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123. On Spaces Having the Weak Topology with
Respect to Closed Cowverings

By Kiiti MoORITA
Mathematical Institute, Tokyo University of Education
(Comm. by K. KUNUGI, M.J.A., Dec. 14, 1953)

Let X be a topological space and {A4,} a closed covering of X.
We shall say that X has the weak topology with respect to {A.}
if the union of any subcollection {4} of {A.} is closed in X and
any subset of \/ A, whose intersection with each 4, is open relative

B
to the subspace topology of A, is necessarily open in the subspace
\J A, ; the word “‘open’’ may, of course, be replaced by ¢ closed”’.
B

According to this definition any CW-complex K in the sense
of J.H.C.Whitehead® has the weak topology with respect to the
closed covering which consists of the closures of all the cells of
K. Thus the theorems concerning spaces having the weak topology
with respect to closed coverings are applicable to CW-complexes
which play an important rjle in algebraic topology.

Let X be a topological space having the weak topology with
respect to a closed covering {A4,}. In this paper we are concerned
primarily with the problem: what property of each subspace A,
has influence upon the whole space X? TFor example, if each A,
consists of a single point (or more generally if each A, is discrete),
X is discrete. It will be shown below that if each subspace A, is
(completely or perfectly) normal, so is X. Our main theorem is
that if each subspace A, is metrizable, then any subset of X is
paracompact and perfectly normal. Since the closure of each cell
of a CW-complex is a compact metrizable space, it follows immediately
from our theorem that any subset of a CW-complex is paracompact
and perfectly normal?®.

§1. Product Spaces.

Lemma 1. Let {A.} be a locally finite (=neighbourhood finite
in the sense of S. Lefschetz) closed covering of a topological space X.
Then X has the weak topology with respect to {A,}.

Lemma 2. Let X be a topological space having the weak topology
with respect to a closed covering {A,}. Then a mapping f of X into

1) J.H.C. Whitehead, Bull. Amer. Math. Soc., 55, 213-245 (1949).

2) The paracompactness is proved independently for simplicial complexes with
the weak topology by D.G.Bourgin, Proc. Nat. Acad, Sci. U.S.A., 38, 805-313
(1952); J. Dugundji, Portugaliae Math., 11, 7-10-b (1952); H. Miyazaki, Tohoku
Math. Jour., 4, 83-92 (1952); K. Morita, Amer. Jour. Math., 75, 205-223 (1953) and
for CW-complexes by H. Miyazaki, Tohoku Math. Jour., 4, 309-813 (1952).
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another topological space Y 1is continuous if and only if f|A. s
continuous for each A,.

Lemma 3. Let X be a topological space having the weak topology
with respect to a closed covering {A.}. If Y is a locally compact
Hausdorff space, the product space X xY has the weak topology with
respect to the closed covering {A.xY}.

Since Lemmas 1 and 2 are obvious, we shall prove only Lemma
8. For this purpose it is sufficient to prove that if G is a subset
of Xx Y and its intersection G N (A4.xY) with each 4,xY is open
in the subspace A,xY, then G is open in XxY.

Let (x, %) be any point of G and let us assume that 2, belongs
to A,. If we put H={y| (x,,y)€ G, ye Y}, then H is an open
set of Y, because H={y| (x, y) € G N (4+,x ¥) } and by the assumption
GN (A4, xY) is open in 4, xY.

Since ¥, € H and Y is a locally compact (=bicompact) Hausdorft
space, there is an open set W such that W is compact and y, € w,
W H. It we put V={z|xx WG}, we have VN A.={x|zx W
CGN(A.xY)} and, since GN(4,xY) is open in A,xY and W
is compact, VN A, is open in A.,. Hence V is open in X. Since
(@, )€ Vx W, Vx WG, Gisan open set of Xx Y. This proves
Lemma 8.

Theorem 1. Let X be a topological space having the weak topology
with respect to a closed covering {A.}. If {By} is a locally finite
closed covering of a locally compact Hausdorf space Y, then XxY
has the weak topology with respect to the closed covering {A.x Bs}.

Proof. Let {Au.xBsjlacly, Be€d} be any subcollection of
{A4.xB,} and let Z be its union. Since Z,=\J{A.xB;|la€[}} is
closed in XxY and {XxB,|B8¢ 4} is locally finite in XxY, Z is
a closed set of XxY. If F is a subset of Z and its intersection
with each AuxB,(a €I, Be€ d) is closed in A, x By, then FnZ, is
closed in Z, as is shown by applying Lemma 3 to \U{A.|a€l}}
and B,. Since FnZ, is closed in Xx B, and F=\/{FnZ|B¢€ 4},
F is closed in XxY and a fortiori closed in Z. This completes
our proof.

§2. Normality.

Theorem 2. Let X be a topological space having the weak
topology with respect to a closed covering {A.}. If each A, is normal
as o subspace, X is a normal space. Furthermore, if dim A, <n
for each a, we have dim X< n.

Progof. We assume that the set of indices a consists of all
transfinite ordinals « less than some ordinal 7. Thus X=\/{A,|
a<n}. Let us put for <7

P.=V{dia<r}, Q.= U{d]a<r}.
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Let F' be any closed set of X and f any continuous map of F
into the closed unit interval I={t|0<¢t<1}. We shall show that
f can be extended over X continuously. For this purpose let us
assume that for every a<{r there exists a continuous map f,: P,UF
-> I such that if 3<a we have f.(x)=f(x) for z € P,UF, where
we put fi=f. Then we define a map g: Q.UF =1 by g(z)=f.(x)
for xe€ P,UF. 1t is clear that g is single-valued. On the other
hand, by Lemma 2 the continuity of g follows from the fact that
9\Pa=fu| Py, g|F=f for a<lr.

Since A, is normal, the map ¢g|L, where L=4.n(Q.VF), can
be extended to a continuous map h: A.—I. If we define f.: P.UF
- I by

g9(x) for x€ Q. VF,
flw) = { M) for xeA.,
then f.|P,V F=f, for a<r, and f. is a continuous map.

Thus for any <7 there can be found, by transfinite induction,
a continuous map f;:P.UVF—I such that f,=f.|P,VF for o«<r.
Hence by the same method as that of the construction of g from
SfJ’s we see the existence of a continuous map ¢: X=\/P,UF—>I

such that @|F=f. This proves the normality of X.

Furthermore, if dim A,<n for each «, we can follow the
above argument with I replaced by an n-sphere S*. This completes
our proof.

Remark. By an extension theorem of C. H. Dowker® for
collectionwise normal spaces we can prove similarly that for a
gpace X having the weak topology with respect to a closed covering
{A.} the collectionwise normality of each A, implies the collection-
wise normality of X.

Theorem 3. Let X be a topological space having the weak
topology with respect to a closed covering {A.}. If each subspace A,
18 completely (perfectly) normal, so is X.

The part concerning the complete normality follows from
Theorem 2 and Lemma 4 below, since a space is completly normal
if each open subset is normal. The part concerning the perfect
normality is proved, in view of Theorem 2, if we show that any
open subset of X is an F,-set; but the latter is easily verified.

Lemma 4. Let X be a topological space having the weak
topology with respect to o closed covering {A.}. If Z is an open
(closed) subset of X, Z has the weak topology with respect to {ZN A.} .

§3. A Lemma. Before proceeding to our main theorem we
find it convenient to prove the following lemma.

Lemma 5. Let {B,C} be a closed covering of a topological space

3) C.H.Dowker, Arkiv. f. Mat., 2, 807-713 (1952).
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Y. In case C i3 metrizable, there exists a correspondence y which
associates with every open set G of B an open set ¥(G) of Y and
has the property that y(G)NB=G, and ¥(G)Ny(H)=0 if and only if
GnH=0.

Proof. Let us denote by p a metric of C which induces the
given topology of C. For any dpen set L of the subspace BnC
=C, we define®

(L) = {z|p(y, x) < %P(y, Cy—L) for some point y of L}.

Then @(L) is clearly an open set of C and @(L)nC,=L. Moreover,
if L,nL,=0, then o(I,)N¢#(L,)=0. Because, if @(L;) and @(ls)
have a point # in common, there exist two points y, € L;, ¢=1,2

such that p(y;,w)<-;—p(yi, Co—L), ©1=1,2. Let us assume that

P, Co—L)<p(y,, Co—L,). Then we have p(y., y:1)<p(®@, y2) + p(, 1)
<<p(¥s, Co—Ls;). This shows that y, €L, and hence y, € Ly L,,
contradicting to the assumption that L,nL,=0.

Now let us put for any open set G of B

¥(G) = GUp(GNC).
Here it is to be noted that (G C) is an open set of C. Then
we have
VEAONB =G, YHNC=9pGNCO),
and (@) is an open set of ¥ by Lemma 1.

Let us assume that GnAH=0, xey(G)Ny(H), where G, H
are open sets of B. Then the point 2 must belong to C and
hence z e p(GNC)N@(HNC), but this implies (GNCIN(EHNC)=E0
which contradicts the assumption that GnH=0. This completes
the proof.

§ 4. Paracompactness. Now we shall prove our main theorem.

Theorem 4. Let X be a topological space having the weak
topology with respect to a closed covering {A.}, and let each A, be
metrizable as a subspace. Then X is paracompact and normal.

Proof. Since X is normal by Theorem 2, it is sufficient to
prove the paracompactness of X.

We assume that the set of indices a consists of all ordinals «
less than a fixed ordinal #» and put, for each <7,

P¢=U{Aala§7}’ Q¢=U{Aald<7}°

Let & be any open covering of X. We shall prove the existence
of a locally finite refinement B of ®. The construction of ¥ will
be performed by transfinite induction. For this purpose we assume
that for each « less than +(<7) there exist two open coverings

U, ={UQR,a)|ic 2.}, BW.={Wix)|xeP.}

4) Cf. W. T. van Est, Fund. Math., 39, 179-188 (1953).
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of P, with the following properties:
(L) U, is a refinement of @NP,={GNP,|GeB}.
(2,) U, is a locally finite open covering of P,.
(8:) In case 8<a we have 2,2, and
U,R=U@,a)nNP;, for i€ 9.
(4.) In case <« and UQ1, B) Gy € ®, we have also
U(A ’ a)< GICO‘) .
(6.) For any point xeP,, x€ W,(x) and
F(x)={A| W (x)nUQ, a)=0} is a finite set.
(6.) In case B<a and x € P,, we have
Fy@)=Iux), Wyx)=Wle)NP;.
Now let us put &=\ {2,|a<+} and
Us(D)=U{UQ, a)la<r}, for 1€ @,
where U(4, @) means the empty set for those « that 1€ 2,.
Similarly we put, for any point z of Q.,
Wi@)= U {Wu2)|a<r}, @)=V {l2)alr},
where W, (z), I,(x) mean the empty set for a point x not contained
in P,.
Then we have clearly Ui(4)G.n, and
U*(J)f\Pa= U(l, a) ’ W*($)f\P¢,= Wu(a’) .
Hence U,(1), Wy(x) are open sets of Q. by the property of the
weak topology.
By (6,) I'«(x) is a finite set. For i€ @—1I"y(x) we have
Wila)nUx) =\ (Wi(2)NUQ, a))= Y (Wi()nUQ, a)n\ P.)
—\{(W ()N U(/I ya))=0. Theretore {U4(A)| A€ @} is a locally finite

open covering of Q. and it is a refinement of G N Q-.

Now we apply Lemma 5 to the space P, and the closed covering
{Q., A} of P.. Using the same notation « as in Lemma 5 we
put L=U{y(W(x))|r€ Q.}. Then L is open in P, and Q.L.
Since P, is normal, there exists an open set M of P, such that
Q1<My M=M/\P1<L .

For A€ @ let us put

U, n)=¥(U0)NMNGea -
Then U(Z, =) is an open set of P. and is contained in G,,,, and more-
over we have U@, )N Q.=Ux), since (Ux())NMNGraN Q=
=UsNMNGrry=Ux(2) -

As has been proved above, for 1€ @—Iy(x) we have W,(x)n
U,(1)=0 and hence y(Wy(x)) \¥(Ux(2))=0 by the property of .
Therefore {U(1,7)|Ae @} is locally finite in L. It is also locally
finite in P.— , Msince U@, r)M. Thus {UQR,r)|1€ @} is locally
finite in P., since L and P.—J are open in P, and P,=LV(P,—M).

Let us put further C=P.—\J{U(1,7)|4€ @}. Then C is closed
in P, and C{A.—Q.. Since P. is normal there exists an open
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set N of P, such that Q. <N, NnC=0.

By the assumption of the theorem A. is a metrizable space
and hence C is paracompact®. Therefore there exists a locally
finite closed covering {F(x)|n€ ¥} of C which is a refinement of
SN C. Because of the paracompactness of A. there is a locally
finite system {U(u,r)|ne€ ¥} of open sets of A, such that it is a
refinement of N A4, and F(p)U(p, r)TA.—~N.®

Thus we have C\J{U(s, r)|n€ #}A.,—~N=P.—N. There-
fore U(z, ) is open in P.—N and hence in P,.

Since {U(x,r)|m € @} is locally finite both in N and in A,— Q.
(=P,-Q.) and N, P.—Q, are open in P, {U(u,7)|n€ &} is locally
finite in P, (=NV(P.—-Q.)).

Let us put, for a point x of Q.,

W) = y(Wil(x) )N N.
Then W.(x) is an open set of P, and we have

W ()N Qe=Wylx), Wolx)NUlp, ) NN(P:—N)=0, for pe &.
If we denote the union of @ and ? by 2., we have [(x)={2|W.(x)n
UQ, =0, 1€ 2.} = {A| W@)\ UG, 1)=0, 1€ 0} = {a|y(Wi(@)N
WU())F0, 1€ O} ={2]| Wi(x)N\Usx()==0, 1€ @}=Ty(x).

For a point 2 of P.— Q. there exists an open set W.(x) of P,
such that xe W (x), W (x)TP.—Q. and

I'(z) = We)nU@,r)==0, 1€ 2.}
is a finite set.
Let us put
U, ={U@,r)|Ae 2.}, W, ={Wx)|xeP}.
Then these coverings satisfy the conditions (1.) to (6.).

Thus by transfinite induction we can find open coverings U,,
W. satisfying the conditions (1,) to (6,) for each a<?.

Let us put finally

B={V()|ireL}
where
V(R) = \/ {U(ﬂ, a)la <’7} y =\ {-Qa‘a <77} )

and U(4, a) means the empty set for i€ £,. By the same arguments
as those for coverings {Ui(A)}, { W.(x)} described above we can
prove that B is a locally finite open covering of X(=\/{P,|a<7})
and B is a refinement of @. Thus the theorem is completely
proved.

This theorem can be somewhat sharpened by Theorem 8 and
a theorem of C. H. Dowker®.

Theorem 5. Under the same assumptions as in Theorem 4,

6) Cf. A.H.Stone, Bull. Amer. Math. Soc., 54, 977-932 (1948).
6) Cf. K. Morita, Jour. Math. Soc. Japan, 2, 16-33 (1950).
7) C. H.Dowker, Duke Math. Jour., 14 (1947).
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any subset of X is paracompact and perfectly mormal.

The paracompactness of any subset of X is deduced also readily
from Theorem 4 and Lemma 4.

Remark. In general, the word ‘‘paracompact’ in the con-
clusion of Theorem 4 cannot be replaced by ¢ metrizable’’; but
in case {A,} is a locally finite covering one can prove the
metrizability of X, since in this case X is a paracompact and
locally metrizable space®, and such a space is easily shown to be
metrizable.

8) Because a space which is a finite sum of closed metrizable subspaces is
metrizable. Cf. R.H. Bing, Duke Math. Jour., 14, 511-519 (1947); F. Hausdorff,
Fund. Math., 30 (1938). Of course a proof appealing to the known metrizability
conditions is possible,



