-(3.13) we see that (3.8) is at most

C22(ί)L2ί[π(pc,L)]ί+1.

Finally, in (3.7),

by virtue of (2.20). Therefore,

with L=L(p,ε0); the "one" in the right-hand side may be ignored, since π(pc,L)
/2 (see [28, (3.15), or (3.6) above]).

To complete the proof of (1.25) we prove (3.6). Firstly,

x Fcr{occupied path outside §(2k) from dS(2k) to,3S(2*°)} (3.14)

for the same reasons as given for (6) in [1 5] see Sect. 3 of [1 5] as well as (2.7) above.
Secondly, exactly as in (3.15) of [28] we have

0 < C2 ̂  Pcr {3 occupied horizontal crossing of [ - 2fco, 2fc°]2}

= Σ Pcrfi two disjoint occupied horizontal paths outside
| j |^2 f co-k

(QJ2k) + S(2k) from d(QJ2k) + S(2k) to the union of the left and
right edge of £(2*°)} ^2(2fc°"fc+ 1) [Pcr{3 occupied path outside
S(2k) from dS(2k) to δS(2k°)}]2 .

In view of (3.14) this proves (3.6) and completes the proof of (1.25).
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The reader should now be able to prove (1.26) in a similar way by using

Pp{O -~> y} x [π(pc, \y\J]2 for \y\ ̂  L(p, ε0)

(cf. [14, Formula (4)]) and

Σ WIXpcj lyl)]2 χ ^ί+2Cπ(pc> ̂ )]2

yeS(L)

[since ni/2π(pc,n) is essentially increasing in n; cf. (3.6) and (2.20)]. Π

Corollary 2 is again self-evident (again use [14] as in Corollary 1), with the
exception of the inequality v ̂  (δ +1)/<5. This last inequality can be obtained from
A 2 ̂  2 (which is proven in [9, Formula (3)] or from y ̂  2(δ —1)/<5 (which is proven
in [17]).

4. Symmetry of the Critical Exponents

In this section we prove (1.23) and (1.24). Note that the critical exponents β,y,η
have all been related to v and δ (or <5,.). δ is defined in terms of Pcr only. Thus, once
we have (1.23), all critical exponents have to be the same on the left (p f pc) and right
(P I Pc)> provided they exist, of course. α+ and α_ have to be equal by virtue of the
Sykes-Essam relation; cf. [13, Theorem 9.2]. We formulate the principal step as
Lemma 8. The most important corollaries of this lemma, namely (4.4) and (4.5),
have appeared in the literature before (see for instance [6, Eq. (14)]). To formulate
the lemma we define for v e S(ri),

Ω(v, S(n)) : = {vis pivotal for C(S(n))} = {3 paths ^ and r3 on 0
from v to the left and right edge oϊS(n), respectively, and paths rf
and rj on ^* from v to the top and bottom edge of S(n),
respectively; any two of these paths only have the point v in
common; η is occupied and rf+ is vacant, i = l,3, except
possibly at v} (see Fig. 3),

Lemma 8. For each fixed 0 < K < 1 there exist constants 0 < Q = CI(K) < oo, i = 1,2,
such that ^., „, ^.

_, ^ P{Ω(v, S(n))}(^ < —

uniformly for P satisfying (2.21) and

n^L(p, ε0) and ί eS(κ ft). (4.2)

Before proving Lemma 8 we make some more comments on the proof of (1.23).
Note that the definitions immediately give

A(v, S(n)) C Ω(v, S(n)) C Γ(υ, S(n)). (4.3)

Lemma 4 and Corollary 3 therefore give us a handle on the probability of Ω, and
these results, together with (4.1), lead to

\p-pc\n2Pcr{Ω(O,S(n))}, n ^L(p,ε0).

(4.4)
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When we take n = L(p, ε0) we obtain

L2Pcr{Ω(0,S(L)}^--±— (4.5)
IP Pel

for L= L(p, ε0), since we have defined L(p, ε0) in such a way that the left-hand side of
(4.4) is of order 1 when n = L(p, ε0). The result will be that

L(p,ε0)xL0(|p-pc|),

where LQ(δ) is the smallest n for which

n2Pcr{Ω(0,S(n))}^. (4.6)

Clearly, this will imply (1.23).

Proof of Lemma 8. This proof is quite similar to that of Theorem 1 but fortunately
almost all the work was done already for Theorem 1. Our first step is to show
that it suffices to prove (4.1) with t? = O only. To see this assume that v has
distance m to dS(n) with m ̂  (1 — κ)n. Let I be such that

1, (4.7)

and as before, let Pv be the translate of P by v. Then S(v, 2l)cS(n\ and by (4.3) and
(2.49),

P{Ω(v, S(n))} £ P{Γ(υ, S(n))} ^ P{Γ(v, S(v, 21))} = PV{Γ(O,

Now, if k is such that

then k— 1^1— (Iog2)~1log(l -K). A bounded number of applications of (2.56)
therefore shows

^ C3P
υ{Γ(O, S(2*))}

for a C3 depending on K. Thus

P{Ω(v,S(n))}^C3P
v{Γ(0,S(2k))}

(2fc))} [by (2.37)]

In the other direction, note first that a small extension of (2.43) gives for / as in (4.7)

this time with C7 depending on K. But also, by (4.3), (2.37), and (2.49),

P{Ω(v9 S(n))} ^ C-Ί ιp{Δ(v, S(v9 21))} = C~Ί ^PV{A(O9 S(21))}

, S(2k))}
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Thus, under (4.2) P{Ω(v, S(n))} is uniformly of the same order as PV{Ω(O, S(2k))}. In
particular, for i -O and P = Pcrί Pcr{Ω(O,S(rc))} and Pcr{Ω(O, S(2k))} are of the
same order. Thus (4.1) will be implied by

(4'8)

In other words, it suffices to prove (4.1) for v = O only, and n = 2k^ L(p, ε0), as long
as our estimates are valid uniformly for all P satisfying (2.21).

As in Sect. 2 we shall estimate

by first changing the probabilities for a site to be occupied for all w outside S(2k 3),
and after that apply Russo's formula to estimate the influence of the sites in S(2k ~3).
Let P* be the measure which chooses w occupied with probability

w) = P{w is occupied} if w φ S(2k ~3),

if w e S(2k ~3).

Of course, all sites are independent under P*. Our second step is to show that

_ P*{Ω(0,S(2k))}

Pcr{Ω(0,S(2k))} = CΊ '

which is the analogue of (2.22). Equation (4.9) follows quickly from previous
estimates. For instance,

P*{ί2(O,ίS(2k))}^P*{Γ(O,S(2fe-3))} [by (4.3) and (2.49)]

= Pcr{Γ(0,S(2k-3))}

[since P* = Pcr when restricted to S(2k~3)]

^ C3CΓ3Pcr{Γ(0, S(2k))} [by (2.56)]

^ C3CΓ3C0Pcr{ί2(0, S(2k))} [by (2.37) and (4.3)].

The lower bound in (4.9) is proved by interchanging Pcr and P*.
Now that we have (4.9) we define Pt as the measure according to which the sites

are independently occupied, with probability

n<tw)-ίp(w} if w^(2*~3)>
iV>W)- i , . , Λ_ , ._,..Λ if weS(2*-3)

for the site w. Note that P1 =P,P0 = P*, and that Pt satisfies (2.21) for all t e [0, 1].
We next estimate

Observe that Ω(O,S(2k)) = AnB, where

A = {3 two paths r1 and r3 on ̂  from O to the left and right edge
of S(2k), respectively; these paths only have the vertex O in
common and are occupied, except possibly at O} ,
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B = {3 two paths rf and rj on ̂ * from O to the top and bottom
edge of S(2k), respectively; these paths only have the vertex O in
common and are vacant, except possibly at O} .

A is increasing and B is decreasing so that by Lemma 1

• [Pt{w is

— Σ
weS(2 f c-3

occurs}] .

pivotal for A but not for B, and B occurs}]
(P(W) ~ PC)) [Λ { w is pivotal for J5, but not for A and A

(4.10)

We only estimate the first sum in the right-hand side; the second sum can be
estimated by interchanging the roles of "occupied" and "vacant." It is not difficult
to obtain (e.g. from Proposition 2.2 in [13]) that w φ O is pivotal for A, but not for
B and B occurs, if and only if B occurs as well as the following events £(w) and
E*(w) (see Fig. 16):

E(w) = {3 two paths rί and r3 on ̂  from O to the left and right
edge of S(2fc), respectively; these paths only have the vertex O in
common and one of them contains w,rί and r3 are occupied,
except possibly at O and w},

£*(w) = {3 two paths rf and rf on ^* from w to the top and
bottom edge of S(2fe), respectively; these paths only have the
vertex w in common and do not contain O; rf and r| are vacant
except possibly at w}.

It follows from the definition that if R0 and Rw are disjoint squares in S(2k) such
that Oe#0, weKw, then on £n£(w)n£*(w) both Γ(O,jR0) and Γ(w,JRJ must
occur. If R0 and Rw are disjoint, then the latter events are in addition
independent. This observation already suffices to handle the w with 2 f e~ 5<|w|
^2fc"3. Define ί = /(w) by

7 + 1. (4.11)

Fig. 16. Illustration of Bn£(w)n£*(w). Solidly drawn paths are occupied, dashed paths are
vacant, except possibly at O and w. Note that rf and rf do not have to be disjoint; in this figure
they partly coincide, rj and r| may also intersect
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The w with |w|^16 will be trivial, so that we may assume 1^4. We choose
H0 = S(2'"2), Rw = S(w,2z"2). We then have for l = k-5 or fc-4

Pt{w is pivotal for A but not for B, and 5 occurs}

Sίw^1-2))} [by (2.56)]

^ C3Pί{ί2(0, S(2fc))}Pt{Γ(w, S(w, 2'-2))} [by (2.37) and (4.3)] . (4.12)

For 16 < |w| ̂  2k~ 5, or / < fe— 5, we have to be slightly more careful. In addition to
Γ(O, R0) and Γ(w, ΛJ we must also have f(S(2k\ S(2l+2)) iϊBnE(w)nE*(w) occurs
[since the paths r1,rf,r3,r| connect dS(2l + 2) to δS(2*)]. Moreover,
RO u JRW C S(2* + 2) so that Γ(O, R0) and Γ(w, R J are independent of f(S(2k), S(2Z + 2)).
The left-hand side of (4.12) is therefore bounded by

Λ{Γ(0,S(2'-2))}/»,{f(S(2*),S(2'+2))}P({Γ(w,5(w,2'-2))} . (4.13)

By (2.56) and (2.55) the product of the first two factors in (4.13) is at most

C3P,{A(0, S(2*))} ̂  C,Pt{Ω(0, S(2k))} ,

so that (4.12) holds for all weS(2*~3)\S(16). Putting this into (4.10) we obtain

iog/»t{fl(0,S(2*))}

Σ
2 1<|w|S2 1 (p(w)-pc)Pt{Γ(w,S(W,21-2))}.

Finally, for 2!<|

Pt{Γ(W,S(W,S<-2))}ίC6

2C;6Pt{Γ(W,S(W,2l+*))} [by (2.56)]

g CfCΓ 6P({Γ(w, S(2l + 3))} [by (2.49)] .

It follows that

log
P{Ω(0,S(2*))}

P*{Ω(0,S(2k))} ίdt

^C sΓl + V ί wef2l + ί\P(w}-Pc\P,{Γ(w,S(2l+3))}dt]

^C6[l + £2-«/[-<>]gC7 [by (2.58)].

Together with (4.9) this proves (4.8), and hence (4.1). Π

Lemma 9. Let L=L(p,s0) and denote by P(κ) the measure according to which v is
occupied with probability

[p if υφS(\±κU),
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and with all v independent. Then there exists aO<κ = κ(εQ) < 1 such that for all p
sufficiently close to pc

Pp < 3 occupied horizontal crossing of S —

— P(κ)43 occupied horizontal crossing of S —

(4.14)

where C3 is as in (2.15).

Proof. For the sake of argument take p>pc throughout. With C3 as in (2.15) and
L=L(p,ε0) we have [compare (1.22)]

σ((L,L); l,p)£l-ε0£l- (4.15)

so that

To show that this variation in σ is due in part to vertices in "the center of S(L/2)"
[in S(κL/2), to be more precise] we show first that for any rectangle [0, α] x [0, b]
with

,
2 o

and ε > 0 there exists a λ = λ(ε) > 0 such that

(4.16)

uniformly foi

P{C([0,c]x[0,6])}

P{C([0,α]x[0,6])}

- P satisfying (2.21) and for
c

a
-1 (4.17)

il

Recall that

C(R) = {3 occupied horizontal crossing on ̂  of R}.

(4.17) is rather close to Lemma 3 of [11]. If a<c, then clearly

C([0,c] x [0,6])GC([0,α] x [0,6]). (4.18)

Thus for a < c we should show

P{C([0, ά\ x [0,6]) but not C([0, c] x [0,6])} ̂  εP{C([0, α] x [0,6])}. (4.19)

For this purpose let $ be the lowest occupied crossing of the rectangle .R: = [0, α]
x [0,6], and let its right endpoint be (α, H). For the moment we consider only the

situation with H ̂  6/2. Let r be a fixed horizontal crossing of jR with endpoint (a, ft)
with ft ̂  6/2. Denote by R ~(r) the lower component of R\r and by R ~(r) its closure.
Now consider the annuli (see Fig. 17)

A — T \ T whprp T — Γ/7 V // i j — ι . j + ι \ i j 9 wncic ij—j_α D , <
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a , b ) (c ,b)

(0,0)

Fig. 17. The hatched region is a typical Aj and the dashed curve is a possible circuit C which
connects r to {c} x IR

for 3 j^ c — α, 3 j + 1 < ft/2. If {& = r} and any Aj contains a circuit C which surrounds
7} and all of whose sites outside R~ are occupied, then a piece of ̂  plus a piece of C
forms an occupied horizontal crossing of [0,c] x [0,ft]. Thus, if Ej denotes the
event that such a circuit exists in AJ9 then

P{there is no occupied horizontal crossing of [0,c] x [0,ft] \& = r}

^ P{none of the Ej occur \St = r}. (4.20)

Now given J? = r, the Ej only depend on sites outside R~(r)9 and since {& = r}
depends only on sites in R~(r) (compare Proposition 2.3 of [13]) we have

P{Ej \^ = r}^ P{3 occupied circuit in Aj}.

The last probability is at least δ > 0 for some fixed δ, by virtue of (4.16) and (2.19), as
long as 3j^c — a, 3i+1 ̂ ft/2. If we takec — a^λa for some small A, then we can use
all j with λα^3J'ί*α/12, of which there are C2|logA|. Since the different Aj are
disjoint, the events Ej are conditionally independent, given & = r.It follows that
the right-hand side of (4.20) is at most

(l-(5)C2llogλ| on {H^b/2}.
Consequently,

P < there is no occupied horizontal crossing on ̂  of

[0, c] x [0, ft], but St exists and H^ -

);1,P) (4.21)

If H> ft/2, then the highest occupied crossing of [0,0] x [0,ft] must end above
(a,H\ and hence in the upper half of the right edge of [0,α]x[0,ft]. By
interchanging the role of the up and downwards direction we see that the
contribution to the left-hand side of (4.19) contained in {H> ft/2} is also bounded
by (4.21). Consequently, if a^c^a(\ +λ) then

--p{C([0,α]x[(UJ)}
>

- 1 °}
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By interchanging the role of a and c one obtains (4.17) also when a> c. One may
also replace P{C([0,c] x [0,6])} by P{3 vacant crossing on &* of [0,c] x [0,6]}
and P{C([0, α] x [0, 6])} by the analogous probability. We merely have to change
"occupied on <S" by "vacant on ^*" everywhere in the proof.

With the help of these inequalities it is now easy to prove the lemma. By6 (4.18)
and by duality analogous to (1.22)

^ 1 — P(κ) < 3 vacant vertical crossing

- , . (4.22)

By the analogue of (4.17) for vacant crossings we may choose K so close to 1 that the
last member of (4.22) is at most

1 + |C3-jP(κ:){3 vacant vertical crossing on ^* of

[-iκL+l,iκL-l]x[-iκL,iκ;L]}

= 1 -h|C3 — Pcr{3 vacant vertical crossing on ^* of

(4.23)

[by definition of P(κJ]. We now reverse our steps with Pcr instead of P(κ). By
duality as in (1.22), and a monotonicity property analogous to (4.18), (4.23) is at

- , . (4.24)

Applying (4.1 7) once more for K close to 1 and L large, we finally see that (4.24) is at
most

^ - C3 + σ((L+ 1, L); 1, pc) (by periodicity)

^ 1 - C 3 [by (4.1 5)].

Also, by (4.15), for large L

P <Γ <?r p \ L^ I o I I —

This proves (4.14) if p>pc. A similar argument works for p<pc. Π

' For simplicity we suppress the largest integer symbol; e.g. we write \κL instead of \_^κ
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Theorem 4. There exist constants Q = C )̂, i = 4, 5, such that for small δ > 0 and L0

as in (4.6)

L(pc-<5,β0) (4.25)

Moreover, (1.24) holds.

Proof. We restrict ourselves throughout to the inequalities for the case
p = pc + δ >pc. We fix K < 1 so that (4.14) holds and drop the K from the notation.
Thus P will stand for P(κ) in this proof. We take

corresponding to

if

.f

To prove the left inequality in (4.25) we start with (4.14) and apply Russo's
formula:

\C^(p- pc) }dt Σ f t \v is pivotal for C (s ( \ ̂  \)}} . (4.26)
O 0 «;eS(Li/cLJ) ( \ V L 2 J / / J

By virtue of Lemma 8 the summand here is

The usual comparisons [(4.3), (2.37), and (2.43); compare Corollary 3] show

Pcr\ Ω ( O, S ( Mf ) ) [ ̂  C3Pcr{Ω(O, S(L))}, (4.27)
I V \L 2 J//J

so that we obtain from (4.26),

or

[recall L=L(/?,ε0) and C5 depends on ε0 only].
We next use (4.27) to derive the following general inequality: If Lx ̂ L2 and

L2 = L2(/?2,ε0) for some p2>pc, then

L2

2Pcr{ί2(0, S(L2))} ̂  C6 L2Pcr{Ω(0, SίLJ)} . (4.29)
w

To prove (4.29) take j, /c such that

and
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Assume first that j+ 1 ̂ /c. An application of (2.59) then yields

22j 7 dsPs{Γ(0, S(2j))} ^ CΊ2-^-» ̂  C72
ζ ( ̂ - ) . (4.30)

PC W2/

By (4.1), (4.3), and (2.46), respectively, the left-hand side is at least

7 ώPs{£>(0, S(2'))} ̂  C^'fo - pc)Pcr{Ω(0,
PC

^C8L?(p2-pc)PCΓ{Γ(0,S(L1))}

^ C8Li(p2 -pc)Pcr{Ω(0, SίLJ)} . (4.31)

Combining (4.30), (4.31), and (4.28) for p=p2 we obtain

, S(L2))} . (4.32)

Thus (4.29) holds if j+ί^k. For j = k (4.29) can be guaranteed by taking C6

sufficiently large, since then Lx ̂  L2 ̂  21̂  and Pcr{ί2(0, 5(1̂ ))}, for i = 1 and 2 are
of the same order by comparisons of the same kind as in the last two inequalities of
(4.31).

Note also that the special case p2=P, Ll=L2 = L: = L(p,ε()) of (4.32) shows

(4.33)

Now let p — pc = δ > 0 and define, as above, L0(<5) as the smallest solution of (4.6).
Then (4.28) shows

L= L(p, ε0) - L(pc + δ, ε0) ̂  L0(C5- M) . (4.34)

Also (4.33) and (4.29) for L^L^C^δ), p2 = p,L2 = L imply

^ L2Pcr{Ω(0, S(L))} ̂  C6 - - L2

0Pcr{Ω(0, S(L0))}
^ wo/

- cβ (Γ rr-iJ^ [b^ (46^ for C^" '̂\L0(C5 ό)J ό

Thus

which together with (4.34) proves

Ijpe + δ9ε)*L0(C^δ). (4.35)

Finally, observe that the derivation of (4.35) holds for any C5 for which (4.28) holds.
In particular, we may assume C5 < 1 and replace C5 by C\. Equation (4.35) then
shows that
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Replacing δ by C5δ in the last relation we obtain L0(C J lδ) x L0(<5). The first line of
(4.25) therefore follows from (4.35).

Lastly, (1.24) is immediate from (4.25). Indeed, every proof works if ε0 is
reduced; this only changes the various constants. In particular, for

<C5(ε,).

Since L0 does not depend on εi9 this implies (1.24).

5. Comments to Table of Critical Exponents

The second column of the table at the end of the introduction is copied from [27];
see also [7, 18, 20]. The values on a Bethe tree appear in Appendix 1 of [10] on the
line d = 6; several of these values can also be found in [8, Sect. 3] or can be
computed along the lines given in that reference. In particular, on the binary tree,
with each bond open with probability p (see [8, p. 429])

PP{W contains n bonds} = PP{W contains (n + 1) vertices}

The analogue of Δ(p) should presumably be

Direct calculations show that Δ"(p) is continuous but Δ '"(p) is bounded with a jump
at pc = ̂ . Hence α= —1.

ξ(p) can be defined exactly as in the introduction, once one decides on the
meaning of \y\ on the tree. If one thinks of the tree as lying in infinite Euclidean
space, with each edge of a new generation being in a new dimension, then the

"Euclidean distance" of an n-th generation point to the root of the tree is J/n. With
this choice for distance

becomes £ nEp{ρZn}, where Zn is the number of n-th generation points connected
by occupied paths to the root, and ρ = Pp{#W<Gθ}. This can be calculated by
standard branching process calculations and yields v = %.

Lastly, we discuss the rigorous bounds in the first column, α < 0 follows from a
small extension of the proof of Theorem 9.4 in [13]. β^ί was proven by J. T.
Chayes and L. Chayes [4], and the improvement to β<\ will appear in [16].
v > 1 follows from v ̂  (δ + l)/δ in Corollary 2 and δ < oo (see [1 3, Theorem 8.2]).
The lower bound for y results from

ζ A ζ A

y = 2v - — - ̂  2 — — (see Corollary 2)
0 + 1 0
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if one uses δ ̂  5, so that we merely have to show δ^5. The bound δ^5, and hence
the bound y^8/5 have only been proven for bond percolation on TL2.

Proof ofδ^S for Bond Percolation on Z2. By the results of [14] it suffices to prove
δr ̂  3, or the statement

π(pc,r)^C lW-1/3 (5.1)

(which does not presuppose the existence of δr). The proof of (5.1) is a small
improvement on the proof of (3.15) in [28]. The present proof of (5.1) is due to
J. van den Berg and slightly simpler than the author's original proof. We saw in
the proof of Lemma 7 that there is a strictly positive probability that the lowest
occupied horizontal crossing m of S(2k) lies in T=[-2fe,2fc] x [-2fe~4,2fe-4].
Moreover, if & exists and intersects the line x = 0 in w e {0} x [ — 2k ~ 4, 2k ~ 4], then
w is connected by occupied paths r t and r3 to the left and right edge of S(2k\
respectively, and by a path rf to the bottom edge of S(2k). rf is vacant, except at w,
and any pair of r1,rf,r3 only have the point w in common. Thus

0 < C2 ̂  Y Pcr{@ exists and contains (0, n)}
|n|^2*-4

= Σ ^o ίpaths ^1^2,7*3 as above connect (0,n) to dS(2k)}
| n | £ 2 f c - 4

^ Σ p« {3 vacant path on <$* from a neighbor of (0, n) to dS(2k)}
\n\^2*-*

x Pcr{3 two disjoint occupied paths from neighbors of (0, n) to dS(2k)}

(by Harris-FKG inequality)

For the last inequality we used self-duality of bond percolation on Z2 to estimate

Pcr{3 vacant path on ^* from a neighbor of (0, n) to dS(2k)}

^π(pc,2
fe-2fc-4-l)^C4π(pc,2

k) [see (2.20)] .

The rest is as in (3.15) of [28]. Π

Remark. Even for site percolation on Z2 we have δr ̂  2 and hence δ — 2δr — 1 ̂  3,
by [28, (3.15)] and [14]. Thus in any case y^
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