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Abstract. This paper continues the study started in [13] where classes of operations
were investigated in the partially ordered vector space approach to the theory of statistical
physical systems. In this approach the set of states is represented by a norm closed generating
cone K in a complete base norm space (V, K, B) and the set of operations is represented by
the set ίP of positive norm non-increasing linear operators on V. In actual physical experi-
ments it is usually the case that only certain subsets of K are available and it is supposed
that the set Γ(K) of such subsets is the set of split faces of K. The properties of two important
classes of operation are examined. The first class P of strong operations has the property
that each member leaves every element of Γ(K) invariant and therefore can be measured in
every restricted situation. The second class PP of pure operations has the property above
and also sends pure states into pure states. A study is made, in terms of the structure of
Γ(K), of when such operations are physically relevant. The paper ends with an examination
of Γ(K), P, PP in the Von Neumann algebra model.

§ 1. Introduction

The need to examine repeated measurements on a statistical physical
system led Davies and Lewis [7] to generalise the theory of operations
on such a system originally suggested by Haag and Kastler [23]. The
central idea is that the set K of states of the system is the important object
and that all possible changes in the system can be described by means of
operations on K. Whilst K represents all possible states of the system
certain well defined subsets of K play important parts in the theory. For
details the reader is referred to [12-14]. A strong restriction of the system
has as its set H of states a split face of the cone K and H may be regarded
as the set of possible states of the system arising from placing the system
in some kind of controlled environment. Clearly, the set of operations
which leaves H invariant is of some importance. Indeed, if the physical
configuration is such that only the particular strong restriction described
by H is under consideration, then this set of operations is the only one of
importance.

In practice, it is impossible in general to have a completely unrestricted
system and in any physical situation the set K is in fact a split face of
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some larger cone. Fortunately, it is true that in the situation occurring
here, the set Γ(H) of split faces of the split face H of K is precisely the set
of intersections of elements of Γ(K) with H. It follows that, even though K
is probably only a subset of the set of all states of the system, it is perfectly
justifiable to study K in isolation. Such considerations lead to the
conclusion that a very important class of operations is that which sends
each element H oϊΓ(K) into itself. Such strong operations were mentioned
in [13] but none of their properties were discussed. § 3 is devoted to a
study of the structure of Γ(K) and most of the results given are well
known and can be found in the work of Alfsen, Anderson, and Effros
[2, 3, 37], Combes and Perdrizet [4, 30], Cunningham [5], Gerzon [19]
and Wils [36]. The proofs are given only of those results which do not
seem to appear explicitly in the literature. In § 4 the properties of those
operations which leave a particular element H in Γ(K) invariant are
studied whilst in § 5 the set P of strong operations which have this pro-
perty for every H e Γ(K) is examined. It is in this section that the structure
of Γ(K) is important. Generally, Γ(K) is a complete Boolean algebra and
the special case in which Γ{K) is atomic is of importance. If PΓ{K), the
quasi-spectrum, is the set of atoms in Γ(K\ every j in P has a unique
decomposition into operations ;H, H in PΓ(K\ where j H is an operation
on the system whose set of states is H. A consequence of this result is
that if Γ(K) is atomic, for each simple observable A, it is possible to find
a strong operation j which measures A.

The set of pure states of the system is the set E(K) of points on extreme
rays of K. Whilst it is possible that E(K) = {0}, indeed this occurs in many
physical examples, in two important examples, the models of a classical
or quantum system with a finite number of degrees of freedom, E(K) is a
determining family of states. For each H in Γ(K), E(H) = HnE{K) and it
therefore depends upon the choice of H whether or not pure states are
important. It is shown in § 3 that if E(K) Φ {0}, PΓ(K) is non-trivial and
indeed that PΓ(K) possesses a subset P][Γ{K\ the spectrum, such that
for H e Pj[Γ{Kl E(H) * {0}. The join X7 of the elements of P^K) has the
property E(Kj) = E(K) and is the smallest element of Γ(K) containing
E(K). The systems for which pure states have importance are those for
which K = Kj. In § 6, the class of strong operations which send E(K) into
itself are examined. It is clear that only in the case K = KI have such
pure operations any relevance, since the condition that j sends E(K) into
itself makes no extra stipulation on the action of j on states with no
component in Kv

In § 7, the earlier results are applied to the Von Neumann algebra
model and using methods of [6, 32, 34, 35] pure operations are identified
when the Von Neumann algebra has atomic centre.
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The abstract formulation has been studied by Giles [20], Gunson [22],
Ludwig [26-28], Mielnik [29] and Pool [38,39], whilst pure operations
in the Von Neumann algebra model have been discussed by Haag and
Kastler [23] and Hellwig and Kraus [24,25]. Results related to those of
this paper have also been obtained by Giles and Kummer [21].

§ 2. Preliminaries

For the most part the definitions given in [12-14] will not be repeated.
In those papers and in the work of Davies and Lewis [7] and Haag and
Kastler [23] can be found the physical motivation for the abstract
definitions. For the relevant theory of partially ordered vector spaces
see Alfsen [1], Ellis [16,17], Schaeffer [33] and St0rmer [34, 35].

Let (F, K, B) be a complete base norm space having a norm closed
cone K with base B. Recall that K is a generating cone for the partially
ordered real vector space V and the Minkowski functional | | . | |B cor-
responding to the radial, circled convex set conv(2?u — B) is the base
norm with respect to which K is closed and V is complete. Let (F*, K*, e)
be the complete Archimedean ordered order unit space dual to (F, Ky B).
F* is the Banach space dual of F, X* is the cone dual to K and e is the
strictly positive linear functional on F such that B = e~ί(l)nK. K* is a
weak* closed generating cone for F* defining an Archimedean ordering
on F* for which e is an order unit. The Minkowski functional | |. | | e

corresponding to the radial, circled convex set [ — e, e] = ( — e-\-K*)
r\(e — K*) is the order unit norm on F* and coincides with its norm as a
dual space.

Let £(F) be the algebra of bounded linear operators on F and let
£(F)+ be the strongly closed cone in £(F) consisting of elements; such
that j(K) C K. Let SP be the subset of £(F)+ consisting of elements; such
that Il/H S 1. For je2(V), let f be the adjoint mapping on F*. Then,
jι->j* is an isometric algebraic anti-isomorphism from the algebra £(F)
onto the algebra £W(F*) of weak* continuous elements of £(F*) and
ye£(F) + if and only if fe&w(V*)+ = {q: qe2w(V*l <z(K*)cK*}. Let
^ * be the image of & under the mapping jH>J*. For je0*, T(j)=j*(e)
is defined ϊorfeK by T(j) (/) = e(j(f)) and jv-> T(j) is an affine mapping
from & onto the weak* compact convex set J = [0, e[\ = K*n(e — X*)
in F*.

K is supposed to represent the set of states of a physical system,
9 or equivalently ^ * is supposed to represent the set of operations on the
system and J is supposed to represent the set of simple observables of
the system. For je&, feK, (T(j)(f))/(e(f)) is the transmission pro-
bability of the state / under the operation j designed to measure the
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simple observable T(j). The set £(J) of extreme points of Ά is said to be
the set of extreme simple observables. In [13] a study was made of some
physically interesting subsets of Ά and & in the general situation. Al-
though it may be necessary to use some of the results of [13] at a later
stage, a full list of definitions will not be repeated here.

§ 3. Strong Restrictions

It was remarked in [13] that the set of strong restrictions of the
physical system whose set of states is K is in one-one correspondence
with two sets, the set Γ(K) of split faces of K and the set 0>SRW of strongly
repeatable reflections of the system. In order to appreciate the physical
significance of these two sets it is necessary to repeat some of the general
theory of split faces. Most of the results quoted below are well known
or are easy consequences of well known results. For details the reader is
referred to the work of Alfsen and Anderson [2, 3], Combes and Perdrizet
[4,30], Cunningham [5], Gerzon [19] and Wils [36].

Let U be a real vector space with generating cone U+. A subset H
of U+ is said to be a face (extremal set, support) if and only if for a,beH,oc
^ 0, a + b, oca e H and if 0 <; a S b e H, a e H. Let Π(U+) denote the set
of faces of U+. By a slight abuse of notation let E(U+)={a:ae U+,
{oca: α ̂  0} e Π(U+)}. E(U+) is the set of points on extreme rays of U+.
For HeΠ(U+)9 let H'= ( J ί ^ : # ! e JI(E/+), HίnH={0}} be the com-
plementary set of H. Then H is said to be a split face of U+ when
H'eΠ(U+) and every element aeU+ has a unique decomposition
a = a1 + a2 with a1 eH,a2e H'. Let Γ(U+) denote the family of split faces
of U+. The following well known result summarises the properties of a
single split face.

Proposition 3.1. The following conditions onH eΠ(U+) are equivalent,
(i) HeΓ(U+).

(ii) H'eΓ(U+),H"=H.
(iii) There exists GeΠ(U+) such that Gr\H={0} and every aeU+

has a unique decomposition a = aγ-\- a2 where a1e H, a2CG.
(iv) There exists GεΠ(U+) such that ( G - G)n (H-H)= {0} and

H + G=U + .

In the following, if G, H are subsets of some set F in a real vector
space such that every non-zero element a of F has a unique decomposition
a = aί + a2 where ax e G,a2e H, the notation F = G®H will be adopted.
In particular, for H e Γ(l/+), U+ = H 0 H\ U = (H - H) 0 (Hf - Hf).

It follows from Proposition 3.1 that every HeΓ(U+) determines a
unique positive linear mapping pH on U defined for a e U by pH(a) = aί
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where a = a1 + a2 is the unique decomposition of a into a1eH —
a2eHr — H'. In this case 0^p H (ά)^α, Vαe U+ and p\ = pH- PH *S

to be the split projection defined by H. If p is any linear mapping on U
such that 0^p(a)^a, Vαe U+ and p 2 = p, it is easy to see that p(U+)
= HeΓ(U+) and pH = p. The bijection H\->pH between Γ(U+) and the
set of all split projections was characterised in the following manner by
Wils [36].

Let End(U) be the algebra of all endomorphisms of U and let End(U)+

= {q:qeEnd(U\ q(U+)C U+}. If l v is the identity operator on (7, then
End(U)+ is a cone in End(U) containing 1^. Let 3(U) = {q:qeEnd(£/),
— (xΐu^q^alu, some α^O} be the ideal centre of U. Then 3(U)+

= 3(U)nEnd(U)+ is the smallest face of End(U)+ containing lv and is a
generating cone for 3(U) with respect to which 1^ is an order unit.
Further 3((7) is an ordered subalgebra of End(L7) and if E(3(U)t)
denotes the set of extreme points of the set 3(U)Ϊ = {q: q e End(U),

proves the following result.

Proposition 3.2, The mapping Hπ>pH is a bijection from Γ(U+) onto
E(3(U)t) with inverse p^p(U+) and pH=iv-pH-

Before remarking on the additional lattice structure of Γ(U+) it is
convenient to return to examine the complete base norm space (F, K, B).
In this case Γ(K) is identified with the sets of states of strong restrictions
of the system whose set of states is K and E(3(V)Ϊ) = ̂ SRW with the set of
strongly repeatable reflections on the system. Further 3(V)^=^^W is
identified with the set of reflections on the system [13]. Whilst it is clear
that for p E E{3{V)t), p e &(V) it is not entirely obvious that 3(V) C 2(V).

Proposition 3.3. (i) 3(^0 *s an ordered subalgebra of &(V).

(ii) (3(V), 3 ( H +

5 I F ) is an Archimedean ordered order unit space.

Proof. All the results other than that which shows that an arbitrary
element of 3(T) is bounded are elementary consequences of results of
[36]. Let qe3{V) and suppose -alv^q^(xlv. Then, -oc^e(q(fj)
^α, V/eB. Therefore, for /eB,

and hence | |g(/)| |β^3α. Let geV, \\g\\B= 1. Then, for ε>0, there exist
gί9g2eB, ίe[0,1], such that g = (l+ε)(tg1-(l-ήg2) and hence
\\q{g)\\BS 3α. It follows that qs &(V). The above argument is an adapta-
tion of a result of [17].

The main consequence of the continuity of pH, for H e Γ(K\ is that
the kernel H — H of l v — pH is norm closed in V and hence, H = (H — H)
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nK is also norm closed in V. Summarising and restating a result proved

in [13],

Proposition 3.4. (i) Every H e Γ(K) is norm closed.
(ii) For HeΓ(K), (H — H,H,HnB) is a complete base norm space

with base norm equal to the norm on H — H when regarded as a subspace
ofV.

The image 3 W (F*) of 3(F) under the mapping q\-*q* is the set
{p : p e £W(F*), - α l F * ^ p ^ αl F * some α ̂  0} and it is clear that q\->q*
is an order isomorphism between the Archimedean ordered order unit
spaces {3{V\ 3 ( F ) \ ίv), (3 W (F*)3 W (F*) + , 1F*) which is at the same time
an algebraic isomorphism between ordered algebras. Hence q\->q* sends
3(V)t o n t o 3 w ( V * ) ΐ = {p:pe £ W ( K * ) , O ^ P ύ V*} and0> S R W = E(3(V)+

1)

onto 0>ξRW = E(3w(V*)t)cE(3(V*)ϊ). The following result shows that
the reverse inclusion holds.

Proposition 3.5. (i) For each G e Γ(K*\ G — G and G are weak* closed
and pG is weak* continuous.

(ii) For G e Γ(K*\ (G — G, G, pG(e)) is a complete Archimedean
ordered order unit space with order unit norm equal to the norm on G—G
when regarded as a subspace of V*.

(iii) E(3w{V*)ΐ) = E{3{V*)t).

Proof. For G e Γ(K*\ in order to show that G — G is weak* closed
it suffices to show that the intersection of G — G with all multiples of the
unit ball (-e + K*)n{e-K*) in F* is weak* closed (see [11], V. 5.7).
Let λ^ 0 and let A e(-λe + K*)n(λe - X * ) n ( G - G). Then, pG(A) = A,
λe + A,λe-AeK* and by the positivity of pG, λpG(e) + A, λpG(e)-AeK*
which implies that Ae( — λpG(e) +K*)n(λpG(e) — K*). Conversely, for
A e {-λpG(e) + K*) n (λpG(e) - X*), λpG(e) + A, λpG(e) -AeK*,
0 ^ λpG(e) — A^ 2λpG(e) e G and, since G is a face, λpG(e) — AeG. Hence,
λpG(e)-A = pG(λpG(e)-A) = λpG(e)-pG(A) and therefore, pG(A) = A,
AeG—G. Further, — λe^ — λpG(e)f^A^λpG(e)^λe and therefore,
A e(-λe + K*)n(λe - K*)n(G - G), which is therefore identical to the
weak* closed order interval (— λpG(e) + K*) n (λpG(e) — K*). Hence,
G—G is weak* closed which implies that G = (G — G)nK* is weak*
closed. Similarly G' — G' is weak* closed and Lemma 4.9 of [30] shows
that pG is weak* continuous. This completes the proof of (i) and (iii)
follows immediately.

To prove (ii) notice that for λ^O, (-λpG(e) + K*)n(λpG{e)-K*)
is contained in G — G and hence is identical to (— λpG(e)-h G)n(λpG{e) — G)
the unit ball in G — G with its order unit norm. The two norms on G — G
are therefore identical.

The mapping H\->pH from Γ(K) onto ^ S R W a n d G^PG fr°m Γ(K*)
onto SP*RW a r e bijections and it follows from Proposition 3.5 that
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is a bijection from 0*SRW o n t o ^SRW Hence, it follows that there exists
a bijection H\->H* from Γ(K) onto Γ(K*) such that pH* = p%. Notice that,

H* = PH.(K*) = p*H(K*) = ker(lF* - p*)n K*

= ker(lF - pHr n K* = (lv - pH) (F)° n K*

= (#' - i ί ' ) 0 n P = (if) 0nK* .

Summarising,

Proposition 3.6. The mapping H\->H* = (H')°nK* is a bijection from
Γ(K) onto Γ{K*) with inverse ^

Notice also that the complementations H\-*H\G\->G' on Γ(K\ Γ(K*)
respectively correspond to the mappings p^lv - p, q^lv* - g in 0>

SRW,
&SRW a n d clearly (1 F - p)* = 1F* - p*.

Proposition 3.7. For each H eΓ{K\GeΓ(K*\ (H')* = (H*)'9 (G%

From a physical point of view, for H e Γ(K\ the dual space of (H — H,
H, HnB) is of interest and it was shown in Proposition 3.12 of [13] that
it may be identified with (F*/tf°, K*/H°, φ(e)) where φ : F*-> V*/HΌ is
the canonical mapping. Further, H° is positively generated. It is easy
to see that the mapping i: V*/H°-+H* - H* defined by i(φ(A)) = pH*{A)
is well-defined and is an order isomorphism between the order unit spaces
{V*/H°9 K*/H°, φ(e)) and (H* - H*, H*9 pH*(e)).

Proposition 3.8. The complete Archimedean ordered order unit spaces
(V*IH°,K*IH°,φ{e%{H*-H*,!!*^^)) are each order isomorphic
to the dual space of (H — H, H,HnB), the order isomorphism between
them being continuous for their weak* topologies.

Notice that this result justifies the notation H* = (H')°nK* since H*
is indeed the cone dual to H.

What has been shown so far is that for each strong restriction of the
system there are uniquely defined complete base norm spaces (H — H, H,
HnB), (Hf - Hf, H\ H'CΛB) with duals (H* - H*9 H*9 pH*{e% (H'* - H'*9

H'*,pH,*(e)) respectively which represent the restricted system and its
complement.

Before proceeding to a discussion of pure states of the system, it is
useful to examine the lattice properties of the set Γ(U+) of split faces of an
arbitrary generating cone U+ in the real vector space U. The following
well known result summarises the situation.

Proposition 3.9. (i) Γ(U+) is a Boolean algebra under the inclusion
ordering and the complementation H^>Hf. For Hί9 H2 e Γ(U+\ Hx A H2

= Hίn H29 HίvH2 = Hx + H2.
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(ii) E(3(U)ι) is a Boolean algebra under the partial ordering inherited
from 3(U) and the complementation p\->\υ — p. For pup2e E(S(U)^\

Pi Λ p2 = PiPi = PiPi> Pi v Pi = Pi + Pi ~ PiPi-

(iii) The mapping H\->pH from Γ(U+) to E(3(U)ΐ) is a Boolean
algebra isomorphism.

It is reasonable to ask if there is a special form of Proposition 3.9
when U = V, U+ = K. The following result can be extracted easily from a
result of Cunningham [5] and a similar result has been proved by Wils
[36].

Proposition 3.10. Γ(K) is a complete Boolean algebra under the
inclusion ordering and the complementation H\->H'. For {Hk:keA}cΓ(K\

γ
keΛ keΛ keΛ \keΛ

Some explanation of the notation is necessary here. £ Hk is the
keΛ

set of elements of K consisting of sums £ fk where fk e Hk, A' C A and
keΛ'

A' is finite, whilst ( £ H fc\" denotes the norm closure of £ Hk. Compact
[keΛ ) keΛ

convex sets with similar properties have been studied by Alfsen and
Anderson [2] and by St0rmer [35].

It is clear from Proposition 3.9 (iii) that ^ S R W *S a ^ s o a complete
Boolean algebra and the method of proof of Proposition 3.10 is based
on showing this to be true and then using the Boolean algebra iso-
morphism property. For {pk: k e A} C &SRW> f e K, the sets ί( f\ Pk\f '-

\[keΛ' J

A' C Λ, A' finitel, // \J pλf A'C A, A' finitel are Cauchy nets for the
J WkeΛ' ) . J

norm topology with norm limits denoted by ([\ pλ f,l\J pλ /respec-
[keΛ j [keΛ j

tively. It follows that / /\ pk\, I \f pλ are the strong operator limits of
[keΛ I [keΛ )

the Cauchy nets U /\ pλ :AfcA, Af finitel, // \J pλ A'CΛ, A' finitel
\[keΛ' j J Y\keΛ' j j

respectively. It is clear that for finite subsets Λ' of Λ, (/\ pk\*
[keΛ' j

/\ PiA\J PkY = V P* a n c * ^ easily follows that for A e X*,
keΛ' [keΛ' j keΛ'

pf\ (A) :Λ'CΛ9 A' finitel, U \J pf\ (A) :A'cΛ9 A' finitel are
\keΛ' I J *\keΛ' J J

Cauchy nets with weak* limits denoted by /\ pk(A\ \J pk(A) respectively
such that ( Λ A ) * = Λ pΐ> IV PkY = \fΛpt

\keΛ I keΛ \keΛ I keΛ

Proposition 3.11. (i) Γ(X*) is a complete Boolean algebra under the
inclusion ordering and the complementation G H> G'. For {Gk:keA}e Γ(X*),
Λ G> = f I Cjfr, \ / CJU = I ) (

/ \ " II K~ y K I / i

keΛ keΛ keΛ \keΛ
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(ii) H\->H* is a complete Boolean algebra isomorphism from Γ(K)
onto Γ(K*).

Some explanation of the notation and terminology is necessary,
ί Σ Gk)~w i s the weak* closure of £ Gk and a complete Boolean
\keΛ ) keΛ

algebra isomorphism is an isomorphism which preserves the ordering,
complementation, /\ and \/.

One interesting consequence is the following. Let CE(Ά) be the subset
of E{β) consisting of elements of the form pG(e) for G e Γ{K*). CE(1) is
said to be the set of central extreme simple observables. Notice that
G = | J [0, λpG(e)~\ a result which follows from observations used in the

proof of Proposition 3.4. It follows that pG(e) = pF(e) if and only if G = F
and hence p^p{e) is a bijection from 0*£RW

 o n t o CE(Ά). Further, for
i^Pi i f and o n l y i f PiidύPii*) and for any pe0>£RW,

Proposition 3.12. (i) CE{β) is a complete Boolean algebra with respect
to the ordering inherited from V* and the complementation A\~>e — A. For
{Ak: keΛ} C CE{β\ /\Ak=(/\pΛ(e), V Λ = (V P*\ (*) wher* A

keΛ \keΛ j keΛ \keΛ )

= Pk(e)

(ii) The five complete Boolean algebras Γ(K\ Γ(K*), 0>SRW, ^ξRW,
CE(β) are isomorphic.

Let (convCE(^))-w = F and let C(F*)= (J λ{F-F). Then C(V*)

is said to be the centre of (7*, X*, e). This problem has been approached
from a slightly different angle by Alfsen and Anderson [3] and Wils [36].
A definition which follows naturally is that (F*, X*, e) is & factor if and
only if CE(Ά) = {0, e} or equivalently if no restrictions of the physical
system exist. Notice that this is really only a statement about B since F*
may be identified with the space Ab(B) of bounded affine functionals on B.

In general it may be necessary from a physical point of view to study
a particular strong restriction of the system. It is therefore important
to be able to discuss the complete Boolean algebra Γ(H) where H e Γ(K).

Proposition 3.13. (i) For HeΓ(K%GeΓ(H) if and only ifGeΓ(K).
GCH.

(ii) For H e Γ{K\ G e Γ(K) if and only ifGnHε Γ(H), GnH! e F{Hf).

Proof Let pi be the element of E(3(H -H)t) = &ξRW corresponding
to GeΓ(H) and let P = PGPH- Then p is clearly linear, 0^p^ίv and
P2 = PGPHPGPH = PGPGPH = P and hence pe^SRm p(K)=GeΓ(K).
For GeΓ{K\GcH implies pGSpH and hence pGe0>fRW,GeF(H).
That completes the proof of (i).
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For H,GeΓ(K\ GnH, GnH'eΓ(K) and by (i), GnHeΓ{H\
GnH'e Γ(Hf). Conversely, for H e Γ(K) iϊGnHe Γ(H), GnH'e Γ(H%
then, (GnH)n(GnH')={0}, and hence G = (GnH)®(GnH')eΓ(K).

Whilst the subject of a particular strong restriction of the system is
under consideration the following result concerning simple observables is
appropriate.

Proposition 3.14. Let H e Γ(K) and let £H be the set of simple ob-
servables of the corresponding restricted system. Then,

(i) J H =
(ii)

(iii)
(iv) Ά =
(v) E{£)

(vi) CE{Ά) = CE(£H)0CE{ΆH).

Proof The proof of (i) follows from Proposition 3.5. If A e E(£H),
A = tA1+(l- t) A2, Al9 A2ΈΆ, t e (0,1), then

A = pH*{A) = tpH*(Ai) + (1 -1) PHMI), PHMII VHAAI) e &H

and it follows that A = pH*(A1) = j)H*(A2). Hence,

t(ly - pH*) (A,) + (1 - ί) (V* - PH.) (A2) = 0

and (lv*-pH*)(Ai) = O,i = l,2,A = A1 = A2 and AeE(£). Conversely,
if A e £ ( i ) n J H , clearly A e E{£H\

For A e CE{ΆH\ there exists G e Γ(H) such that A = pG*(e) and by
Proposition 3.13 (i), Ger{KlpG*e0>gRW,pG*(e)eCE(£). Conversely,
for AeCE{S)r\ΆH, there exists GeΓ(K) such that A = pG*(e) and
0^pG*(e)^pH*(β) and by Proposition 3.12, GcH. But G , F e Γ ( X ) and it
follows from Proposition 3.13 (i) that GeΓ{H\pG*(e)eCE{ΆH\

The proof of (iv) is trivial using the unique decomposition of elements
of X* into elements of if*, H*\ defined by

If pE*{A)eE(£H),pH,.€:E(ΆH') and A = tA1+(l-t)A2,Aie£9i=l,29

ίe(0,1), then pH*(A) = ίJpffll(^[1) + (l - ί)Pfl (i42) and pH*(^) = PH*(AI
ί = l , 2 . Similarly. pfl*,(y4) = JpH /(i4ί), i = 1,2, and adding gives A = At,
i=l,2,Ae E(Ά). Conversely, let 4̂ e E(Q) and suppose PH*(^)
= tA± + (1 - ί) 4 2 , îj G J H , i = 1,2, t e (0,1). Then,

A = pm{A) + Pϋ 'ί^) = ί (^

a n d 0 ^ i4 f + pH*>{A) S PH*(e) + PH*ie) = e9i= 1,2. T h e r e f o r e , A = At

4), JPH*(^) = -̂ i» Ϊ = 1, 2 and pH*(A) e £(J H ) . Similarly p ^ * ^ )

20 Commun. math. Phys., Vol. 24
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Suppose now that pH*(A)e CE(βH\ pH*,(A)eCE(lH). Then, there
exist G1eΓ(H)cΓ(K\G2eΓ(H')cΓ(K) such that PH*(A) = pGί(e),
pH*,(A) = pG*(e). Hence, A = (pG*4-pG*)(e) and since G1CH9 G2CH',
GίnG2 = {0} and pG* + pG* = pGl @ G*. Therefore, ̂  = (pG* Θ G*) (e) e C£( J) .
Conversely, if 4 e CE(Ά\ A = pG*(e) some G 6 Γ(JK) and hence pH*(A)
= PH*nG*(e) = P(HnGAe) But HnGeΓ(H) and p^(^)e C£(J2H). Simi-
larly P f l V(A)G CE(JH).

The first step towards examining pure states is to study the atoms of
the complete Boolean algebra Γ(K). H e Γ(K) is said to be the set of
states of a primary strong restriction if and only if Γ(H)= {{0}, H}. The
following result is then immediate from Propositions 3.13-14.

Proposition 3.15. The following conditions on H e Γ(K) are equivalent.

(i) H is the set of states of a primary strong restriction.
(ii) GeΓ(K), GCH implies G = {0} or G = H.

(iii) CE(£H)={0,pH*(e)}.
(iv) (H* - H*, H*, pπ*(e)) is a factor.
(v) C(H*-H*)={λPH.(e):λeR}.

Let PΓ(K) denote the set of elements oϊΓ(K) satisfying the conditions
of Proposition 3.15. PΓ(K) is said to be the quasί-spectrum of K.

Proposition 3.16. For G,HePΓ(K), either GnH = {0} or G = H.

A question which might arise is how strong restrictions are defined
physically. There is no single answer to the question but it is known that
one possible manner is the specification of some equilibrium state which
produces an environment in which the statistical system evolves. This
is equivalent to the specification of a particular element or set of elements
of K. For GcK, there exists a smallest element HG of Γ(K) containing G
and this is interpreted as the set of states of the strong restriction defined
by G. In particular, for feK,Hf denotes the smallest element of Γ(K)
containing/. Notice that this definition differs in general from that of
Wils [36]. f9geK are said to be quasi-equivalent if Hf = Hg and fe K is
said to be primary if Hf e PΓ(K).

The first important result about pure states is the following.

Proposition 3.17. If feE(K\ f is primary.

Proof. If / = 0, Hf = {0} G PΓ(K) and therefore suppose / + 0,
G G Γ(K), G Φ {0}, G C Hf. If fe G,HfcG which implies that Hf = G
and / is primary. Therefore suppose fφG in which case f = pG(f)
+ ( V - P G ) ( / ) and since /e£( iq ,p c (/) = α/,( l κ -p G )(/) = ( l - α ) / .
Applying pG gives pG(f) = ® or α= 1. If α= 1, f = pG(f) which implies
that fe G giving a contradiction. Therefore, pG(/) = 0 and fe G'. Hence,
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fG' and since GnGf = {0}, G = {0} giving a further contradiction
and completing the proof.

It is important to notice that the existence of non-zero pure states is
completely immaterial in the general theory. It is only in some physical
examples that pure states seem to be important.

A subset Q of E(K) is said to be a sector if and only if Q Φ {0} and
there exists an element H e PΓ(K) such that HnE(K) = Q. Let K denote
the set of sectors of E(K) and let P^iK) denote the subset of PΓ(K)
consisting of elements H such that HnE(K)ή= {0}. The following result
summarises the properties of sectors.

Proposition 3.18. (i) H^HnE(K) is a bijection from PjΓiK) onto K.
(ii) For QuQ2eK, either Qί = Q2 or QinQ2 = {0}.

(iii) For f,ge E{K\ /, g Φ 0, / and g are quasi-equivalent if and only
if Of = Q9 where Qf = HfnE{K).

(iv) E(K)={J{Q:QeK}.
(v) K! = \/{H:HE P/Γ(X)} is the smallest element ofΓ(K) containing

E{K)andE(KI) = E{K).
(vi) PΓ(KI) = PIΓ(K).

Proof For each H e PIΓ(K),HnE(K) = E(H)eK and hence
H\->HnE(K) maps PiΓ(K) onto K. Suppose Hu H2 e PjF{K\ H^EiK)
= H2nE{K). Then, either Fίγ=E2 or HxnH2 = {0} which implies that
H1r\E{K) = H2r\E(K)= {0} giving a contradiction. That completes the
proof of (i) and (ii) follows from Proposition 3.16.

Let f,geE(K) be quasi-equivalent. Then, Hf = HgePIΓ(K) and
from (i) it follows that Qf = Qg. Conversely, if Qf = Qg it follows from (i)
that Hf = Hg and /, g are quasi-equivalent.

If feE{K\ then feQfeK. Conversely i f / e β some QeK, then
fe E(K) and hence (iv) holds.

If HE(K) is the smallest element of Γ(K) containing E(K\ it is clear
that since £(X)cK / 5 i/ £ ( κ ) CK, Let i/eP7Γ(K), HnE(K) = QcE(K).
Then HQ = H and since Q C E(K), H = HQ C HE(κy This holds for all
HePjΓ(K) and hence KjCHEiK). Further, E(KI) = KInE(K) = E(K)
and the proof of (v) is complete.

Let H E PίΓiK). Then H e Γ{Kj) and clearly H is minimal and there-
fore P^i^cPΓiKj). Conversely, let HsFiK^ and suppose HnE(K)
= {0}. It follows that E(K)cHfnKj and by (v), ^cH'nKj which
implies that Kj C H' giving a contradiction unless H = {0}. Therefore,
for H G PΓiKr), H Φ {0}, HnE(K) Φ {0} and H e PJiK). This completes
the proof of (vi).

PjΓiK) or K is said to be the spectrum of K and Kj is said to be the
set of states of the pure restriction of the system.
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The final result in this section generalises Lemma 4.3 of [32] and
depends upon a lemma due to Gerzon, (i) of the following.

Proposition 3.19. (i) For H e Γ(K\

(ii) For fgeE{K\ fg*0, if \\{f/e(f))-(g/e(g))\\B<2, Qf = Qg.

Proof. Let feH,ge H\ /, # φ 0 and let fl9f2eK satisfy fx - f2

= (fKf)) - {gWθ)) Then, it follows that

PH(/I) " Pnifi) = {fKf)\ PH'(fi) ~ Pπ ifi) = ~ fo/Φ)),

and by the definition of ||. ||B that

Φn(/l)) + Φn(/2» ^ I ΦH'(/l)) + Φlf'ίΛ)) ^ 1

Therefore, e(/i) + e(/2) ̂  2 and

" {0/e{g))\\s = ω W / i ) + «σ 2):Λ,Λ e X,Λ - / 2

But since | | / M / ) | | B = \\g/e(g)\\B - 1, it follows that

\\(f/e(f))-(g/e(g))\\B^2

and therefore \\(f/e(f))-(g/e(g))\\B = 2.
Conversely, let geK,g + 0 and \\(f/e(f))-(g/e(g))\\B = 2, V/eff,

/ Φ 0. If pH(gf) = 0,geH' and the result is proved and therefore suppose
PH(#)Φ0 If PH'(Q) = 0,geH and this is clearly contradictory. Therefore,
suppose pH>(g)=¥θ and then,

2e(g)e{pH(g))=\\e(g)pH(g) -e{pH(g))g\\B

PH'(Q)\\B

from the first part of the proof. Since e(pH(g)) Φ 0, it follows that e(g)
= e{PH'(9%e{PH(9)) = ® giving a contradiction. This completes the
proof of (i).

To prove (ii), let fgeE{K\ fg + 0 and let

\\(f/e(f))-(g/e(g))\\B<2.

Then, by (i), g φ H'f and hence g = pHf(g) + pH>f{g), pH'f(g) Φ g. But since
g e E{K\ pHf(g) = ag, pH.f{g) = (1 - α) g, a Φ 0 and again using (i), pHf(g)

HH HQ Q
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§ 4. Restricted Operations

The main concern of this section is to consider the action of operations
on a particular strong restriction of a system. Most of the results are
direct consequences of §3 of [13] and many easy proofs are omitted.
Throughout the section H e Γ(K) is the set of states of a fixed strong
restriction of the system whose set of states is K. H automatically defines
subsystems corresponding to the base norm spaces (H — H,H,HnB),
(H' — H',H'9H'nB) respectively. Already in Proposition 3.14 the
properties of the sets £H, ΆH> of simple observables in the restricted system
and its complement have been examined. Here, this study is extended to
one of classes of operations of the restricted system and its complement
and their relation to corresponding classes of operations for the whole
system. From a physical point of view it would be expected that there
exists a set of operations on the whole system whose elements decompose
into operations on the restricted system and its complement with similar
properties.

Before commencing a systematic discussion of such operations some
notation is established. In [13] many subsets of K, the set of states, 3P the
set of operations and Ά the set of simple observables were defined. The
convention which will be adopted here is that the corresponding sets
for the restricted system with set of states H, will be denoted by the same
symbol with the superscript H. For example KH = H, ^ H , 1H are the sets
of states, operations, simple observables respectively of the restricted
system. For simplification, in this section p9 p' are written for pH, pH>,
respectively.

Since V = (H - H) 0 (H' - H') it follows that; e 2(V) has the following
decomposition

3 = PJP + PΊP + P3P' Ί'

into elements pjp e 2(H - H), p'jp e 2(H -H,H'- H'\ pjpf e 2(H' - H\
H - H), p'jp' E 2(H' - H'X and j e 2(V)+ if and only if each of its four
constituents are positive. If j e 0>, it is clear that pjp e 0>H, p'jp' e 0>H'
and if the notion of strong restriction is to be physically meaningful the
elements of 9 which are of interest are those for which; {H) C HJ(H') C H'.
From above, it is clear that these conditions are satisfied if and only if
pj=jp. Denote by PH the set of all operations; such that pj=jp. The
properties of PH are summarised below.

Proposition 4.1. (i) PH is a uniformly closed face of& containing 0, ίv.
(ii) PH = {j:; G PJ(H) C HJ(H') C H'}.

(iii) ForjίJ2ePHJJ2ePH.
(iv) j^-*(pjp, p'jp') I S a n affine isomorphism from PH onto 0>H x gPH>

(with the linear structure inherited from 2(H — H)x 2(H' — H')) which
preserves multiplication.
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(v) For j G PH, T(j) = TH(pjp) + TH'(p'jp'\ p*(T(/)) = TH(pjp),
p'*(T(j))=TH'(p'jp').

(vi) ForjePH,T(j)eE(£) if and only if TH(pjp)eE(£H\ THf(p'jp')
H

(vii) Forj e P H , T(j) e CE(β) if and only ίfTH(pjp) e CE(1H\ TH'(p'jp')
e CEψH).

(viii) j\->T(j) is an affine mapping from PH onto J .
(ix) For Ae J , T~1(A)r\PH is a uniformly closed convex subset of

PH and is a face ofPH if and only ifp*(A) e E{ΆH\ p'*{A) e E{ΆH>).

Proof Let 0>(H)={j:je0>J(H)cH}. Then, je&(H) if and only if
pjp =jp from which it follows that έP(H) is convex and uniformly closed.
Let je0>(H)J = tjί + (l-t)j2JίJ2€0>, ίe(0,l),/eH. Then, tj^f)
+ (ί-t)j2(f)=j(f)eH and since H is a face jΛf)J2(f)eH and jl9

j 2 e &(H) showing that έ?(H) is a face of SP. Similar remarks apply to
0>{H') and since PH = ̂ ( H ) n ^ ( i f ' ) , (i) holds. Notice that (ii) and (iii) are
immediate consequences of the definition.

J^iPJPiP'JP') is clearly an affine mapping from PH into 0>H x £PH>

and it follows from the decomposition of any element of ^ , that the
mapping is an isomorphism with inverse (jj'^jp+fp'. Further, for
JiJ2ePH,PJιJ2P = PJiPPJ2P> P'hJiP'^P'hP'PΊiP' and (iv) holds.

For 6 PHJ = pjp + p'jp' and therefore,

) =j*(e) = p*fp*(e

In addition, T(j) has the unique decomposition

where p*(T(/'))G5H,p'*(Γ(/'))eiH '. It follows that p*(T(/)) = p*7*p*(β)
= TH(pjp\p'*{T(j)) = TH\p'jpf). This shows that (v) holds and (vi), (vii)
follow from Proposition 3.14.

Proposition 3.2 of [13] shows thatjH>T(/) is an affine mapping from
SP onto Ά and it therefore only remains to show that 7V* T(/) restricted
to PH maps onto J . For Ae£,p*(A)e£H, pf*{A)e£H> and hence by
Proposition 3.2 of [13], there exist; e ̂ H , / e ̂ H ' such that TH(j) = p*(^),
TH#(/0 = P'*W). Therefore, jp + / p ' e PH and T(/p +/p') = TH(j) + Tfl'(/0
= 4̂ by (v) and hence (viii) holds.

(ix) is a consequence of Proposition 3.2 (iii) of [13] and (i), (vi) above.
Recall that, for A e J , KA = {A}0 nK, HA = {e - A}0 n K. For j e P H

let Tf=T-~1(e-T(j))nPH = 3rjnPH be the set of operations in PH

complementary to j . (The convention that bold face letters with super-
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script H represent the intersection with PH of subsets of 9 represented
by the same script symbol is adopted throughout.) The next result
describes a little more about the properties of simple observables.

Proposition 4.2. (i) For Ae£,KA = KξHA)0Kf,*U).
(ii) For jePH, Tf is a uniformly closed convex subset ofPH and is a

face ofPH if and only if TH(pjp)e E(£H\ TH\pfjp')eE(ΆH').
(iii) ForjePHJ'eTf,

TH((pjp) (Pfp)) = TH(pfp) - TH((pfPn

TH\{p'ΪV') (PΊPΊ) = TH\p'jpf) - TH\{p'jp')2).

Proof For feKAJ = p(f) -h p'(f), p(f) e H, p\f) e H' and 0 ̂  Λ(p(f))
£A(f) = 0 and p(f)e{p*(A)}onH = K*>iAy Similarly p'(f)eKf,HAy

Conversely, if feK9p(f)eK^iA)9p
f(f)eK^(A)9 A(f) = (p*(A))(p(f))

+ {p'*(A)) (p'(/)) = 0 and fe KA. The proof of (i) is now complete.
Tf = ̂ nPH and, by Proposition 3.3 (iv) of [13], is a uniformly

closed convex subset of PH. Proposition 4.1 (ix) shows that Tf is a face
of PH if and only if p*{e -A)e E(1H), p'*(e -A)e E{ΆH) and hence if and
only if p*(A) e E(βH\ p'*(A) e E{ΆH) where A = T(j). (ii) now follows as a
result of Proposition 4.1 (v) and (iii) is an immediate consequence of
Proposition 3.3 (v) of [13].

Recall that &τ = ̂ 0 is the set of transmissions of the system and let
P** = 0>TnPH. It follows from Proposition 4.1 (v) that for jePf,

e = TH(pjp) + TH\p'jp') ^ p*(e) + pf*(e) = e

and hence TH(pjp) = p*(e), TH'(p'jpf) = p'*(e). The main result concerning
transmissions is therefore the following.

Proposition 4.3. j e P? if and only if pjp e Pγ, p'jp' e Pf.

A result analogous to that of Proposition 3.4 of [13] can clearly be
reproduced by examining constituents of elements of Pf.

Recall that for j e PH, J*?,. = {j':/ e 9, T(j'j) = 0}, mj = {j':/ e 9, T(jf)
= 0}, Wj = ̂ jn^j and therefore, Lf = J^ n P * Rf = M^PH, Uf = Wj
nPH. It is clear that results similar to those of Proposition 3.5 of [13] may
be applied to the present situation but they will not be reproduced here.

The set Pf of operations jePH such that TfnUf + 0 forms an
important class of operations, namely the repeatable operations in PH.
Notice that e P% implies that there exists / e Tf such that T(j) = T(/2),
T(j')=T(j'2) and therefore from Proposition 4.1 (v),

TH(pjp) = TH((pjPn TH(pfp) = TH((pfp)2),

TH'(PΊPΊ = τH'((p'jPn τH'(P'fP
f) = TH'((P7P')2) .
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Using Proposition 3.5 (iv) of [13] it follows that pjp e 0>R, p'jp' e 0>%- BY
reversing the above argument it follows that for j e PH, j e PR if pjp
e£PR,p'jp'E0>R'. Summarising,

Proposition 4.4. (i) For j e PH, Lf, Rf, Uf are uniformly closed faces
ofPH.

(ii) For j e PH,j e Pf if and only if pjp e 0$, p'jp' e &%'.

In [13] the notions of (a) and (c)-repeatability were introduced.
Recall that for je&*RJ is said to be (α)-repeatable providing that there
exists / G&]n<%j such that,

(a) For j x G P, T(jJ) = T(j\ T(jJ) = 0 implies Γ(/i) = T(j\

Suppose jj' G Pf satisfy (a). Then it easily follows that pjp, p'jp' are (a)-
repeatable operations in ^>H

90
>H' with complementary operations

pfp, p'j'p' respectively. However, the converse assertion is not necessarily
true. This suggests that in the context of restricted operations the defini-
tion of (fl)-repeatability is not what is required. Indeed, it is clear that
only operations in PH should be considered. Guided by such considera-
tions an element j e Pf is said to be (a)H-repeatable if there exists / e P%
satisfying

(a)H For j t G PH, T{jJ) = T(j\ T(jJ) = 0 implies Tfa) = T(j).

It is clear that the following result holds.

Proposition 4.5. j e PH is (a)H-repeatable with complementary operation
f if and only if pjp, p'jp' are (a)-repeatable in &H, £PH> with complementary
operations pfp, p'j'p' respectively.

Notice that although (α)H-repeatability is a weaker condition than
(α)-repeatability for elements of Pf it is strong enough to ensure that
T(j)eE(2). This follows immediately from Proposition 4.1 (v) and
Proposition 3.14 since TH(pjp)e E{£H), TH\p'jp')eE{£H).

Proposition 4.6. IfjePH is (a)H-repeatable, T{j)eE{Ά).

The position regarding (c)-repeatability is much more simple. Recall
that j G &R is said to be (c)-repeatable providing that there exists / e SΓ }

n<%j such that,

(c) For ΛeX A(j(f)) = A(j'(f)) = 0,\/feK implies A = 0.

It follows that there exists a natural definition for (c)-repeatability of
elements j e PR. Such an element is said to be (cyrepeatable if there exists
j'e TfnUf such that (c) above holds. A simple argument then shows
that the following result holds.

Proposition 4.7. j e PH is (c)-repeatable with complementary operation
f if and only if pjp, p'jp' are (c)-repeatable in 3PH, SP11' with complementary
operations pfp, p'j'p' respectively.
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Recall that, for; e PH, G, = {/: / e KJ(f) = /} is the set of unchanged
states of the system and that Pf = {j :j e PH, Gj = HT(J)} is the set of
filterings in PH. The result below whose proof is trivial summarises the
properties of Gj9 Pp.

Proposition 4.8. (i) For jePH,G~G*jp®GH

pΊp>.
(ii) For j E PHJ e P% if and only if pjp e 3^, p'jp' e 9^\

An (a)H or (c)-repeatable operation; e PH with complementary opera-
tion / is said to be strongly (df or (c)-repeatable respectively provided
that jJ'ePf. Let P%Ra,PsRc denote the sets of strongly {a)H and (c)-
repeatable operations in PH respectively. Then, combining Propositions
4.5, 4.7 and 4.8 (iii) with Proposition 3.9 (iv) of [13] gives the following.

Proposition 4.9. For j e PHJ e P%Ra (or P%Rc) if and only if pjp e 0>ξRa

(or 0>?Rc), p'jp' e &ξRa (or 0>?Rc).

Recall that the set &w of reflections is the order unit interval in 3(^0
and clearly j e £PwnPH = Pψ if and only if 0 ^ j ^ 1F, pj =jp. However,
since 3 ( ^ ) is commutative this latter condition is redundant and hence
0>w = p^, Further, for je&w, it is clear that pjpe&w>vΊv'e&w-
Summarising,

Proposition 4.10. (i) &w C PH.

(ii) For j e^Je 0>w if and only if pjp e 0>%, p'jp' e &%.

The final class of operations which could be examined in the present
context is the set 0*SRW of strongly repeatable reflections. However, as
was seen in § 3, such an examination is equivalent to one of Γ(K) and
Proposition 3.13 (ii) describes the situation arising in this case.

§ 5. Strong Operations

This section is concerned with the set of operations which preserve
all strong restrictions of the system. This set P = f] {PH: H e Γ(K)} is
said to be the set of strong operations on the system and, being the inter-
section of uniformly closed faces of & is itself a uniformly closed face. It
follows from Proposition 4.10 (i) that 0>w C P and in particular ^ S R W C P.
The question arises if it is possible for the trivial case P = {λίv : 0 ^ λ ^ 1}
to arise. If this is the case it follows that ^SRW = {0,1F} or what is equi-
valent Γ(K) = {{0}, K}. But then it follows that & = P and therefore V is of
dimension unity. Therefore provided that V is of dimension greater than
unity the trivial case does not arise.

The question of whether jt-*T(j) maps P onto 2, is clearly of some
importance since, if this is not the case, then, simple observables exist
which cannot be measured by means of strong operations. Initially it
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will be assumed that j\-+T(j) maps P onto Ά and an example will be
considered at the end of the section when this certainly is the case.

The first result summarises the properties of P which arise naturally
from the corresponding results for PH.

Proposition 5.1. (i) P is a uniformly closed face of 0* and P = {λlv: 0
^λ^ 1} if and only if V is of dimension unity.

Suppose that j\-> T(j) maps P onto 2L. Then,
(ii) For j e P, T(j) = TH(pHjpH) + TH\pwjpH,\ VH e Γ{K).

(iii) Forj e P, T(j) e E[β) if and only if TH(pHjpH) e E(ΆH\ V# g Γ(K).
(iv) For jeP, T(j)eCE{£) if and only if TH(pHjpH)eCE(^Hl

(v) For AeΆ, T~1(A)nP is a uniformly closed convex subset of P
and is a face ofP if and only if p%{A) e E{ΆH\ MH e Γ(K).

In what follows it will be supposed that the system satisfies the condi-
tion that jV>Γ(/) maps P onto Ά. Therefore, for jeP, Tj=f]{Tf:H
e Γ(K)} is non-empty. Let Lj =f){Lf:He Γ(K)}. Rj = (] {Rf :HeΓ(K)},
Uj = LjCΛ Rj. Then j C P is said to be repeatable if and only if f/yΠ Tj φ 0
and PR will denote the set of repeatable elements of P. The following
result is a consequence of Proposition 4.4.

Proposition 5.2. If j\-> T(j) maps P onto Ά and j e P9

(i) Lp Rj9 Uj are uniformly closed faces of P.
(ii) j e PR if and only if pHjpH e Pf, Vtf e Γ(K).

Under the conditions of Proposition 5.2, j e PR is said to be (α)-
repeatable if there exists / e UjCλ TJ such that,

(a) For j x e F, T(jJ) = T(j\ T{jJ) = 0 implies 7 ^ ) = T(j).

Similarly j is said to be (c)-repeatable if there exists / G [/ ;n Tj such that,

(c) For yl G J , i4(/(/)) = i4(/"(/)) = 0, V/G X implies 4 = 0.

Then, the following result is immediate from Propositions 4.5-4.7.

Proposition 5.3. (i) Ifjv-»T{j) maps P onto & thenJeP is (a) (or (c))-
repeatable with complementary operation/ if and only if for each H e Γ(K)9

PHJPH & (a) (or (c))-repeatable in PH with complementary operation pHj'pH.
(ii) Ifj\-> T(j) maps P onto Ά and if j e P is (a)-repeatable9 T(j) e E(Ά).

Let PF = p | {Pf: H e Γ(K)}. Then, it clearly follows from Proposition
4.8 (ii) that j e PF if and only if pHjpH eP^VHe Γ(K). Let PSRa (or PSRc)
denote the set of (a) (or (c))-repeatable operations jeP such that both j
and its complementary operation / lie in PF. Then, it is immediate from
Proposition 4.9 that the following result holds.

Proposition 5.4. For jeP, jePSRa (or PSRJ with complementary
operation/ if and only if for each H e Γ(K\ pHjpH G 0*SRa (or ^SRC)
complementary operation pH/pH.
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The final result is immediate from Proposition 4.10.

Proposition 5.5. &w C P.

The Boolean algebra Γ(K) is said to be atomic provided that there
exists a family {Ht: i e A} C Γ(K) such that for i + f, Ht A HV = {0},
K=\J Ht and every HeΓ(K) is of the form V Hb A C A. Notice

ieΛ ieΛ'

that it follows immediately that PΓ(K) = {Ht: i e A} and this is clearly a
general result in Boolean algebra theory. The following result stems from
the particular properties of Γ(K).

Proposition 5.6. Γ(K) is atomic if and only ifK = \J{H\He PΓ(K)}.

Proof. If Γ(K) is atomic then it follows from the remark above that
K = \J{H:He PΓ(K)}. Conversely, suppose that K = V {H: HePΓ(K)}
and then it remains to prove that for G e Γ(K\ G = \f Ht, Ht e PΓ(K).

Let Gx = V {H : H e PΓ(K\ H c G}. Then, it follows that Gx C G. How-
ever, for fe G, there exists a Cauchy net {/̂ } where {Ht :ieA} ranges
over all finite subsets of PΓ(K) such that fΛ= Σ g^giEHi and {fΛ}

ίeΛ

has the limit / in the norm topology. Since pG is continuous for the norm
topology and pG(f)=f it is clear that {fΛ} can be supposed to be such
that pG{fΛ) = fΛ>/^eG and hence ^ e G, Vί6 A. It follows that fΛe Gx

and since Gx is norm closed feGί9GC G± and the proof is complete.
The importance of Proposition 5.6 lies in the following results.

Proposition 5.7. Suppose that Γ(K) is atomic. Then, each jeP is the
limit in the strong operator topology of the Cauchy net whose elements are
of the form Σ PHJPHΪ where {Ht: i e A} ranges over all finite subsets of

ίeΛ

PΓ(K). If, for each He PΓ(K)JHe0>H, there exists uniquely jeP such
thatpHjpH=jH.

Proof. Let jeP,feK and then it easily follows since the norm is
additive on K that the set of elements of the form fΛ=Σ (PHJPH)(/)

ieΛ

where {Ht :ieA} ranges over all finite subsets of PΓ(K) is a Cauchy net
with limit j ^ / ) in the norm topology. Simple limit arguments show that

j x G 0>. Moreover, for H e PΓ(K\

UIPH) (/) = Mm Σ (PHjPHiPH) (/) = (JPH) (/)
ieΛ

from which it follows that j^eP. For feK, the set of elements of the

form gΛ= Σ Pπ f(/) forms a Cauchy net with limit/in the norm topology
ieΛ

and clearly from above jί(gΛ)=j(gΛ). The continuity of j andjΊ for the
norm topology then imply that j ί =j.
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Suppose that for each H e PΓ(K)JH e 0>H. Then, for feK, the set of
elements of the form fΛ = £ {JHIPH) (/) where {JF^ : Ϊ G Λ} ranges over

all finite subsets of PΓ(K) is a Cauchy net with limit j(f) in the norm
topology. Simple limit arguments show that je& and clearly pHjpH
=JPH=JHPH>VHGPΓ(K). It follows that jeP. To prove uniqueness,
notice that iϊ jίJ2€P,pHjίpH = pHj2PH>VHePΓ(K\ it follows from
the first part that j 1 =j2.

The next result is a corollary of Proposition 5.7 and shows that the
assumption that was made earlier that jt-*T(j) maps P onto J is true in
the atomic case.

Proposition 5.8. // Γ(K) is atomic j\->T(j) maps P onto Ά.

Proof. Let Ae£, and for each H e PΓ(K\ let j H e 0>H satisfy TH(jH)
= pH*(Λ). Such elements exist by Proposition 3.2 of [13]. From Proposi-
tion 5.7 it follows that there exists j e P such that; is the limit in the strong
operator topology of the Cauchy net whose elements are of the form
Σ JHiPHi a s {Hi: i 6 A} ranges over finite subsets of PΓ(K). Therefore,

T(j) (/) = e(j(f)) = lim Σ e(jHipHi(f))
ieΛ

ieΛ

ieΛ

ieΛ

= Λ(f)

and T(j) = A. This completes the proof.
The final result of this section whose proof follows from Proposi-

tion 3.18 shows that the results above hold in one important special case.

Proposition 5.9. // Kj- = K, then Γ(K) is atomic.

Since for H e PΓ(K\ the set of strong operations on the system with
set of states H is 0>H, Proposition 5.7 shows how in the atomic case
elements of P may be decomposed into operations on non-decomposable
systems. Proposition 5.8 shows that under the same conditions all simple
observables may be measured by strong operations.

§ 6. Pure Operations

It is mainly when a consideration of pure states of the system is
required that a study of the situation in the case Γ(K) atomic is of im-
portance. This can easily be seen from Proposition 5.9.



The Theory of Pure Operations 281

If K represents the set of states of any physical system an element
j e P is said to be a pure operation when j{E(K)) C E(K). The set of pure
operations will be denoted by PP. Notice that the condition7(£(K)) C E(K)
produces no extra condition on elements of K\ and therefore, in discussing
pure operations there is no loss of generality in supposing that K = KP

This condition will be assumed for the whole of this section. Notice that it
follows from Proposition 5.8 that j\-*T{j) maps P onto Ά.

Elements of PP possess certain trivial properties among them being
that for each QcKJePPJ(Q)cQ. However the most important pro-
perty of pure operations stems from Proposition 5.9.

Proposition 6.1. For j e P , jePP if and only if for each H ePΓ(K)
= PjΓ(K\ PHJPH £ Pp the set of pure operations on the system with set
of states H.

Proof It follows from Proposition 3.18 that, for HePΓ(K), E{H)
= Q = HnE(K) and since j(H)cH,j(E(K))cE(K) it follows that
PHJPHCPP1- Conversely, let jeP satisfy j(E(H))cE(Hl VHePΓ(K).
Each feE(K) lies in a unique sector Q = HnE(K) for some H e PΓ(K)
and hence j(f) e E(H) C E(K). This completes the proof.

The main consequence of this result is that in order to make a com-
plete study of pure operations it suffices to examine the case in which
KI = K9Γ(K) = {{0},K}. This fact will be used when the algebraic
models are studied below.

§ 7. The Von Neumann Algebra Model

For details of the theory of C*-algebras and Von Neumann algebras
the reader is referred to Dixmier [9,10], Effros [15], and Prosser [31].

Let 93 be a Von Neumann algebra acting on a Hubert space X and
let lx, the identity operator on X be also the identity in 93. Let 93 ̂  be
the pre-dual of 93, 93* the self-adjoint part of 93^ and 93 + the positive
part of 93*. If X = {/: fe 93J, ίx{f) = 1}, (93*, 93 + , £) is a complete base
norm space with norm closed cone 93+ and dual (93\ 93 + , l x ) where
93Λ, 93+ are the self-adjoint and positive parts of 93 respectively. The
order unit norm in 93A coincides with the operator norm and the base
norm in 93* coincides with its norm as a subspace of 93^. Therefore every
Von Neumann algebra provides a possible model for a physical system
in which the set of states is represented by 93+ , the set Ά of simple obser-
vables is represented by elements A of 93 such that 0 ^ ^ 4 ^ lx and the
set E(J) of extreme simple observables is represented by the set of extreme
points of [0, lχ] which is the set of projections in 93. Therefore, in this
case E(£) forms a lattice. There exists a bijection H\->EH from the set
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Πf(95+) of norm closed faces of 93 + onto E(Ά) defined by the property
that EH is the smallest element of E(β) such that EHfEH = f9VfeH.
The bijection sends the complete Boolean algebra Γ(93+) onto the
complete Boolean algebra of central projections in 93 and in this case
EH = pH*(lx) from which it follows that CE(Ά) is the set of central projec-
tions in 93. Therefore, C(23h) is the self-adjoint part of the centre of 93.

Proposition 7.1. In the Von Neumann algebra model defined by 33, the
complete Boolean algebras Γ(93+), Γ(23+), &sκw

 and ^SRW a r e a^ iso~
morphίc to the complete Boolean algebra CE(£Ϊ) of central projections in 93.
C(93h) is the self-adjoint part of the centre o/23 and (95Λ, 23+, lx) is a factor
if and only if 23 is a factor.

PΓ(93+) is sent into the family of minimal projections in the centre
of 93 under the isomorphism H κ £ H and it follows that H e PΓ(93+) if
and only if EH*$>EH is a factor. Notice that for fe 23+, EHf is the smallest
projection in the centre of 93 such that EHffEHf = f and hence EHf is the
central support of/. It follows that for/, g e 23 + , /, g are quasi-equivalent
if and only if they possess the same central support. Further / is primary
if and only if £ H / 93£ H / is a factor. Let H e P7Γ(95+) and l e t / e i ίn£(95 + ) ,
/ φ 0 . The smallest element of J7(93+) containing / is Lf={λf :λ^0}
and hence £ L / is a minimal projection in the factor EH^BEH which is
therefore of Type /. Conversely, if H e PΓ(93+) is such that EH%>EH is of
Type /, since EH%}EH is isomorphic to 2(Y) for some Hubert space Y, it
follows that E(H) = E((£H93EH)+) + {0}. Therefore H e PjΓ(95+).

£ * , = \/{EH:HE P7Γ(95+)} = £ i% since {EH: H G P

is a family of mutually orthogonal projections. It follows that

H e p x r ( B )

A Von Neumann algebra 93 is said to be atomic if and only if the
lattice of projections in 93 is atomic. It follows that Γ(93+) is atomic if
and only if the centre of 93 is atomic. Suppose this is the case and in
addition 93+ =KV Then, PΓ(93+) = P/Γ(93+) and for each tfePΓ(93+),
EJJ^EJJ is a Type / factor. It follows from above that 23 being the product
of Type I factors is a Von Neumann algebra of Type /. Conversely, if 93
is a Von Neumann algebra of Type / with atomic centre it follows that
for each H G P Γ ( 9 3 + ), EHSBEH is of Type / and hence HeP r Γ(93 + ),

Proposition 7.2. In the Von Neumann algebra model defined by 23,
(i) H e PΓ(%>+) if and only if EHSBEH is a factor.

(ii) H e P/Γ(93+) if and only if EH<BEH is a Type I factor.

(in)EKl= Σ EH.
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(iv) EKl®EKl= Π E

H%EH.
HePjΓ(βί)

(v) If the centre o/93 is atomic, KΣ = 93* if and only if 93 is of Type I.

For Λe J , i ^ = {,4}on93+ and using Proposition 4.2 and Proposi-
tion 4.2 of [13], KpHitiΛ) = EHEKJ&1 EKΛEH, or using the notation of [13],

PpH*(A) = EHPA> QPH*(A) = EHQA-

For H e Γ(93+) and for e 0>, let Ef be the smallest element of E{Ά)
such that EjfEf = f,Vfej(H). It is clear that jePH if and only if

f E fff
The remarks above and Propositions 4.3,4.4 of [13] lead immediately

to the following result.
Proposition 7.3. (i) For j e&Je PH if and only if Ef ^ EH, Ef ^ EH..
(ii) j e PH is repeatable with complementary repeatable operation

/ G PH if and only if

Ej ^ EHPT(j), Er ^ EHPTUΊ, Ej ^ EH,PT(j), Ef ^ EH>PT{jΊ .

(iii) The following conditions onj e Pf and its complementary operation
f are equivalent,

(a) j is (a)H-repeatable,
f $ ? f

(c) j is (c)-repeatable,
and if any one of these conditions holds, Ef = EHT(j), Ef, = EHT(j'),

f' ()f' {\
F o r ; e&,He Γ(93 + ), let Ff be the smallest element of E(l) such that

KFffFf) = FffFf, V / G H. For; G PH,j e P? if and only if Ff = EHPT{j),
Ff =EH,PτijΎ The following result is a consequence of Proposition 4.5
of [13].

Proposition 7.4. Let j e P% have complementary operation f e P%.

fl*" 7 e P?Λα = PSRC if and only if Ff + Ff = £ H , Ff + Ff = E H ,

For i e i , let j be defined by j(f) = A*fA*9 V / G 33J. Then T(/) = A
and since Γ(93^) is precisely the set of norm closed invariant faces of 95^,
it is clear that jeP. Therefore, the condition of Proposition 5.1 are
satisfied in the Von Neumann algebra model. The following two results
are consequences of § 5 and Propositions 7.3, 7.4.

Proposition 7.5. (i) For] e &,j e P if and only ifEf ^ EH, Vtf e Γ(93 + ).
(ii) JEP is repeatable with complementary repeatable operation f e P

if and only if Ef ^ EHPT(j), Ef ^ EHPT(f), VJΪ e Γ(SJ).
(iii) The following conditions on j e PR with complementary operation

f G PR are equivalent,
(a) j is (a)-repeatable,
(b)Ef + Ej = EH,VH
(c) j is (c)-repeatable,
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and if any one of these conditions holds, Ef = EHT(j), Ef,=EHT(j'),

Proposition 7.6. Let j e PR have complementary operation f e PR.
Then j e PSRa = PSRc if and only if Ff + Ff = EH, VH e Γ(»J) .

The results of § 6 show that in order to study pure operations it
suffices to examine the case in which © is a Type / factor and therefore
isomorphic to £(Y) for some Hubert space Y.

Lemma 7.7. Let φ:^Bί-^^β2 be an isomorphism of the Von Neumann
algebras 9&l9 332 and let φ^ denote the isometry from 932*

 on^° 33I* whose
adjoint is φ. If Pp, Pp are the sets of pure operations in the models defined
by 931? 93 2 respectively, and for jePp, φ^ — φ^1 j φ#, then j\->φ(j) is a
bisection from P\ onto Pp.

Proof. Notice that every isomorphism of Von Neumann algebras is
normal and hence φ^ is well-defined. Further, both φ^ and φ~x are
positive and isometric from which it follows that for jePp, φ(j) is an
element of 0>2, the set of operations in the model corresponding to 932.
For Ve0>\RW, φ(p)2 = φ(p) and for/e 23 + , 0^φ(p)(f) = φ~1pφ^(f)
SΦ*ίΦ*(f) = f from which it follows that Φipj^^sRw Similarly, for
p€&lRWi Φ~1(P)G^>SRW

 a n d hence pt-*φ(p) is a bijection from &\RW

onto ^sRw- J e P1 if a n d o n ty if JP = Vh ^P G ^SRW a n < l therefore, if and
only if φ(j) e P2. Therefore, for j e Pp, φ{j) e P2. Suppose fe £(93 J) and
then since φ^9 φ~x are isometric affine mappings from S 2 * onto 93̂ * and
from ©J,, onto 232* respectively, φ(j)(f) = φ*1jφ*(f) which lies in
£(932*). It follows that φ(j)ePp. A similar argument shows that for
j e Pp, φ " 1(/) G Pp and completes the proof of the Lemma.

For a Hubert space Y, let Yc denote the conjugate space and let
c: Y-+Yc denote the conjugate mapping (see [10], p. 9). The following
lemma follows from Lemma 5.4 of [34] and Theorem 3.1 of [6].

Lemma 7.8. Let 33 = £(Y) for some Hubert space Y and let jePP.
Then j has one of the following three forms.

(i) ;(/)= t/*/ί/, V/e»ί, C/e33, U*U=j*(lγ)=TQ),
(ϋ) j(f)=c*U*fUc,Vfe1B];9 Ue®, l/*l/ = /*(ly) = T(/),

(iii) j(f) = f(j*(ίγ))coy where ωy is the pure vector state of$> defined
byyeY,\\y\\ = l.

Proposition 7.9. Let SBbea Type I factor acting on the Hubert space X
and let j e PP. Then j has one of the following three forms.

(ii) j(f) = c* V*f V c, V/e » ; , Ve 23, V* V =f(ίx) = T(j),
(iii);(/) = /(/*(l i))coJ(,V/€®;,xeX,||x|| = l, and ωx is a pure

state of 33.
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Proof. This is merely a combination of Lemmas 7.7, 7.8.
The final result completely characterises all elements of PP when 93

is a Von Neumann algebra of Type / with atomic centre.

Proposition 7.10. Let 93 be a Type I Von Neumann algebra acting on
the Hubert space X and having atomic centre £. For j e P P , there exist
mutually disjoint subsets Λί9 Λ2, Λ3 of PΓ'(93J) with union PΓ(93#) and
mutually orthogonal projections Ev E2, E3 in (£ such that Et + E2 -h E3 = lx

defined by Ek= £ EH, k= 1,2, 3 and for fe 93 + ,

(i)
(ii) /// = E2fE2J(f) = c* F*/Vc, Ve E2%E2, F* F =j*(E2),

(iii)

ω X ί ί zs α pwre sίαίβ o/ 93.

For αrfoίίrαrj; fe^J(f) =j(Eί fEx) +j(E2fE2) +j(E3fE3).

Proof This follows immediately from Proposition 7.2 and Proposi-
tion 7.9.

§ 8. Concluding Remarks

At this stage it is convenient to discuss how far the initial programme
has been successful. It was proposed to make some attempt at a reasonable
definition of pure operation in the abstract situation in the hope that
when applied to the usual models gives rise to recognisable results. In the
event it was found to be necessary to study the structure of Γ(K) in some
detail. Whilst most of the results of § 3 are either well known or are easily
derived from corresponding results in [5], as far as the author is aware
some do not appear elsewhere in the literature. Propositions 3.6-3.8,
3.12, 3.14-3.19 fall into this category. Notice that one possible physical
interpretation of Γ{K) is that of forming the set of superseiection rules of
the system. In this case atomicity of Γ(K) would correspond to the system
possessing discrete minimal superseiection rules. It became clear that
a study of pure operations is only of any importance in the case Γ(K)
atomic and PΓ(K) = PjΓ(K). The details in this case were studied in § 5
culminating in the two results, Propositions 5.7, 6.1 most important from
a physical point of view. These completely describe pure operations in
the abstract situation up to a description of pure operations for systems
without superseiection rules and possessing pure states. Without placing
more conditions on K it is unreasonable to expect to obtain much more
information about pure operations. Notice that the results of § 4 and
indeed some of the results of § 5 are incidental to the central theme but
they do give some insight into the properties of strong operations
whether pure or not.

21 Commun. math. Phys., Vol. 24
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The results of § 7 are self-explanatory from a physical point of view
and in particular Proposition 7.10 describes pure operations in the
Von Neumann algebra model provided that 93 is of Type I and has an
atomic centre. The form of pure operations in this case conforms with the
usual convention. However, it is not clear that all physical situations are
exhausted by consideration of such Von Neumann algebras. Indeed it is
well known that the Type // and Type III cases occur. However, the
general theory indicates that a discussion of pure operations in these
cases is invalid and this is of course borne out by the fact that in these
cases £(33+) = {0}.

More specifically, in physical examples, 93 is usually chosen to be
some ultraweakly closed two-sided ideal in the Von Neumann envelope
U** of a C*-algebra U with identity e. To be precise the elements aeU
such that 0 ^ a ^ e represent the basic simple observables of the system
whilst K is some norm closed invariant face in U*+, the positive linear
functionals on U, weak* dense in U*+. Since U* + may be identified with
the positive normal functionals on U** the general theory shows that K
may be identified with the set of positive normal functionals on £ U * * £
where E is a unique well-defined central projection in tl**. The Von
Neumann algebra 93 is identified with EU**£. Since U* + is weak* closed
the Krein-Milman theorem ensures that £(U*+) φ {0} though it may still
occur that E(K) = {0}. Therefore, even in this special case the choice
of K is crucial. The point of course is that given the C*-algebra U a large
number of different Von Neumann algebra models are then usually
available. Only when there is a unique norm closed invariant face K of
U*+, weak* dense in U*+ and hence equal to U* + is 93 uniquely defined
by U. This is in fact the case when U is chosen to describe a quantum
system with a finite number of degrees of freedom. It has often been
conjectured that the possible Von Neumann algebra models which can
be obtained from a given C*-algebra in the way described above are all
"physically" equivalent in some way. This assumption is equivalent to
supposing that it is the weak* topology of U* not the norm topology
which is important. This is certainly valid if only the basic simple ob-
servables are thought to be important. Under this assumption it is
possible to make a choice of K which leads to 93 being a Von Neumann
algebra of Type / with atomic centre. Notice that U*+ is a possible
candidate for the set of states of the system and therefore it is possible to
define K = (U* + )I the pure restriction of the system whose states are
elements of U*+. It is a consequence of the Krein-Milman theorem that
K is weak* dense in U*+. It then follows that Kr = K and hence from the
general theory that © is a Von Neumann algebra of Type I with atomic
centre. Therefore if one takes the C*-algebra point of view to statistical
physical situations Proposition 7.10 completely describes pure operations
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and these act on all states of the system. In general however pure opera-
tions only act on all states of the system in models in which Kj = K.

Acknowledgement. The author wishes to express his gratitude to Mr. M. A. Gerzon
without whose assistance the precise statement of many of the results in § 3 could not
have been given.
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