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SUBMERSIONS FROM ANTI-DE SITTER SPACE
WITH TOTALLY GEODESIC FIBERS

MARTIN A. MAGID

Introduction

In [5] O'Neill introduced the notion of a Riemannian submersion.
Escobales [1], [2] classified Riemannian submersions from a sphere S” and
from a complex projective space CP”" with totally geodesic fibers.

This paper investigates such submersions for an indefinite space form:
anti-de Sitter space. It is shown that there is essentially only one submersion
from H?"*! onto a Riemannian manifold with totally geodesic fibers, and
this is the standard one onto a complex hyperbolic space CH".

1. Let M, B be C*™ indefinite Riemannian manifolds. An indefinite
Riemannian submersion 7#: M — B is an onto, C ® mapping such that

(1) 7 is of maximal rank,

(2) =, preserves the lengths of horizontal vectors, i.e., vectors orthogonal to
the fibers 77(x), x € B,

(3) the restriction of the metric to the vertical vectors is nondegenerate.

Consider the following example, [4, p. 282, Example 10.7] p: H"*' -
CH", where H*! is a (2n + 1)-dimensional anti-de Sitter space with con-
stant sectional curvature —1 and signature (1, 2n), and CH", defined below, is
a complex hyperbolic space. On C**! let

(Z, W) = —zgWp + 2 2,
k=1

n
{Z, W) = Re(Z, W) = —XqUg — YoUp + > X + Vit

k=1
where
Z=(20" " ,2) = (X0 + W0, = * > Xy + D),
W= (W * W) = (g + ivg - -, u + iv,),
HI*' ={7eC*: (Z,7)=-1= z))
={(Xp Yo" " " » X V)i —Xg = Yo+ Xi + o+ Hxg +yi= -1}
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The tangent space to H2"*!

T:={W eC*': (Z, w) =0}.

Let T = (U € C"*!: (U, Z) =0 = (U, iz)}, and setting H| = {A € C:
M = 1} we have an H| action on H?**!, 7> AZ.

At each point of H2**! the vector field iz is tangent to the flow of the
action, and {iz, iz) = —1. Note that the orbit is x, = (cos ¢ + i sin #)z’ and
dx,/dt = ix,. The orbit lies in the negative definite plane spanned by (Z, iz}.
The identification space of this action is called CH", and the projection is
denoted by p. It is easy to see that 7,,,(CH") can be identified with T7. This
construction mimics that of CP". CH" has negative constant holomorphic
sectional curvature. p: H2"*' > CH" is an indefinite Riemannian submer-
sion.

The main result of this paper is

Theorem 1. If m: Hf — B’ is an indefinite Riemannian submersion from
anti-de Sitter space to a Riemannian manifold with totally geodesic fibers, then
k =2n+ 1,j = 2n, and B* is holomorphically isometric to CH", where B’ is
equipped with an integrable almost complex structure induced from the submer-
sion. (See [1], [2].)

2, This section deals with the algebraic preliminaries.

Given 7: M — B, an indefinite Riemannian submersion, let V and H
denote the vertical and horizontal projections.

atz, Tz is

T.(M) =V, ® H,
V/ H
v, H

X X

O’Neill [5] defines two fundamental tensors on (M, V, {, >):
AgF = V(Vu HF) + H(VyzVF), TgF = H(V,.VF) + V(Y HF),
for vector fields E, F on M. These two tensors have the following properties:
W) Apg = Ag; Ty = Tg.
(ii) Az and T, are skew-symmetric with respect to {, ).

(iii) A and T take vertical vectors to horizontal vectors and vice-versa.
(iv) If V and W are vertical and X and Y are horizontal, then

T,W =TV, AyX =-A,Y.

Definition. A vector field X on M is said to be basic if it is the unique
horizontal lift of a vector field X, on B, so that 7 (X) = X,.
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Lemma 1[5, p. 460]. If X and Y are basic vector fields on M, then

X, Y =<X,, V) m,

(2) H[X, Y] is the basic vector field corresponding to (X, Y],

(3) H(VxY) is the basic vector field corresponding to Vy Y, where V* is the
connection on B.

Lemma 2 [5, p. 461]. If V is the connection on M, and ¥ the connection on a
fiber, then for X, Y horizontal vector fields and V, W vertical vector fields we
have

v, w=rw+V,w,

)V, X=HV,X)+ T,X,

@)YV V=A,V + V(VyV),

(@) VY = H(V,Y) + A, Y,

(5) if X is basic, then H(V ,X) = A, V.

We will assume that the fibers are totally geodesic, so that by (1) T, W = 0,
which gives

ayv,w=%,w,

Q) VxV = H(V X).

O’Neill also proves [5, p. 465] the following relations between the sectional
curvatures K of M and K, of B when the fibers are totally geodesic:

_ Ay, AxV)
@ v =0 vy
3KA,Y, A Y
(69) Kaox nv,= Kxpy + Ay T AT

XXX, YD = <X, Y

where X and Y are horizontal vector fields, V is a vertical vector field, and
K\ r (tespectively, K, e nr,) denotes the sectional curvature in M (respec-
tively B) of the plane spanned by E and F (E, and F,).

In the Riemannian case, (#0) says that sectional curvatures are increased
by submersions. Since we will be dealing with submersions from H]"*¥, let us
first look at the case of submersion from a Lorentzian manifold with negative
sectional curvature to a Riemannian manifold.

Proposition 1. If 7: M{"** — B™ is an indefinite Riemannian submersion
with totally geodesic fibers, where M is Lorentzian and has negative sectional
curvature and B is Riemannian, then k = 1.

Proof. By (@) we have

AxV, Ax V>
X, XXV, V)~

Since 4, V and X are horizontal, (4, V, Ay V) > 0and <X, X> > 0. Thus
(V, V> <0,ie, Vis timelike, and 4, V 5 0 for all horizontal X # 0, and all

0>Ky,\y=
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vertical ¥V # 0. Since M is Lorentzian, the timelike vectors are essentially
one-dimensional and so the vertical vectors are one-dimensional. q.e.d.

Thus if 7: H"*! — B™ is a submersion with totally geodesic fibers, then by
(68) we have

3(A, Y, A, YD
K*X‘/\Y‘= —1 + — 2
X, XY, Y) —<X,Y)

and because Ay Y is vertical, {(4,Y, A, Y > < 0. This shows that K, < -1 so
that curvature is nonincreasing in a submersion of this type.

Proposition 2. If 7: H"*' — B™ is a submersion with totally geodesic
fibers, then m(B™) = 0,j =1,2,3,- - - .

Hint of proof. We must only show that in the fibration

S15 8 x R™ S B
I
Hlm+l

that i induces a homotopy equivalence. This is clear, since every geodesic in
H™*!is a circle in R}**2 of the form (cos #)x, + (sin £)X,, with {x,, X,> = 0.

Theorem 2. If : H*' — B™ is an indefinite Riemannian submersion with
totally geodesic fibers, then m = 2n, for some n > 0.

Proof. H™*'is not only equipped with the fundamental tensor A but also
with a foliation by timelike geodesics. Thus there is a smooth vector field V'
tangent to these geodesics with {V, V) = —1. Let X and Y be horizontal
vector fields on H{"*!. We know that 4, V is horizontal. Therefore

0=YX, V) =(VyX, V) + <X,V V) =<4, X, V) + (X, 4,V ).

Interchanging X and Y we have

0=CAyY, V) + <Y, Ax V).
Since Ay Y + Ay X = 0, adding these two equations yields

<X, AYV> + <7, AXV> =0,
so that A_V: H, — H, is skew-symmetric. If the horizontal space H, were
odd dimensional, then 4_V would have 0 as an eigenvalue. On the other
hand, (@) gives

AV, A V>

X, XXXV, V) -1

But (V, V) = —1,50 {Ay V, Ay V) = (X, X ) which means 4_V is an isome-
try. Thus H, must be even dimensional, and m = 2n. q.e.d.
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In fact a skew-symmetric isometry is an almost complex structure, since a

basis can be found with respect to which the mapping is of the form
0 1
-1 0
0 1]
-1 0

Thus we know that any indefinite Riemannian submersion from Hf with
totally geodesic fibers onto a Riemannian manifold is of the form #: H 12"“
— B? and B* is simply connected.

3. This part of the paper will show that B> is holomorphically isometric to
D" the disc in C" with the Bergman metric [4, Ex. 10.7].

First we shall show that the submersion induces an almost complex
structure on B?* and a Hermitian metric on B?". Then it will be seen that with
these induced structures B is a Kihler manifold.

One could also show that H2"*! is an indefinite regular Sasakian manifold
with the structure induced from the submersion and so [6, p. 150] B?* is a real
2n-dimensional Kihler manifold. The proofs are similar.

Let V be as in the proof of Theorem 2. Since V is a geodesic vector field,
V,V = 0. Let $(E) = AV for all vector fields E on H?"*!, and let n be the
one-form dual to ¥, so that n(¥) = —1. Then we have

Lemma3. (1)¢(V)=0,

(@ n(¥(E)) =0,

() $*(E) = -E — n(E)V,

@ <HE), H(F)) =<E, F) + n(E(F),

(5) n(E) = <E, V),
for all vector fields E, F on H"*.

Proof. (1), (2), (5) are clear.

(3) Let E = X + AV where X is horizontal. Then

ONE) = A,V =A4,,V,and 4, ,V = -X,
since for all horizontal Y
<AAXVV’ Y) =V, AA,,VY> =V, AyAxV )
= (A, V, Ay V) = <X, Y).
Thus
XX +AV)=-X=—(X+AV) — (X + AV)V = -E — n(E)V.
@ LetE=X+ AV, F=1Y + uV where X and Y are horizontal. Then
(O, 9F) = AV, AgVy = (AxV, AV
=(X, Y)Y =LX +AV, Y + uV) + (X + A\V)n(Y + pV).
q.e.d.
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Since the basic vector fields on H2**! correspond to vector fields on B>",
we focus our attention on these vector fields. In particular, in order to have ¢
induce an almost complex structure on B* if X is basic, then 4 « V must be

basic.
Theorem 3. If X is a basic vector field on HY*', then AyV is a basic

vector field.
Proof. Lemma 1.2 [1, p. 254]: Let B, be a basic vector field on HZ"*!

corresponding to B; on B* and let X be horizontal. If <X, B;), = <X, B>y
for all such B, and any p, p’ in 77(b), b € B*", then X is basic.
This means that for all B, basic, we must show that ¥<{A4,V, B) = 0. Since

V{AyV, B> = (V (A V), B) + {4V, V,B>
= (Vi (AxV), B) + AV, AgV )
=V (4xV), B) + X, B),

we must show that for X basic V,(4yV) = —X. On H?**!
RV, XYV =V, V¥ = UV, ¥ = iy )V = ~(V AX)V,

since H"*! has constant curvature —1.

RV, X)V =V, VyV — Vix )V since V, ¥V =0, and because [V, X] is
vertical Viy 1,V = pV ¥V = 0 yielding R(V, X)V =V, V,V.

On the other hand

RV, X)V = = (KX, VSV — (V, VIX) = -X
so V, V4V = —-X. But
VAVxV) =V (AxV + V(VxV)) =V (45 V)

since (Vy ¥, V) =1X{(V, V) =0. qed.

Thus ¢ induces an almost complex structure on B,

Theorem 4. This almost complex structure on B*" is integrable.

Proof. We must show that N,(X,, Y,) = 0 where X, and Y, are vector
fields on B>, and N, is the Nijenhuis tensor of ¢:

Ny(x,,Y,) =[oxX,,Y,] —[X,. ¥,] - o[ X, oY, ] — ¢[0X,, Y, ].

The basic vector field corresponding to N (X,, Y,) is H[¢X, ¢Y] — H[X, Y]
— ¢[X, Y] — ¢[¢pX, Y] where X and Y are the basic vector fields associated
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with X, and Y,. This is equivalent to
H(Vyx¢Y) — H(V,y$X) — H(VxY) + H(VyX) — ¢(Vx$Y)

+¢(VoyX) — (Vx Y) + &(Vy9X)

(a) (b) ©) )
= H(V1(4yV)) = H(V 4, (4xV)) — H(VxY) + H(V ,X)

() &) (8 *
= Avx(AyV)V + AV(AyV)XV - AV(AxnyV + AVy(AxV)V'

In order to prove N, (X,, Y,) = 0it is sufficient to prove
Lemmad. If X and Y are horizontal vector fields on H¥"*+, then

(T) H(VX(AYV)) = A(V,Y)V-
If () holds, then
H(VAXVAYV) = AVAXVYV’
H(VA,,VAX V)= AVA,VXV’
Av,an)V = H(Vy(A4,V)) = —H(VxY),
AVY(AXV)V = _H(VYX),

and so (a) = (g), (b) = (f), () = —(c) and (h) = —(d). Thus the sum is zero.
Proof of Lemma 4. () is equivalent to

) (VxAyV,Z) = Ay, yV, Z) for all horizontal Z.

From [5, p. 464 {3}]
<R(Ya Z)X’ V> = _<(VXA)YZ’ V>,

SO
(R(Y, Z)V, XY = (VxA)yZ, V).

Since R(Y, Z)V = —(Y N\ Z)V =0, we have {(Vy4)yZ, V) = 0, which ex-
pands to
0=(Vy(4yZ), V) — <AVXYZ’ V) = AYVxZ), V).

Substituting
AyZ = AyZ, V)YV ={AyV,Z)V
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in the above equation gives
0=LKVK4yV, ZHV, V) — <Avxyza V) —<4y(VxZ), V)
= AV, ZYVyV, V) + (X{A,V,Z)V, V)
—(AyyZ, V) = A{Y%Z), V)
=(Vx(4yV), Z) —<AyV, VxZ) — <Avxyz, V) —<4y(Vx2Z), V)
={(Vx(4yV), Z) + {AyV,VxZ) —(Z, Ay yV) + {4y(VxZ), V)
={(Vx(4yV), Z) - <AvxyVa z)
because (A, V, VxZ ) + (A (VxZ), V) =0. q.ed.
Note that the metric induced on B?* is Hermitian since {(¢X, ¢Y) =

(X, Y for X, Y basic on H2>**!. Thus in order to show that B*" is Kihlerian
we must only show that

Vi Y, = o(V%, Y,)-

Since the basic vector field corresponding to V}. Y, is H(V,.Y) and the basic
vector field corresponding to V;‘,‘qb Y, is H(Vy¢Y), we must show that

H(V34Y) = (V5 Y)

for X, Y basic on H"*!. But this is just ().

Thus B*" is a Kihler manifold, 7,(B*") =0 and to finish the proof of
Theorem 1 it is only necessary to show that B?" has constant holomorphic
sectional curvature [4, p. 170, Theorem 7.9].

By (60) we obtain

(AxdX, AxdX )
XX T DX T T TS, $X > — (X, X Y
(AxAxV, AxAx V)
X xy»

=-1+3

X, XKV, V>
K =-1+3—"L—~_"_2 =4

AN X, X
This completes the proof of Theorem 1.

Just as Escobales does in [1] we can show that any two such maps are
equivalent.
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