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Abstract. We prove that the one-dimensional random fields with finite first moment
are isomorphic to Bernoulli schemes.

§ 1. Introduction and Notations

We consider stationary processes defined on a space I of states with
only two elements: I = {0, 1}. A process will thus be a regular probability
measure μ defined on the compact space Kz = Y\ I, where Z is the set of

ieZ

the integers and Kz is considered with the topology product of the
discrete topologies on the factors I.

The elements of Kz will be identified with the subset X C Z.
If ΛcZ is a finite set and Kz/yl is defined in analogy with KZ,(Z/Λ

is the complement of Λ\ the process defines a natural measure μΛ on
KZ/Λ and a natural probability distribution ίΛ on the set of subsets of A :

E) V E c K Z M , (1.1)
XCΛ

nΛ = X}) V X c Λ . (1.2)

Notice that { Y/Y e Kz , Y n A = X} can be thought as an atom A(Λ, X)
of the partition \/ P P where T is the shift operator (rightwards) on K

ΊeΛ

and P = (P0, PI) is the two set (generating) partition of Kz consisting in
the sets:

A({0},0) = {Y/YeK z,Yn{0} = 0}

A({0}, {0}) = {Y/Y e Kz, Yn {0} = {0}} .

Stationarity of the process means that fyl(X) = fy l + s(X-hs) where

If μ is a process we can define the conditional probabilities f^X/Y),
for X c Λ , A finite, YcZ/Λ, as the conditional probability for finding
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in Kz an element Q such that QnΛ = X, knowing that Qn(Z/Λ) = Y:
these conditional probabilities are defined for all XcΛ and μ^-almost
everywhere in Y e Z / Λ [1].

We shall consider only processes such that fy l(X/Y)>0 μ^-almost
everywhere.

A Markov field with memory r will be a process of the above type
such that:

) (1.4)

where drΛ = (s/s e Z, s φ A, distance of s from dA ^ r}. Notice that the
requirement fy l(X/Y)>0 implies that the process is a mixing Markov
chain.

It can be shown that a Markov field with memory r is uniquely
determined by its conditional distributions [2] (if, as everywhere in this
paper, the time is 1 -dimensional).

Furthermore, the ϊΛ(X/Ύ) can be uniquely written [3], in terms of a
shift invariant function Φ, defined on the non empty subsets of Z, such
that Φ(S) - 0 if diam S > r, as

exp £ Φ(SuT)
sex

( n o a t i o n ) <L5>

μ^-almost everywhere.
The r.h.s. of (1.5) makes sense for more general Φ's : e.g. if Φ is a shift

invariant function such that :

+ oo. (1.6)
S3{0}

A stationary process with conditional probabilities given by the r.h.s.
of (1.5) with Φ verifying (1.6) is called a Gibbs process with potential Φ [2].

The above mentioned results mean that a memory r Markov field
is the same thing as a "finite range" Gibbs' process.

In view of the well known theorem showing that Markov chains are
isomorphic to Bernoulli schemes [5], it is natural to ask wether a general
Gibbs' process also shares this property.

In this paper we show that a Gibbs process with a potential such that:

| |Φ||ι= Σ |Φ(S)|(diamS)< + oo (1.7)
S3{0}

is isomorphic to a Bernoulli scheme [6]. It is known that, if (1.7) is
verified, there is one and only one Gibbs' process with conditional prob-
abilities given by (1.6), [4], and, furthermore, such a system is K-system [4].

We shall actually prove that the process is a weak-Bernoulli shift
and then apply the Friedman-Ornstein isomorphism theorem [5]. The
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weak Bernoulli character of our processes will be proved by showing
that the partitions \/ ΓP and \/ ΓP with Λ1=(ί,2,...,mi) and

ie/li ie(Λ2 + n)

Λ 2 = (l, 2, ...,m2) are ε-independent for all mί,m2 provided n — m1

is large enough. In terms of the notations (1.2), (1.3) and the remarks in
between, this means that there is Nε > 0 such that:

(1.8)
XiOli

X2C(Λ2 +

for n — mί ^ Nε.
The proof is a generalization of the original proof of Friedman and

Ornstein for Markov shifts and is technically based on the results of
Ruelle [4]. In the next section we give a brief survey of Ruelle's theorem.
In Section 3 we use the theorem of Section 2 to write (1.8) in a different
form. Section 4 contains the technical part of the paper. In Section 5 we
discuss some open problems.

§2. Ruelle's Theorem

Let Φ be a potential verifying (1.7) which is fixed once for all.
Let Z+ be the positive integers and let Kz+ = f] I: as in Section 1

ieZ +

the space Kz+ will be regarded as the family of subsets of Z+ and con-
sidered with the product topology.

Let ^(Kz+) be the set of the continuous functions on Kz+ and let
U(X/τ1Y)= £ ΦfSuτjT) where τ sT is a short hand notation for

sex
0 Φ T C Y

T + s. Define on ̂ (Kz+) the transfer operator:

jS?f(Y)= £ e -
u ( X | τ ι Y ) f(Xuτ 1 Y) (2.1)

xc{i}
(where X can obviously be either 0 or {!}).

If μ denotes the Gibbs process associated with Φ we have:

Theorem 1. There exist, and are unique, a number A>0, a function
h e #(KZ+) and a measure v on Kz+ such that:

i) || λ~n J2?n|| ^C where C is a suitable ^-independent constant.

ii) JS?h = λh, JSf*v = λv, v(h) = fh(Y)v(dY)= 1.

Furthermore:

iii) if Λ c Z + and % 'Λ denotes the subspace of ^(Kz+) consisting in
the fe^(Kz+) such that f(Y) = f(YnΛ),V Y c Z + , then if Λ = (1,2, ...,m):

for all fe%A such that v(f) - Jf(Y) v(dY) = 0 and for all n ̂  m.
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v) lim llA"1^1 1^ — h||QO = 0, where 1 denotes the function which is
n->oo

identically one.

vi) if fe^(Kz) and f(Y) = f(YnZ+), V YeK z , then (with an obvious
meaning for the symbols) :

μ(f)= f f(Y)μ(dY) = .f f(Y)h(Y)v(dY) = v(fh). (2.2)
KZ KZ+

An immediate consequence of vi) and of definition (1.2) is the follow-
ing: if χΛX is the characteristic function of the atom A(Λ,X) (i.e. if
3UxOO = l i f Y n Λ = X and χ^xOO = 0 otherwise) and if A C Z+ we can
use vi) to write f^(X) as:

y*H f JUxOOMdY) = f JUxOOh(Y)v(dY) (2.3)
Kz Kz+

a formula that will be useful later.

§ 3. A Restatement of (1.8)

Assume that Λ^ = (1, 2, ... jm^ and Λ 2 = (l,2, ...,m2): using (2.3)
we find:

fχ1uw2 +-)(XιυX2)=Jχ^ fχ1(Y)χW 2 +n,,x2OOh(Y)v(dY) VX.c.1,. (3.1)

This formula can be written in a more convenient form in terms of
the transfer operator. Notice first that the definition (2.1) implies:

X e-u<Q / τ n Y )f(QuτnY) Y e K z + (3.2)
QC(l,2,...,n)

and similarly:

J f(Y) (&*«Q) (dY) = X J f(Quτn Y) e-
u(Q/^Y)ρ(dY) (3.2)

for all measures ρ e ̂  (Kz+).
Therefore, using (3.2) and &* v = λ v, it is easy to see that :

*<Λ2+n,,x2(Y) v(dY) = [A-n^*n(χ^,(X2_n) - v)] (dY) (3.3)
hence:

(3.4)

= .ί^2,x2-n(Y) (λ-Λ^(χΛί.Xl h)) (Y) v(dY) .
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Combining (3.4) with (2.3) and using /Γ1 J2?h = h:

Σ I** uU 2 + n)(
X2CΛ2+n

^ Σ .f^2, (x2-n)(Y)ICA-n^n^1 > X lh-fΛ l(X1)h)](Y)|v(dY)

= J μ-n^n(χyll,X2 - ^(XJ) h| dv EE Jμ-^ FI dv . (3.5)

Where F(Y) = (χΛl,Xl(Y) - f^(Xi)) h(Y).
Our main result will follow from the inequality:

J μ-n'mι j^n+mι F| dv ̂  f^ίXi) ε(n) (3.6)

where ε(n) n _ > o o > 0. Formula (3.6) is proven in the next section.

§4. Proof of (3.6)

The proof is based on the following estimates:

Lemma 1. The function h has the property:

|h(Y)-h(Yn(l,2,...,n))|^e»φ"1h(Y)ι,(n) (4.1)

where, here and below, η(n) = ]Γ (diamS) |Φ(S)|.
SD{0)

Proof. Part v) of Theorem 1 allows to write, setting Yn = Yn(l,2,... ,n)

|h(Y)-h(Yn)|= lim \(λ-s^l)(Ύ)-(λ~s^sl)(Ύn)\
s—» oo

< lim λ~& y | e -U(Q/τ s Y)_ e -U(Q/τ s Y n ) |

Φ(Sut s T)

(4.2)

e-U(Q/τ sY) e l lΦ|| l f 7 ( n )

0ΦSCQ
I _ Q 0 * T C Y / Y n

= h(Y)el|φ|S(n)
and the lemma is proved.

Lemma 2. Let n0 > 0. For all n ̂  n0 ί/ierβ is α function Fn e ^(ι,2,...,n0)
fsβ^ iii) Theorem 1 for the symbol Ή^^,...,^)) suc^ ̂ at:

a) v(FJ = 0. ' ' (4.3)

b) There is a Cf>0such that, if ^n-μ-n~m ιJ^n + m ιF)-Fn ? then:

vdδ^C'f^&Jηino). (4.4)

Proof. Notice first that the definition of F [after (3.5)] together with
ii) in Theorem 1 implies v(F) = 0.
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Put Yno = Yn(l, 2, . . . , n0), then adding and substracting appropriate
terms we can write the following straightforward sequence of equalities :

e-u(Q/τn+mι

h(Quτn + m ιYn o)

λ-(π+»1, Σ

QC(l, . . . ,n + mι)

(h(Quτn + m ιY)-h(Quτn + m ιYn o))

The first sum in the r.h.s. will be called Fn and the sum of the other
two terms will be <5n.

Using Lemma 1 to bound the second sum and iv) Theorem 1 together
with the inequality [used in (4.2)] :

|e-U(Q/τn + m ιY) _ e-U(Q/τn + mιYno)| < e-U(Q/τn + mι Y) ^Φ^ ^ j ?

to bound the third sum, one finds:

|«5n(Y)| ̂  e l | φ | l l(l + C) ι/(n0) /l~ ( n + m ι ) £

hence, using λ'1 £f*v = v and (2.3), we have:

J v(dY) |<5n(Y)| ̂  2(1 + C) e»φ»^(n0) ̂ (XJ

therefore, since, as remarked at the beginning of the proof, v(Fn + <5n)
= f (Fn + (5n) dv = 0 we can modify δn into <5n = δn — v((5n) and, correspond-
ingly Fn into Fn = Fn + v(Jn) and obtain a couple Fn,(5n verifying the
lemma.

We can now prove the main theorem:

Theorem 2. Given ε > 0, 3 nε such that

ίl(A- 1^)n + m ιF|dv<εf^ 1(X 1) n^n ε (4.5)

and nε is m ̂ independent.

Proof. Let n(N) be such that [see (4.4)] : η(n(N)) Cr < 1/N.

Let k be an arbitrary integer and let :
k

n > 2 X n(N + i) . (4.6)
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Then n — n(N -f k) > n(N 4- k); therefore Lemma 2 applies to the function
(/l-

1j^)n-n<N- fk>+miF and gives a function F'e<e(lt2,...,nw+k» and a rest

δ' such that (4.4) holds. Then apply iii) Theorem i to the function
and obtain:

<Π — e

+ ((l

and, using i) Theorem 1 and b) Lemma 2:

and, iterating the procedure we find (for a suitable C" > 0) :
k- l (1 __ e -2!!Φ!Jιy

+ ( l_ e~
2 | i Φ ! iO kCv(|F|)

N v

and our theorem follows from the arbitrariness of N and k.

§ 5. Conclusion

The reader, familiar with Ref. [4], will have noticed that, technically,
the results follow from the improvement of part of the proof of Proposi-
tion 5 in [4] which is given in our Lemma 2 via Lemma 1 which is
adapted from [7] (Lemma 1).

From a conceptual point of view the proof is nothing else than a
generalization of the original method of Friedman and Ornstein for
proving the Bernoullicity of Markov processes; the key to this generaliza-
tion is furnished by Ruelle's theory of the transfer matrix and its use for
proving that Gibbs fields are K-systems if their potential verifies (1.7).

If (1.7) is violated the proof of Theorem 1 fails and, actually, one can
construct counterexamples to it [8].

Let us consider only the case in which Φ has only "one" and "two"
body components which do not vanish (i.e. assume that Φ(S) Ξ 0 if the
number of points in S is larger than 2). Then Φ is given (since it is a shift
invariant function) by a constant Φ(s) and a function Φ(s, t) = of the form

IS
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as |s —t|-»oo (so that (1.7) is violated) then it can be shown that the
operator J f̂ has a degenerate eigenvalue /I, [7].

It would be of great interest to know wether the systems just described
are Bernoulli schemes. We mention just two possibilities:

1) i) for 2Φ(s) H= £ φ(\s —1|) the systems are Bernoulli schemes.
t φ s

ii) for 2Φ(s) = £ φ(|s— t|) the systems are not always Bernoulli
t φ s

schemes (and many possibilities arise if one varies Φ(s)).

2) the systems are never Bernoulli schemes.

Of course there are other possibilities beyond 1) and 2) above; 1) is
most appealing since it would establish a link between the "phase
transitions" and the isomorphism of the equilibrium state with a B-system
(at least in one dimension). We notice here that under the assumptions of
case 1) i) above it is known that the Gibbs field is unique and, also, a
K-system [9].

A final remark is that the restriction on the space of states I to contain
two elements, set at the beginning of this paper, is clearly unnecessary:
the same results would be true with any finite I. Things are, however,
unclear in the case of more general Γs.
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