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Abstract. We construct a C*-algebraic formalism designed to provide a framework for
the characterisation of phase transitions in a class of Ising spin systems: this class is large
enough to include the rectangular lattice models, of arbitrary finite dimensionality, with
nearest neighbour interactions. Using an extension of Onsager's transfer matrix formalism,
we express properties of a Gibbs state of a system in terms of a contractive linear transforma-
tion, v0, of a certain Hubert space, the properties of v0 being governed by the temperature
as well as the interactions in the system. We obtain conditions on v0 under which the system
exhibits a phase transition characterised by (A) a thermodynamical singularity, (B) a change
in symmetry, associated with the G-ergodic decomposition of Gibbs states, (C) a divergence
of a "correlation length" (appropriately defined) at the critical point, and (D) "scaling laws"
in the critical region. Applying our formalism to the rectangular two-dimensional Ising
model with nearest neighbour interactions, we show that its phase transition possesses the
properties (B) and (C), as well as (A).

1. Introduction

The Ising model has for some time played a notable role in the
theory of critical phenomena, due to the fact that it provides a relatively
simple example of a phase transition of the second type which does not
correspond to a mean field theory. In particular, the two-dimensional
version of the model, with nearest neighbour interactions, β2* has proved
to be exactly solvable in certain respects, and thus has provided a testing-
ground for various general ideas concerning critical phenomena. Specifi-
cally, Onsager [1] has obtained an exact solution for the thermodynami-
cal functions of β2* demonstrating that its specific heat has a singularity
at a well-defined temperature τc. Among the significant extensions of
Onsager's solution is the treatment by MontroU, Potts and Ward [2] of
the correlations between a pair of spins in β2, revealing a transition from
short-range order (clustering) to long-range order (non-clustering) on
passing through τc from above. On a heuristic level, Kadanoff and
collaborators [3] have based a theory of the so-called "scaling laws" on
the behaviour of these correlations in the critical region.
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The object of the present article is to provide a C*-algebraic frame-
work for the characterisation of critical phenomena in a certain class of
Ising spin systems: this class is large enough to include all finite dimen-
sional rectangular lattice models with nearest neighbour interactions.
Our main aim is to obtain conditions under which a given Ising system
exhibits a phase transition characterised by:

(A) a singularity in a thermodynamical potential at a temperature τc;
(B) a spontaneous symmetry change1, associated with a spatially-

ergodic decomposition of the Gibbs state, on passing through τc;
(C) the divergence of a "correlation length" (suitably defined), as the

temperature τ ->τc ± 0; and
(D) scaling laws in the neighbourhood of τc.
Our investigation is centred on the infinite-volume Gibbs states of

the system. By extending Onsager's transfer matrix method, we are able
to express properties of such a state in terms of a contractive transforma-
tion, v0, of a certain Hubert space la. The properties of v0 are determined
by the temperature and by the interactions in the system. Thus, we
obtain conditions on vθ9 i.e. on the temperature and interactions, under
which the system exhibits a phase transition, with properties (A)-(D).
In the particular case of /2>

 w e show that the transition is characterised
by (B) and (C), as well as (A).

The subject-matter of the article will be presented as follows. In
Section 2, we formulate the C*-algebra of observables, s/, for a system
of Ising spins on an assembly of sites, S=T x Z, where Z is the set of
integers and T is an arbitrary countably infinite point set. We define
automorphisms ρ, G oϊjtf, where ρ corresponds to spin reversals and G to
the group of space translations along the Z component ofTxZ. We also
define auxilliary C*-algebras ^ , ώ generated respectively by Ising and
Pauli spins on the set T.

In Section 3, we specify the interactions between the spins, and then
construct the Gibbs state, φ, on s/9 for temperature τ, as a limit of finite
volume Gibbs states.

In Section 4, we employ the transfer matrix formalism to express the
properties of φ in terms of those of an associated state Ψ on $. This leads
to a formulation of the G-correlation functions, for φ, in terms of a semi-
group, {υn

Q\neZ + }, of contractions of a certain subspace, § 0 , of the
1 A different kind of symmetry change has been formulated by Dobrushin [4], who

has shown that, in certain cases, the state of an Ising spin system can depend on symmetry-
breaking boundary conditions, even in the thermodynamical limit.

l a After this manuscript was completed, D. Ruelle kindly drew our attention to a
recent paper by R. A. Minlos and Ja. G. Sinai (Teor. i Matem. Fizika 2, (2), 230—243 (1970))
in which certain properties of Ising spin system are expressed in terms of a stochastic
operator P^. It may readily be seen that this latter operator is closely related to the one
denoted by v0 in the present article.
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GNS space for Ψ (Proposition 4.1). Thus we obtain conditions on v0 for
the G-ergodicity, and for spontaneous ρ-symmetry breakdown of
the state φ associated with its G-ergodic decomposition (Propositions
4.2,4.3).

In Section 5, we employ the results of Section 4 to specify conditions
under which the system exhibits a phase transition characterised by (A),
(B) and (C). In particular, we show that ^2 exhibits a transition which
it is characterised by these properties.

In Section 6, we obtain scaling laws for the critical region, on the basis
of the results of Section 4, supplemented by additional assumptions on
the spectral properties of the contraction t>0. In Section 7, we summarise
our conclusions.

Throughout the article, we shall use the standard symbols R, R+,
Z, Z+ and C to denote the real line, the positive reals, the integers, the
non-negative integers and the complex plane respectively. If a, b e Z,
we denote by [α,b] the set {n\neZ;a^nSb}. If Jf is a Hubert space,
we shall denote by JSPpf) the set of all bounded operators in J^. If E is a
topological space, we shall denote by ^(E) the set of all complex-valued
continuous functions on E. If F is a countable set, we denote by
(resp. ^f(F)) the class of all (resp. finite) subsets of F.

2. The Observables

Let S, the assembly of sites, be a set T x Z, where T is a countably
infinite point set. Denoting points in Γ, Z, S by ί, n, s = (£, n\ respectively,
we define {un \ n e Z} to be the group of transformations of S given by

un(t, ή) = (t,n + n% \/teT;n,nfeZ. (2.1)

For neZ and Le0>(S\ we define unL = {s\u.nseL}.
Let K be the set { — 1,1}, equipped with the discrete topology:

K thus corresponds to the set of possible values of an Ising spin at a site.
For L e 3?{S\ M e ^(T), we define XL, YM to be the topological powers
KL, KM, respectively. Thus, XL (resp. YM) is the spin configuration space
for L (resp. M). It follows from our definitions of these spaces that XL,
YM are compact (Tychonoff s theorem) and that

XLUL' = XL* XU for L, L e ^(S), LnL' = β, (2.2)

YM.M=YMXYM' for M , M ' 6 ^ ( T ) , M n M ' = 0, (2.3)

and XMXN=YNM for M e 0>(T), ΛΓ e ^ ( Z ) . (2.4)

Elements of XL, YM will be denoted by xL, yM, respectively. For seL
(resp. t G M), we shall denote the s'th projection of xL (resp. ί'th projection
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of yM) by xs (resp. yt). We shall sometimes denote xMxN by y^9 and, for
M e AT, we shall denote the rc'th projection of y^ by yj$.

We define si (resp. J>) to be the C*-algebra <g(Xs) (resp. ^(Yτ%
equipped with the uniform norm, si is taken to be the algebra of observab-
les for the Ising spin system. For L e &*f(S) (resp. M e £Pf(T)\ we define
siL (resp. @M) to be the subalgebra of si (resp. 88) whose elements A
(resp. B) possess the property that, if xs = (xL, xsχL) (resp. yτ = (yM, y Γ W ) )
then v4(xs) (resp. £(yΓ)) is independent of xS\L (resp. yT\M). Hence s/L

(resp. J ^ ) is isotonic with respect to L (resp. M). Defining ^ = (J J / L

and 08j = 1J J*M, it follows from the Stone-Weierstrass theorem
Me&f(T)

that ^ , ^ are dense in s/9 &, respectively.

Definition 2.1. For L e ^-(S), M e ̂ y (T) we define the bijective maps
pL: s/L^^(XL) and qM: ΛM-»#(YM) by the formulae

p L ^ = ΛL ^ L (x L ) = A (xL, x s y L) V l̂ G J / L , xL G XL, x s y L G X s y L (2.5)

and

; ^M(3^M) = # 0 ^ ^Γ\M); V i5 G &M, yM e 7M, yΓ\M G 7 Γ W . (2.6)

β. These definitions are unambiguous because of the independence
of A(xL,xsχL) (resp. B(yM,ynM)) of xsχL (resp. y τ y M) for AejtfL (resp.

Definition 2.2. For M e ^/(T), N e ^ ( Z ) , we define Ĵ MΛΓ to be the
subset of s/M x N whose elements A are of the form

A(x)= Π ^ ^ " ^ (2 7)
neN

where the β(n)'s G @M\1M. We shall denote v4 by f ] ^(M) Further, we

define J= [j J/MN. neN

f
Ne0>f(Z)

Note. It follows easily from Definition 2.2 and the Stone-Weierstrass
theorem that, for Me^(T) and Ne0>f(Z\ <stfMxN is the C*-algebra
generated by ssfMN, and is also the norm closure of the space of finite
complex linear combinations of elements of s/MN. Hence, J / is the norm
closure of the set of finite complex linear combinations of elements of
si, i.e., si serves as a basis set for si.

Definition 2.3. (i) We define G (resp. G+) to be the group (resp. semi-
group) {τn I n G Z (resp. Z+)} of automorphisms of si given by

= A ( τ ' n x ) , V x e l s , neZ

where (τ'n
χ)s = xunS, VxeXs , seS,neZ .

Thus, G corresponds to space translations along the Z-component of S.
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(ii) We define ρ (e Autj/) by the formula

, xeXs

where {ρ'x)s = — xs9 Vx e Xs, s e S.
Thus, ρ corresponds to spin reversals.
(iii) We define j/("> = {A\Aestf,ρA = -A}, and ^ "

Definition 2.4. (i) We define ©G to be the set of states, ψ9 on si which
are invariant with respect to G, i.e. ψ = ψ°τn, Vrc e Z.

(ii) We define gG to be the set of G-ergodic states on J/, i.e. gG is
the set of extremal elements of the convex, w*-compact set ©G.

(iii) We define ©ρ to be the set of states, ψ', on si that are invariant
with respect to ρ, i.e. ψ' = \p'°ρ.

Having defined si and J*, we now introduce another algebra, ^ ,
as follows. For each M e 0*f(T), we define f̂M to be the finite-dimensional
Hubert space

f(yM)9(yM)\-
JVMeYM

It follows from this definition and Eq. (2.3) that

^MVM> = ^M®^M'\ VM9M'e0>f(T), MnM' = β. (2.8)

For M e έPf(T), let $M denote the algebra of bounded operators in J-fM,
equipped with the uniform norm. For M C M ' G ^ T ) , we identify
B(e έ§M) with B ® IM'\M (e $u)- Under this identification, $M is isotonic
with respect to M. We define ώ to be the C*-algebra given by the norm
completion of (J ώM{~ώj). It follows from our definitions that ffl

possesses the local commutivity property:

^M^^M2, for MuM2e0>f{T), with M1nM2 = 0. (2.9)

Definition 2.5. (i) For M e &f{T\ we define αM to be the bijective map
of J onto C€{ΎU x YM) given by:

ocMB = BM;(Bf)(yM)= X BM(yM,yf

M)f(y/

M)^feJ^MiyMEYM. (2.10)

(ii) F o r teT a n d r = 1,2, 3, we define σ| r ) e ^ { ί } by :

(a w ^ ( 1 ) ) (y(, J V ) = y (y« + Λ ); (« w i i 2 ) ) (y(, y.) = y (y, - jί)

and (alt)V
3))(yt,yt.) = γ(l-yty't)- (2.11)
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(iii) For M e 0>f(T) and r = 1,2, 3, we define σg by the formula

ΛΓoίe. It follows from Definition 2.5 that the σίr)'s conform to the
algebra of Pauli matrices, i.e.

[ σ M r > ] _ = 0 for ί φ ί ' ; and 1

(<7<">)2 = J ; σ<1>σP> = id<3>; σ j 3 ^ = iσ{2> ί{2>σ<3> = iσj^. J l j

It also follows from our definitions of & and the σ's that $ is the C*-
algebra generated by {σ<r) | ί e T; r = 1,2,3}.

Definition 2.6. For M e ^ ( Γ ) , we define δM to be the imbedding
into ^ M given by:

y M e y t f . (2.14)

We define δ to be the imbedding of $ into $ given by

< W = <SM, VMe&f{T). (2.15)

We shall denote the image of 3S (resp. J*M) under δ by <#0) (resp. «£>).

3. Interactions and Gibbs States

We shall formulate the properties of the infinite assembly of spins
in terms of those of a sequence of finite sub-assemblies. For this purpose,
we introduce covers Jί (e έPf(T)) and Jί (e 0*f(Z)) of T and Z, respectively,
where / = {[α,b];c,i(>α)eZ}. We assign to each MxN (MeJί,
N e Jί) a Hamiltonian HMN (a real-valued element of ^(YM)) correspond-
ing to the potential energy of a system of spins confined to that region.
It is assumed that HMN is of the form

HMN(yN

M) = Σ / M ( J © + Σ gM y%+ υ ) > O i)
neN «eJV

where, for N = [α, ft], (b + 1) is identified with a in the last sum (cyclical
boundary conditions). Clearly, fM(y{$) corresponds to the energy of
interaction between spins in the "hyperplane" T x {n}, and gM(y{M^
y(M+ υ ) represents the interaction between neighbouring hyperplanes. We
shall assume that gM is of the form

QM^M,yf

M)=~J Σ yty't (3.2)
teM

with JER+; and that fM possesses the following property (P): There
exists a map v:Jί-*0>f(T) such that, if M'eJi and v ( M ' ) C M e l ,
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then fM may be expressed in the form

fuiyu) = / # ί r , ( W +/ff\M'(̂ M\M') (33)

where / v % ^ ^( j ;^)) and /£{M, e

Physically, v(M') corresponds to the union of M' with the maximal
subset of T\Mf whose spins are coupled to those in M'. Thus, (P) signifies
that the interactions within each hyperplane are of finite range.

The theory will be concerned specifically with the following cases.
Case I. This is β2, the two-dimensional Ising model, with nearest

neighbour interactions and toroidal boundary conditions, in the absence
of any external magnetic field. In this case, T = Z, Jί is taken to be
{[>', b'~\ a\ b'{>a') e Z}, and fM is given by the formula

fM(yM)=-JfΣytyt+i (3.4)
teM

where J' eR+ and, for M = [α', &'], (br + 1) is identified with a'.
Case II. In this case, T is an arbitrary, countably infinite point set,

Ji = ^f(T), and fM corresponds to interactions between finite groups
of spins in M. Specifically, there exists a positive integer p0 and, for
p e [ l , p 0 ] , a non-negative function Jip) on Tp such that

fM(yM)=- Σ Σ Jip)(h,...,tp)ytι...ytp. (3.5)
pe[l,p0] ti,...,tpeM

Further, the functions Jip) are stipulated to accord with property (P):
i.e., given p e [1, p 0 ] and ί e T , there exists at most a finite set of points ί',
in T, such that {ί, ί'} C a set {tl9...,tp} for which J ( p )(i 1 ? . . ., i p) + 0.

Case II'. This corresponds to Case II, with the restriction that
jr<*> = 0 when p is odd.

iVoίβ. II includes the cases of rectangular Ising models of arbitrary
finite dimensionality d (i.e. T = Zd~x) with finite range interactions in each
hyperplane T x {n}, in the presence of an external magnetic field (re-
presented by J ( 1 )).

Note. The Case IΓ corresponds to the restriction of II to cases where
HMN is invariant under spin reversals (yM-» — yM\ and thus where there
is no external magnetic field.

Definition 3.1. For M e Jί, N eJί, we define the Gibbs state φMN, on
i M x ] V , corresponding to the inverse temperature β, by the formulae

ΦMN(Λ) = EMN(A)/EMN(I) (3.6)

with EMN(A)= Σ AMxN(yN

M)expt-βHMN(yN

M)-] (3.7)

and AMxN = pMxNA. (3.8)
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The following lemma, concerning the properties of φMN in the
thermodynamical limit, will be derived in Appendix 1 from standard
properties of the Ising model.

Lemma 3.1. (i) In both cases (I) and (II), there exists a unique state φ
on si, such that

φ(A) = Jt-\imJf- lim φMN(A), VAes/y (3.9)
M->oo N-> oo

where Ji— lim (resp. Jί — lim)refers to the limit with respect to any
M->oo \ N-*oo)

increasing sequence of elements of M (resp. Jί) whose union covers
T (resp. Z).

We shall refer to φ as the Gibbs state corresponding to the inverse
temperature β.

(ii) φ e © G .
(iii) In Cases (I) and (IΓ), φ e ©ρ.

Definition3.2. (i) We define μ to be the (unique) measure2 on SG

induced by the G-ergodic decomposition of φ, i.e.

φ= !φadμ(*). (3.10)
sG

(ii) We say that φ undergoes a ρ-symmetry breakdown associated
with its G-ergodic decomposition if φ e ©ρ and μ(<ίG\©ρ) φ 0.

Definition 3.3. (i) We define F ^ x j / x Z ^ C b y the formula

neZ. (3.11)

(ii) We define Fη: si x si-+C to be the ergodic mean3 of F9 i.e.

i m

FJAf, A) = lim — £ F(^', ̂  n) VΛ', yl e J / . (3.12)

(iii) we define F': si x si x Z -> C by the formula

ej^,weZ. (3.13)

β. Since J / is Abelian, it follows from Lemma 3.1 (ii) and Definition
3.3 (i) that F(A',A;n) = F(A,A'; — n), and thus F is determined by its
restriction to i x i x Z + . Consequently, since j/~is a basis set in si,
it follows that F is determined by its restriction to si x si x Z+. Likewise

2 The uniqueness of the G-ergodic decomposition in the present case follows easily
from the general treatment of G-Abelian groups, by Lanford and Ruelle [5].

3 The existence of this mean follows easily from the application of Riesz's ergodic
theorem (Ref. [8], p. 407) to the unitary representation of Z induced by G in the GNS space
for φ.

23 Commun. math. Phys., Vol. 24
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F\ Fη are determined by their restrictions to i x / x Z + , i x i ,
respectively.

Note. Since the elements of SG are weakly G-clustering, it follows from
Definitions 3.2 (ii), 3.3 (iii) that

Fη(A'9 A) = J dμ(a) φMΊ ΦM), VΛ', A e s/ (3.14)

and

J . (3.15)

Since the integrand in (3.15) corresponds to the G-correlation function
for the ergodic state φa9 we shall refer to F1 for the μ-correlation function
for φ.

Lemma 3.2. IfFη does not vanish on s/i~) x srf{~\ and ifφ e (5ρ, then φ
undergoes a ρsymmetry breakdown associated with its G-ergodic de-
composition.

Proof. Assume that Fη does not vanish on stf{ ~) x J / ( - ) . Then it
follows from Eq. (3.14) that 3A', A e J / ( " } such that J dμ(oc) φ^A^φJ^A)

$G

φθ. Hence, </>α|̂ (_) cannot vanish a.e. on suppμ; and consequently, by
Definitions 2.3 (iii), 2.4 (iii), φΛ cannot belong to ©ρ a.e. on suppμ. There-
fore, μ(S'G\&ρ) 4= 0, which proves the lemma. Q.E.D.

4. The Transfer Matrix Formalism

In this Section, we present a formalism which enables us to express
the G-correlation functions for the state φ in terms of a one-parameter
semi-group of contractions of a certain Hubert space (Propositions 4.1,
4.2).

Definition 4.1. Corresponding to the above formulation of HMN we
define VM e %(YM x YM) (for M e Jί) by the formula

ί-βJ
\ ίeM

We then define VM(e ΛM) and fM(e^) by the formulae

VM = aMVM (4.2)

and fu = Kfu\ (43)

i.e., by Definitions 2.5 and 2.6

VM = CMexp(-$βfM) exp(J| σg>) exp(-i/ϊ/M) (4.4)

where J£ = tanh" 1(2^"^J) (4.5)
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and CM = (2sinh2J|)^VΛί, where γM is the number of points in M. In
accordance with a usual terminology, we shall refer to VM as the transfer
matrix.

Note. It follows from Eq. (4.4) that VM is a positive selfadjoint bounded,
invertible operator in the finite-dimensional Hubert space 3tfM.. Further,
by Eq. (4.1), VM(yM, yM) in positive and therefore, by Frobenius's theorem,
the principal (i.e. largest) eigenvalue of VM is non-degenerate.

Definition 4.2. Let the principal (normalised) eigenvector and eigen-
value of VM be ΩM, ΛM, respectively. Then:

(i) We define ϋM, the normalised transfer matrix, by the formula

vM=VJΛM, (4.6)

and we denote by {EM(λ)} the family of spectral projectors for vM

(μd(λ))
(ii) We define wM: ^M~^^M by the formula

wMB = ΰMBvMί(=VMBVMi), VBe&M. (4.7)

(iii) We define ΨM to be the state on 38M given by:

ΨMφ) = (ΩM,BΩM), VBe<%M. (4.8)

(iv) We introduce a cover Jt'(cJt) of T such that Jί' - lim ΨM(B)
M->oo

exists, ^IBeώy. such a cover may be constructed by means of the
diagonal process, in view of the fact that £§M is a finite-dimensional
vector space when M e &f{T). We define Ψ to be the unique4 state on £
for which ψ{β) = Jί,_ l i m {β) ^ v ^ e rf ( 4 9 )

M-+00

(v) We denote by ($, π, £2) the GNS triple (carrier space, representa-
tion, cyclical vector) corresponding to the state Ψ on έ§.

Note. Although Ψ may depend on the choice of Jί\ this choice will
be irrelevant to our formulation of the properties of φ (e.g. in Proposi-
tion 4.1).

Definition 4.3. For NfeJt, let λM9 ΣM denote the second largest
eigenvalue and the spectral set, respectively, of ΰM; and let Σ(J(')
= {ΣM\MGJt'}. Then:

(i) We say that the principal eigenvalue of ΰM is ^-asymptotically
degenerate (resp. non-degenerate)5 if Jt contains a subcover, Jtθ9

of T such that Jί^ - lim λM = 1 (resp. +1). Note that there might exist
M-+CO

subcovers Jt'θ9 Jt"0 of T such that the principal eigenvalue is asymptoti-
cally degenerate with respect to Jt'o and non-degenerate with respect
tόJ("0.

4 That equation (4.9) uniquely defines Ψ follows from the fact that ύj is dense in U.
5 The significance of asymptotic degeneracy has been emphasised by Kac (cf. Ref. [6]).

2 3 *
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(ii) We say that Σ(Jί') possesses the property Q if, for sufficiently
large M eJί', ΣM is given by ΣfflvΣffl, such that:

(a) Σ(M] C [0, A\ where A(< 1) is independent of M; and
(b) Σg> C [dM, 1], where ΛT' - lim dM = 1.

M-»oo

We define Ao to be the infimum of the values of A for which Σ M can
be expressed as such a union.

(iii) We say that Σ(JC) possesses the property Q if it satisfies Q and
if, in addition, 3BUy.,Bn+^ e # £ } and l1,...,lneZ+, n<oo and, for any
λ<Δθ9 \(EM{Δ0)-EM{λ))B1ϋ

ι^B2v%...vι^BnΩM\ does not converge to
zero as M(e M') -> oo.

Note. Definition 4.3 will not be involved until Section 5. For the
moment we note that it follows6 from the Schultz-Mattis-Lieb (SML) [7]
formulation of β2 that, in case (I), Σ(Jί) possesses the property Q except
at the transition temperature; and that the principal eigenvalue of vM is
^-asymptotically degenerate (resp. non-degenerate) below (resp. above)
that temperature.

Lemma 4.1. (i) There exists a unique linear map w:$f-*@j such
that, given B e # , , 3M0(B) e Jί.

wMB=wB, VMDM 0 (β). (4.10)

(ii) Ψ(wB)=Ψ(B), VfleΛ,. (4.11)

Proof, (i) Let Be&j, i.e. Be$M, for some M' eJi. Then in view
of property (P), Definition 2.5 and Eq. (4.3), fM may be expressed in the

/ M — /v(M')+ / M\M' \^ΛZ)

where f(1) F <^(0) f ( 2 )

wnere / V(M/) e ^ v ( M ' ) , / M\
/ v(v(M')) f c t > S ίv(v(M'

Further, it follows from Eq. (2.12) that

Λ(3) _ £(3) , -.(3) M -j Ύ\
σM — σM\v(M') + σv(M') V̂  1 ^ /

Since the algebra ^ ( 0 ) is Abelian (being isomorphic with 38% and since $
possesses the local commutativity property (Eq. (2.9)), it follows from
Eqs. (4.4), (4.7), (4.12), (4.12;) and (4.13) that

wMjB = βjδβ- 1,VMDv(v(MO), (4.14)

with Q = txp(-jβf%MΊ))exp(-J*βσ%Ί)exp(-^βf%Ί) . (4.15)
6 One can infer from SML that f2 possesses the property β, except at β = βc, by

considering the case where n = 1 and B^yj) = yx. For, using the technique employed in the
last part of our proof of Lemma 3.1, it follows easily that, in this case.

Jt - lim \(EM{Δ) - EM(λ)) B, ΩM\\ Φ 0 for λ < Δo .
M-* oo
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Therefore, since Q is independent of M, the required result follows
directly from Eq. (4.15).

(ii) It follows from (i), together with Definition 4.2 (ii), (iii) that, for
MDM0(B), ΨM(wB)=ΨM(wMB)=ΨM(B). Hence, by Eq. (4.9), Ψ(wB)
= Ψ(B). Q.E.D.

Lemma 4.2. (i) There exists a positive self-adjoint contraction, ΰ9

of ' § , uniquely defined by the formula

. (4.16)

(ii) vΩ = Ω. (4.17)

Proof, (i) Let vί: π(β,) Ω-»§ be defined by:

v1 πφ) Ω = π(wB) Ω, V£ e &J .

Hence, by Definition 4.2 (i) — (v) and Lemma 4.1 (i), if BeOS j 9 then

M ( M )
M-+CO M-+00

Since yM is a positive self-adjoint contraction of ̂ fM, it follows that the
right-hand side of this equation is real, non-negative and

( M , M ) = Jΐf- lim ΨMφ*B)=ψφ*B)=\\πφ)Ω\\2 .
M-»oo M-+oo

Hence (πφ)Ω9 vίπφ)Ω)e [0, | |π(B)Ω||2], V J B G J ^ . Therefore, since
π(βJ)Ω is dense in § , i;x admits a unique extension to a bounded, self-
adjoint contraction of § . This contraction is the required operator v.
(ii) follows on putting B = I in Eq. (4.16), and noting that Definition
4.2 (ii) and Lemma 4.1 (i) imply that wϊ = /. Q.E.D.

Definition 4.4. (i) For each M e M9 we define the map ΘM of (J j ^ N

f

into J^P^M) as follows. Let A = JJ B(n) e sίMN (in the notation of
neNo

Definition 2.2), with No = {nu n2,..., nk} C N e &>f(Z)9 nι<n2- - <nk, and

the £(n)'s e ΛM. Then, denoting δ(B(n)) by β (n),

(4.18)

(ii) We define the map θ of j / i n t o JS?(§) as follows. Let 4̂ = f ] β ( w )

«eiVo

^ N as above. Then

Θ(A) = π ( £ ( n i ) ) v n 2 ~ n i π φ { n 2 ) ) v n 3 - n 2 π φ ( n 3 ) ) . . . v n ^ n k - ' π φ ( n k ) ) . (4.19)

Lemma 4.3. φ(A). = (Ω, Θ(A) Ω), V^ e J / . (4.20)
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Proof. Let A = f ] B{n\ as in Definition 2.2 with the £ (n)'s e ΛMo and

Mo G 0>f(T). Then it foίlows from Eq. (2.5}-(2.7), (3.1), (3.2), (3.7), (3.8), and
(4.1) that, for Mo C M e Jt and No C iV = [α, 6] G ̂  = ̂ ( Z ) ,

rm-i I Γ Π 2 - 1 I

JW^) = Σ Π ^ M ^ ^ ^ ^ ϋ ί f 1 ^ Π M̂()>M>J>M+1))
yfieyfiL« = α J « = m J

Γ nk-l I Γ b I

x % V7M ; x 11 yM\yM>yM )\DM UM n II vM\yM^yM )\

where B$ = qMB{n\ and (fc +1) is identified with a in the last product.
Thus, by Definitions 2.5, 2.6 and Eq. (4.2),

= A M Tr^>M \_vM

a ΘM(A)]

and therefore, by Eq. (3.6),

Jί — lim ΦMN(A)— lim Tr^>M[ί35ίf θM(A)~]ITxjfM[vτlί~] . (4.21)
N—*co «-*oo

Further, by Definition 4.2, vn

M tends normwise to the projection operator
for ΩM, as n-*oo. Hence, it follows from Eq. (4.21) and the finite-dimen-
sionality of J-fM that

Jί - lim 0 M N μ ) = (ΩM9 ΘM(A) ΩM). (4.22)
JV-»oo

By Definitions 4.2 (ii) and 4.4 (i),

ΘM(A) ΩM = B("')(wS""' B(B2)). (w£-"' B(Bk)) Ω M .

Hence, it follows from Lemma 4.1 (i) that, for M sufficiently large,

ΘM(A) ΩM = £<"> V - » i £<">>)... (W-.--ΊB0*)) Ω M .

Thus, defining

), for r = l,...,/c, (4.23)

we see that (ΩM, ΘM(A) ΩM) = (ΩM, κx(A) ΩM)\ and therefore, by Eq. (4.8)
and (4.22),

Jf - lim φMN(A) = ΨM(Kl (A)). (4.24)
N~*oo

It now follows from Eqs. (3.9), (4.24), together with Definitions 4.2 (iii)-(v),
that

φ(A) = Jt' - lim Jί - lim φMN(A) = (Ω, π(κx(A)) Ω). (4.25)
M->oo JV-»oo
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Moreover, by Definition 4.2 (ii), Lemma 4.1 (i) and Eq. (4.23),

Φ{ for r = l , . . . , k - l .

Thus, π f o (A)) Ω = π(B(ni)) vn2~ni π(B(rt2)) ...υ"*-"*-1 π(B(nk)) Ω, i.e., by
Definition 4.2 (ii),

(4.26)

Eq. (4.20) follows directly from Eqs. (4.25), (4.26). Q.E.D.

Definition 4.5. (i) We define § 0 to be the subspace of § generated by
linear combinations of vectors υhπ(B^) vhn(B2)... υlrπ(Br) Ω, with
r,ll9...9lreZ+ and Bl9 ...,Bre J ( 0 ) . Thus, § 0 is stable under both v
and π(J ( 0 ) ) .

(ii) We denote the restriction of v to § 0 by u0.
(iii) We define Eo to be the projection operator for the subspace of § 0

spanned by vectors that are invariant under v0. (Thus, by Lemma 4.2 (ii),

£o£o )
(iv) We define v'Ό = v0- Eo.
(v) We define maps α, α* of si into § 0 by the formulae

= Θ(A) Ω α* (A) = Θ{A)* Ω VAeJ. (4.28)

Lemma 4.4. a(j/)(^a*(j/)) i5 a fcasfs 5̂ ί in § 0 .

Proo/. It follows from Definitions 4.4 (ii) and 4.5 (v) f

φ φ j
Hence, since J ^ N / is norm-dense in ̂ ( 0 ) , it follows from Definition 4.5 (i)
that (x(J) (= <x*(s/)) forms a basis set in § 0 . Q.E.D.

Proposition 4.1. (i) φ(A) = (Ω, oc(A)) = (α*μ), Ω), VA e J. (4.29)

(ii) Given A', Aestf,3no = no(A\ A)eZ such that for n0 < n(e Z),

F(A',A; ή) = ( α * μ θ , υn

Q-n°a{A)). (4.30)

(iii) F,μ',^l) = ( α * μ θ , £ 0 « μ ) ) ; V ^ ' , i e i . (4.31)

(iv) F(A',A;n) = (α*μ'X(v'0Γ
nooc(A));VA',iei,n>n0. (4.32)

Proo/ (i) follows from Lemma 4.3 and Definition 4.5 (v).
(ii) Let A, A' e j£, where A = f| Bin\ as specified in Definition 4.4,

πeN0

and

4' = Π B'(n) > w i t h ^o = to,. .,nί} e ^ ( Z ) and nΊ < n'2 < < n',.

Denoting n'ι — n1 by n o ( = n o ( ^ ' , 4̂)), it follows from Definitions 2.3 (i)
and 4.4 (ii) that, for n> n0, θ{A'τnA) = Θ(A') vn~noθ{A). Hence, it follows
from Lemma 4.3 and Definition 3.3 (i) that

F(A', A;n) = (Ω, Θ(A') v"-noθ(A) Ω).
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Consequently, by Definition 4.5 (ii), (v),

as required.
(iii) It follows from (ii) that, for m(eZ + )>w 0 ,

m I no m + «o \

ΣlF(A',A;n)-(a*(A'),v»0-"°«(A))-]= £ - £ \F(A',A;n),
n=ί \n=l n = m+l/

f 0for n o > 0 ,

= 0, for no = 0,

/ m-no -«o\

= Σ - Σ )(<x*(A'),v»oa(A)),

for n0 < 0.

(4.33)

Further, it follows from Definitions 3.3 (i), 4.4 (ii) and 4.5 (v) that, since
Ό0 is a contraction, \F{A\ A; ή)\ and |(α*04'), vn

0oc(A))\ are both ^ \\A\\ \\A%
VneZ+. Hence, by Eq. (4.33),

m m

Σ F(A', A n)- Σ («*(*), v°0«(A)) g\no\ \\A\\ \\A'\\, (4.34)
n = l n=l

irespective of whether n0 > or = or < 0.
Next we note that, since v0 is a contraction of § 0 , it follows from

Definition 4.5 (iii) that (cf. Ref. [8], p. 409)

j m

(5, £ 0 ) - lim — Σ
m->oo YYl π _ γ

and therefore, by the inequality (4.34),

1 m

lim —
m-»oo

The required result follows from this last equation, together with Defini-
tion 3.3 (ii).

(iv) follows from (ii) and (iii), together with Definitions 3.3 (iii) and
4.5 (iv). Q.E.D.

Corollary. (In || v'o | | " x ) " 1 = sup j r | r e R + lim F\A\ A ή) en/r'

= 0 for

Proof. Since a(<s/)(^a*(j/)) is a basis set in § 0 , and since ι/0 is a
positive self-adjoint operator in § 0 , it follows from Proposition 4.1 (iv)
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that

( l n l l ^ l l - 1 ) - 1 ^ sup lr\reR+; lim F'{A',A;n)enlr' = 0forr<r'eRλ
A',Aes/ [ n-» oo

Since s£ forms a basis set in srf, it follows from Definition 3.3 (iii) that this
last equation may be extended so as to yield the required result. Q.E.D.

In view of this Corollary and of the significance of F' (cf. Note at the
end of Section 3), we introduce the following definition.

Definition 4.6. (i) We define / = (ln| | ι; /

0 | | " 1)~ 1 to be the correlation
length for the state φ.

(ii) For A', Aes/,we define the correlation length

lA,Λ = sup{r\reR+; lim Ff(A',A; n)en/r' = 0 for r<r'eR+\ .

Thus, by the Corollary to Proposition 4.1, / = sup lA,A.
A',Aej*

Proposition 4.2. (i) φ is G-ergodic if and only if the projector Eo is
one-dimensional, i.e. if Eo is the projection operator for Ω.

(ii) Let § (

0~
) be the subspace of ξ>0 generated by α ^ * " * ) . Then Fη

vanishes on s/{~) x j ^ i ~ ) if and only if the spaces E0ξ>0, § (

0~
) are not

mutually orthogonal; in which case, if φe(5ρ,then (by Lemma 4.2), it
undergoes a ρ-symmetry breakdown associated with its G-ergodic de-
composition.

Proof, (i) It follows from Definition 3.3 (ii) that φ is G-ergodic (i.e.
weakly clustering) if and only if Fη(A'9A) = φ(A')φ(A), \/A',Aes#.
Since J / is a basis for s/9 this ergodicity condition is equivalent to:

Fη(A', A) = φ{A') φ(A), VA',A e J

i.e. by Proposition 4.1 (i), (iii), it is equivalent to the condition that

'), (£ 0 " E(Ω)) a(A)) = 0; VA',A e J ,

where E(Ω) is the projection operator for Ω. Thus, since a(j3?) = a*
is a basis set in § 0 , it follows that φ is G-ergodic if and only if Eo = E(Ω),
as required.

(ii) Since J / ( ~ } is a basis set in stf{~\ it follows from Definition 3.3 (ii)
that Fη vanishes on J / ( ~ } x J / ( - ) if and only if vanishes on «s?("J x ^ " l
By Definition 4.5 (v), oc(s/{~)) = oc*{s/(~));&nd by Proposition 4.1 (iii),
Fη{A, A) = (a*(A'),Eoa{A)), MA',AeJ{-\ Hence, Fη vanishes on J ^
χj{~\ and thus on s/i~) x srf{~~\ if and only if Eoa(J{~]) = 0, i.e. if the

spaces E0ξ>0 and § (

0~ ) are mutually orthogonal. Q.E.D.

Proposition 4.3. Let Σ(Jt') possess the property Q (specified in
Definition 43). Then:

(i) The correlation length /^(ln(^o l))~l



326 M. Marinaro and G. L. Sewell:

(ii) IfΣ{Jt') possesses the property g, then / = (ln(Jo 1 ) ) " 1 .
(iii) // the principal eigenvalue of vM is Jί^-asymptotically non-

degenerate for some Jί0CJ£\ then φ is G-ergodic.

Proof (i) By Eqs. (3.9) and (4.22),

F(A\A;n) = JT- Km FM(A',A;n),VA',AeJ9neZ, (4.35)
M-»oo

where FM(A\A;n) = (ΩM,θM(A'τnA)ΩM)yA',Ae (J JMN,neZ. (4.36)
Ne0>f(Z)

Defining n0 as in Proposition 4.1 (ii), it follows from Definitions 2.3 (i),
4.4 (i) that θM(A'τnA) = §M{A!) vn^θM{A\ Vn > n0. Hence, by Eq. (4.36),

FM(A\A;n) = (ΩMJM(A')vn

M-n<>θM(A)ΩM), for n>n0. (4.37)

Assuming now that Σ(JC) possesses the property Q, it follows from
Definition 4.3 (ii) that, for sufficiently large M(sJί'\ we may express vM

in the form

*M = W + f® (4-38)

where φ = J λdEM(λ); and t®= { λdEM(λ). (4.39)
-o d M -o

Let Effl be the projector defined by:

= EM(l)-EM(dM-0). (4.40)

Then since, by Definition 4.3 (ii), Jt' — lim dM = 1, it follows from
M->oo

Eqs. (4.38H4.40) that

^ ' - lim | | ϋ n M n o - { & $ ) " ' n o - E $ | | = 0 , Vn>n0.
M-*co

Consequently, by Eqs. (4.35H4.37),

) = Jl'- lim [F$(Af,A;n) + F$(A\A)-];VA\AeJ;n>n0, (4.41)
M->c»

where F<J>(^^;n) = (i2M >0M(^)(^ ))"-"o0M(^)«M) (4-42)

and F $(A',A) = (ΩM, ΘM(A') E$ΘM(A) ΩM). (4.43)

Further, it follows from Definition 4.4 (i) and Eqs. (4.39), (4.42) and (4.43)
that

\F^{A',A;ή)\^\\A'\\\\A\\Δn-"\ for n>n0, (4.44)

and \F$(A',A)\^\\A'\\\\A\\. (4.45)
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In view of this latter equation, it follows from the Bolzano-
Weierstrass theorem that Jί' contains a subcover, Jί'\ of T such that
M" — lim F$(Af, A) exists. Hence, defining

M-*oo

Fi2)(A', A) = Jί" - lim F${A', A), (4.46)
M-*oo

it follows from Eq. (4.41) that

ί"- lim F$(A'9A;n)9VA'9AeJ9n>n0. (4.47)

Since A < 1 (cf. Definition 4.3 (ii)), it follows from Definition 3.3 (ii) and
Eqs. (4.44), (4.47) that

Fη(A\ A) = F{2)(A\ A), MA\ AeJ (4.48)

and thus, by Definition 3.3 (iii) and Eq. (4.47),

F'(A',A;n) = J("- lim F${A'9A;n), \/A',AeJ, n>n0. (4.49)
M->oo

Consequently, by Definition 4.6 (ii) and Eqs. (4.44), (4.49), lA.A ^ A and
thus (by Definition 4.3 (ii)) ̂ Aθ9 MA\ AeJ.

Since stf is a basis set in j / , this inequality may be extended to all
A\ Aestf, and therefore /^(ln(Jo X)Y1-

(ii) It follows from Definitions 4.3 (ii), 4.4 (i), Eqs. (4.42), (4.49) and
the Bolzano-Weierstrass theorem that, ΊiΣ(Jif) possesses the property Q,
then 3A'9Ae'j/ such that lA*Λ = (ln{Δo1))~1. Thus, in view of (i),
/ = (ln(zl0-

1))-1.
(iii) Assume that the principle eigenvalue of ΰM is ^#0-asymptotically

degenerate, with Jί0 C Jt'. Then it follows from Definition 4.3 (i) and
Eq. (4.43) that

) ( M , M { ) M ) , for 0 ,

and hence, by Eqs. (3.9), (4.22),

Jlϋ - lim F${A', A) = φ(A') φ(A). (4.50)
M-> oo

Thus, the set M"9 which was introduced in the proof of (i), may be taken
to be Jί^\ and hence, by Eqs. (4.48), (4.50),

Since stf is a basis set in s/9 this last equation implies that

Fη{A',A) = φ{A!) φ(A), VA',A e st

and thus that φ is G-ergodic (weakly clustering). Q.E.D.
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5. Application to Phase Transitions

The following properties of the Gibbs state have now been established:
(1) (cf. Ref. [1]). The specific free energy, /, is given by

M-+00

where AM is the principal eigenvalue of VM and NM is the number of
sites in M.

(2) φ is G-ergodic if and only if the projector Eo is one-dimensional
(Proposition 4.2 (i)). Further, this condition is fulfilled if the principal
eigenvalue of vM is ^-asymptotically non-degenerate for some subcover
Jίo{CJί') of T (Proposition 4.3 (iii)).

(3) If the spaces E0ξ>0, §[)~
) are not mutually orthogonal (i.e. if Fη

does not vanish o n ^ ^ x ^ ^ ) then, if φ e (5ρ, it undergoes a ρ-sym-
metry breakdown associated with its G-ergodic decomposition (Pro-
position 4.2 (ii)).

(4) The correlation length / is given by (In ||t;ό|| " " 1 ) ~ 1 (Definition
4.6 (i)). In cases where the system possesses property Q, / = (lnzlo 1)~ί

(Proposition 4.3 (ii)).
Let us now consider cases where φ e © ρ and the system possesses the

following properties (a)-(d), which have already been established7 for
the model f2 (our Case (I)):

(a) / has a singularity at a unique inverse temperature βc.
(b) The principal eigenvalue of vM is ^-asymptotically non-

degenerate for β < βc.
(c) Fη does not vanish on j / ( ~ ) x £tf{~} for β > βc.
(d) Σ(Jί) possesses the property Q; and further Ao is a continuous

function of β, which takes the value unity at β = βc. It follows from (1H 4 )
that the properties (a)-(d) ensure that the system exhibits a phase transi-
tion at β = βC9 characterised by:

(A) a thermodynamical singularity;
(B) a change from G-ergodicity of the (ρ-invariant) state φ(β < βc)

to a ρ-symmetry breakdown of φ associated with its G-ergodic decom-
position {β>βc)

8;
(C) a divergence of / as β->βc ± 0.
Thus if φ G © ρ the properties (a)-(d) ensure that the system exhibits

a phase transition characterised by (A), (B) and (C). It should be em-
7 For the model ,/2> (a) is proved by Onsager [1] (b) is proved by SML; (c) follows from

the SML treatment of the asymptotic properties of the correlation function governing a
pair of spins and (cf. our footnote (6)), (d) also follows from SML.

8 A related result for the model β2 has been obtained by Emch, Knops and Verboven
[9], who show that, when β>βci the restriction of φ to a certain linear manifold of
observables for one row decomposes into weakly-clustering states of equal and opposite
non-zero polarisation.
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phasised that the concurrence of these three characteristics is rather
remarkable, since they depend on apparently unrelated features of the
model. For the free energy is governed by the principal eigenvalue of
VM9 the G-ergodic properties by the dimensionality of E0ξ>0, and the
length / by the gap between the principal eigenvalue and the rest of the
spectrum of v0.

Finally, we note that, if G is a subgroup of a larger amenable9 group H,
then G-ergodicity implies #-ergodicity. On the other hand, the iϊ-ergodic
decomposition is not necessarily a refinement of the G-ergodic one; and
therefore a ρ-symmetry breakdown associated with the latter decomposi-
tion does not ensure the existence of such a breakdown associated with
the former one. Consequently, further information is needed if one is
to extend the above conclusions from G to H. In the particular case of
the model /2> with H taken to correspond to the lattice group Z2, such
information is provided by SML's result that the asymptotic form of the
space-correlation between a pair of spins is independent of the direction
of their relative displacement. Hence, one easily concludes that, for
β > βc, the system undergoes a ρ-symmetry breakdown associated with
its iί-ergodic decomposition as well as its G-ergodic one. Thus, in the
case of /2, all our above conclusions may be extended from G to H.

6. Scaling Laws

Assuming that the model has a critical point, characterised by the
divergence of /, we now tentatively introduce a procedure designed to
lead from the formalism of Section 4 to the so-called "scaling laws".
These laws concern the asymptotic properties of the μ-correlation func-
tion F' in the critical region. We shall formulate properties of this func-
tion, subject to certain specified assumptions, for cases where gM, the
interaction energy in a "hyperplane" T, is of the form

where g$9 g$ are even and odd functions, respectively, of yM, and where
h is a constant. In the following analysis, we shall be concerned with the
dependence of F' on h and β. It should be noted that, in the particular case
where g{M = Σ 3̂> the last term in Eq. (6.1) corresponds to the coupling

ίeM

of the spin system to an external magnetic field whose strength, in
appropriate units, is h.

For a definition of "amenable group", see Ref. [10].
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Let {E'0(λ)} be the family of spectral projectors for v'o (i.e.
vf

0 = \λdE'0(λ)). Then it follows from Proposition 4.1 (iv) and Defini-
tion 4.6 that

F'(A',A;n) = - jf ̂ - ^ ^ ^ ^ ( ^ ( ^ - ^ o W ) ^ ) ) / , , , ^ ^ ^ ^ ^ , (6.2)

where Λ0 = exp( —Z"1), (6.3)

and where the (β, h) dependence of the inner product in Eq. (6.2) is
indicated by the subscripts. On changing the variable of integration
from λ to s( = λ/λ0) in (6.2), we obtain the formula:

^ (6.4)

where GΛ.A{β, h; s) = (α*μ'), (E'0(λ0) - E'o(λos)) oc(A))β,h. (6.5)

Noting that I is a function of β and ft, we now introduce the following
assumptions for Z and GAA\

(1) 3 an inverse temperature βc such that lim limί(β, /z) = 0; and
β^>βc±O h-+0

further, lA,A = Z for the pair (A\ A) of elements of J / under consideration.
(2) 3 a neighbourhood, D, of {βc9 0) in R x R, and a real-valued

function α on D such that
(i) the map β, h-+l, α of D onto l(D) x α(D) is one-to-one,

(ii) G^^ may be expressed in the form

GA.A(β,h;s) = (l-syMKA,A(l,a;s), (6.6)

where (iii) v is a function from α(D) into R+,
(iv) KA,A(l,<x;s) is finite for all ( ί ,α,s)€l(D)xα(D)x[0, l] , and is

continuous with respect to 5 at 5 = 1,
(v) lim KA.Λ(l, oc; 1) = kA,A(u) exists and +0, Vα e α(D),

/->oo

and

^ ( U ; i ) - ^ f t « ; ^ 0 a s ̂  for a l l s +

/(I - s)

the convergence being uniform with respect to s.

Note. Assumption (1) is designed to characterise the critical point
φ = βcίh = 0) in a manner that is consistent with the discussion of
Section 5. Assumption 2 consists of a refined version of the statement
that GAA behaves like a positive power of (1 — 5) in the neighbourhood
ofs = l.
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Proposition 6.1. Let fA.A(l, oc;x) = F'{A\ A n) Zv(α) with x = y . (6.7)

Then, under the assumptions (1) and (2),

limfA,A(l,α;x) = B * ' f f i * * , (6.8)

for fixed x * 0, wiί/z fi^α) = (2π)^ 2 Γ(v(α) + 1) kA.A{μ).

Note. This proposition corresponds to a statement of a generalised
scaling law of the type proposed on phenomenological grounds by
Coniglio and Marinaro [11].

Proof of Proposition6.1. Since, by Eq. (6.5), GAA = 0 at 5 = 1 , it
follows from the integration by parts of the integral in equation (6.4) that

F(A\ A;n) = (n-n0) exp^- fc^j }dss*-"*-' GA.A(l9 α; s).

Hence, by Eqs. (6.6) and (6.7), we may express fA.A in the form

where

, = ,x- τ j e X p l τ - ;

and ( 6 1 °)

|x z jexp|^ ; xj ^^

o

Now it follows from assumption 2(v) and Eq. (6.11) that, given
ε > 0,3 N(ε, α) < oo such that

/, α; x)| <εlx- ^-)exp ( - ^ - x) /2+*<*>
(6.12)

. j ί/ss ί χ - Π °- 1 ( l-s) v ( 0 ί ) + 1 , V/>JV(ε,α).
o

Using the identity f dss"- x ( l - s)*"1 = Γ ^ ̂  for α, ft > 0, it follows
o (a + b)

from Eqs. (6.10), (6.12) that

χ)-ίx-^eχDί° -xW, x) - ̂ x ^ j exp ̂ — xj KA,Λ

v ( α ) + t _ ^

(6.13)
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and

1*2)/, M I nθ\ (no

ΓVx-»0)Γ(φ) + 2} _ γ / >

 ( " 4 )

Γ(bc + v(α) + 2-rc0)

Using the asymptotic formula Γ(y)^(2π)^yy~^e~y, it follows from
assumption 2(v) and Eq. (6.13) that

\%(l, α; x) = (2π)*Γ(v(α) + 1) /c^(α) e~x/x^ . (6.15)
Z-»-oo

Similarly, it follows that, as /-> oo, the coefficient of £ on the right-hand
side of (6.14) tends to a finite value ( = (2π)*Γ(v(α) + 2) e~x/xv(a)+ *). Hence,
the required result follows from Eqs. (6.13) and (6.15). Q.E.D.

7. Conclusion

We have formulated spatial (G-) correlations in Gibbs states of
a specified class of Ising systems in terms of the quadruple (§ 0 , a, α*, v0)
(Propositions 4.1, 4.2). In particular, G-translations have been shown to
correspond to the one-parameter semi-group {VQ \ n e Z+} of contractions

In cases (e.g. ^/2) where the model possesses the properties (a)-(d),
specified in Section 5, the system has a critical point at the inverse tem-
perature βc, which is characterised by (A) a thermodynamical singularity,
(B) a change in ρ-symmetry associated with the G-ergodic decomposition
of the Gibbs state, and (C) a divergence of the correlation length / as
β^βc±O (cf. discussion in Section 5). Further, the supplementary
assumptions (1), (2) of Section 6 lead to a generalised scaling law (Pro-
position 6.1), of the type proposed on phenomenological grounds by
Coniglio and Marinaro [11], in the critical region. Thus the formalism
provides a framework for a systematic treatment of critical phenomena
in Ising systems.

It is worth noting (cf. Section 5) that the characteristics (A), (B), (C)
of the critical point depend on different features of vθ9 and therefore their
concurrence depends on some special properties of the model (e.g. (a)-(d)).
In fact, there exist other models10, for which the critical point possesses
properties (A) and (B), but not (C).

1 0 For example, cf. the BCS model as formulated by Thirring in terms of spins [16].
This model has a phase transition characterised by (A) and (B). However, since it corresponds
to a mean-field theory, the correlation functions corresponding to its ergodic states may be
easily shown to factorise in a manner which precludes the possibility of the characterisa-
tion (C).
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Our formalism has some points of analogy with those employed for
the treatment of a number of different models, in each of which spatial
correlations were related to the spectral properties of a contraction of
some Banach space (cf. Refs. [6, 12, 13]). Clearly, it would be of interest
to have a basic theory, yielding conditions under which spatial correla-
tions of a system correspond to a semi-group of such contractions.

Appendix

Proof of Lemma 3.1. It follows from Definitions 2.3 (i), 2.4 (i) and 3.1,
together with the cyclicity of the JV-boundary condition in Eq. (3.1),
that (i) implies (ii). Further, by Definitions 2.3 (ii) and 3.1, together with
the definitions of Cases (I), (IΓ), φMN = φMN°ρ in those cases; and hence
by Definition 2.4 (iii), (i) implies (iii). It therefore remains for us to prove (i).
This we shall do firstly for Case (II), and then for Case (I).

Case (II). For each Le£Pf(S\ we define σL(ejtfL) by the formula
°L{X) = Π xs- Then it follows from the generalised Griffiths inequalities

s<=L

(cf. [14]) that, for L C M x AT, φMN(σL) is a non-decreasing function of M
(i.e. ΦMN(VL)^ΦM'N(<7L) if M'CM). Thus,since JΓ- lim φMN(σL) exists

(by Eq. (4.22)) it follows that this limit is a bounded, non-decreasing
function of M. Consequently M — lim Jf — lim φMN{σj) exists.

M-»oo N-*oo

This establishes the required result, since {σL\Le^f(S)} is a basis
for si.

Case (I). In view of Eq. (4.24) (whose derivation does not depend
on Lemma 3.1), it suffices for us to show that

M- lim ΨM(B) exists, \fBe£j. (A.I)

Let Mu M2, M3 be arbitrary, mutually disjoint elements of ^f(T), and
let BMιM2lii(eάj) be defined by:

B M I M 2 M 3 = Π dίί> Π *g } Π < e (A 2)
ίieMi t2eM2 t^eMs

Then the set of all such BMlMlM3's form a basis for £, and thus (A.I) is
equivalent to the condition that

^ ~ }}m ΨMΦM1M7M3) exists (A.3)

for all mutually disjoint Ml9 M2, M3e0>f(T).
Let UM be the unitary, self-adjoint operator in M>

M given by

ί>M=ΓK 3 ) (A.4)
ί e M

24 Commun. math. Phys., Vol. 24
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Then it follows from Eqs. (34), (4.3), (4.4) and (A.4), together with Defini-
tions 2.6 and 4.2 (i), that UM commutes with vM. Therefore, since the
principal eigenvalue of vM is non-degenerate it follows that UMΩM

= ΩMeιγM, where γM is a phase angle; and thus, by Definition 4.2 (iii),

^M{BMIM2M3) = ΨM(UMBMίM2M3 ^ M 1 ) > (A.5)

for MDM1UM2UM3. On the other hand, it follows from Eqs. (2.13),
(A.2) and (A.4) that

UMBM1M2M3^'M = ( ~ 1 ) 12BM1M2M3 9 (A.o)

where Nί2 is the number of sites in MιuM2. Consequently, by (A.5),
^ M 0 M I M 2 M 3 ) = O if Ni2 is odd, in which case (A.3) is trivially satisfied.

It remains for us to establish (A.3) in the case where N12 is even.
For this purpose, we note that the SML techniques serve to express the
properties of ΨM in terms of those of an associated quasi-free state* 1

Ψ'M on the algebra $'M of CAR over M: this is the algebra generated by a
set {α*, α j such that [αf, αf,]+ = 0 and [αt, α?] + = δtt.Γ, Vt,f e M.

It follows easily from SML that, if N12 is even, ΨMΦMIM2M3)
 c a n

be expressed in the form Ψ'M(B'MιMjM3), where B'MlMlM3 is a uniquely
defined M-independent element of $'[a &], with a (resp. b) the least (resp.
greatest) element t in M 1 u M 2 u M 3 . Consequently, in order to establish
(A.3), it suffices for us to show that

Jί- lim Ψ'M{Bf) exists, V F e # f f l l ) 1 . (A.7)
M-*oo

Let C be an element of $\aM of the form C\ C2... C'w where each C'r
is an element αf or αf of the set {αί? oc?\te [α, fo]}. Then, since Ψ'M is a
quasi-free state, it follows that Ψ'M(C') is a sum of products of terms
Ψ'M(C'rC's)> By a trivial extension of the analysis of SML (Section 4), one
sees that Ψ'M(C'rC's), and thus Ψ'M(C'\ is ̂ -convergent as M-> oo. Hence,
since St\aj>\ ̂ s Λe C*-algebra generated by {α ί ? αf | ίe [α, fo]}, it follows
that (A.7) is valid. Q.E.D.
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