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Let X be a compact Hausdorff space and let C(X) be the
algebra of all complex-valued continuous functions on X. By a
function algebra we mean a closed (by supremum norm) subalgebra
in C(X) containing constants and separating points of X. Recently
J. Wells [7] has obtained interesting theorems on multipliers of
ideals in function algebras. And especially in the disc algebra A,
it was shown that for any non-zero closed ideal J in A4, I, (J) is
the set of all H>~-functions continuous on D~F, where D is the
closed unit disc on the complex plane and F is the intersection of the
zeros of the functions in J on the unit circle C ([7], Theorem 8).
As A, is an essential maximal algebra, the question naturally arises:
Does a similar theorem hold for arbitrary essential maximal algebra?
The main purpose of this note is to answer the question under
certain conditions and to give a generalization of the theorem men-
tioned above (cf. Theorem 2).

1. Let A be a function algebra on a compact Hausdorff space
X. Let J be a non-zero closed ideal in A. By a multiplier of J
we mean a function ¢ on X~h(J) such that ¢JcJ, where h(J),
the hull of J, is the set of points at which every function in J
vanishes. Every multiplier of J is a bounded continuous function
on the locally compact space X~h(J). We denote the set of all
multipliers of J by M(J). M(X) denotes the set of all complex,
finite, regular Borel measures ¢ on X and a p( € M(X)) is orthogonal
to A (#1A) means sfd/xzo for any feA. For p in M(X), pr
denotes the restriction of ¢ to F. C(Y)s denotes the space of
bounded continuous functions on the locally compact space Y under
the strict topology S of Buck ([3], [7]). Let A be a function
algebra on X and let F' be a closed subset of X. Then F is said
to have the condition (P) if p,1 A for every 1 A. If F has (P),
it is an intersection of peak sets ([4]). Wells [7] has proved the
following theorem: I(KF') is the closure of £F in C(X~F)g if and
only if F has (P), where kF = {fc A: f(F)=0}. Let F,=w(J),
then M(kF,, J) denotes the set of all functions ¢ on X~F, such
that ¢-kF,cJ. Every function in M(kF,, J) is a bounded continuous
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function on X~ F,.

Theorem 1. Let J be a non-zero closed ideal in a function
algebra on X and let Fo=h(J). If F, has (P), then W(kF,, J) is
the closure of J in C(X~F\),.

Proof. Since F|, has (P), F|, is an intersection of peak sets, so
we can set Fy= F;, F;={x: g,(x)=1}, where every g; is a function
in A such that |g,()|<1 if v¢ F,. If we put

hjl,:iz ,,,,, jm,n=1—(gj19j2 ce gjm)” ,

then these functions are contained in k(F};). We can here prove
that h; j,,....; .. converges to 1 under the topology B, where the
ordering > of the directed set {(j,, 7., +++, Jm, n)} is the following;
(jply jpgr ) jps’ n)>(jq1’ quy ttty tha n’) if the finite set jplv jp2, tt jps
DJayy Jay ***1Je, and n=n'. For, let f be a continuous function on
X~F, which vanishes at infinity. Then if we put f(x)=0 for any
xe F,, f can be regarded a continuous function on X. We set
U={xe X:|f(x)|<e}. Since N Fy=F,cU, F; NF,n--- NF; cU,
for some j,,J,, ++-,J. and !

sup {| (95,95, * -+ 95,)(@) |; ve X~U}<1.
Therefore ||(g;,9;, - 9;,)"f ll-<¢ for any n> some n, This shows
that || L—h;,5...5,,0)f |le—0. Now let ¢ be any function in WL FY, J),
then ¢h; ,;,.....;,,n € J and @h; ,;.....; .. converges to ¢ under the topology
B, so M(kF,, J) is contained in the closure J# of J under 8. Con-
versely, it is obvious that SR(LF,, J)DJ*.

Remark. As we see in the proof of Theorem 1, for any
e e WkFy, J) ¢hy,j,.....i,.n converges to ¢ under 8. We see here that
0Py oS0 e T s pin | S 211 [

2. Let A be a function algebra on X and let S(A) be the
maximal ideal space of A. Let J be a non-zero closed ideal in A.
Since A can be regarded as a function algebra on S(A), we denote
the function algebra by A: A={F: fe A} and f(m)=m(f) for any
m e S(A), in other words, for any non-zero homomorphism m on A.
J= {f: fed} is a closed ideal in A and M(J) can be defined as a
subalgebra of C(S(A)~F,), where F,=h(J). We shall use the
symbol 9M(J) in the place of M(J). H. 7 is the set of all bounded
continuous functions % on S(4)~ F, having the following condition;
there is a net {#,} in A which is uniformly bounded (||, ||»<some
M), and 4@, converges uniformly to u on every compact subset in
S(A)~ F.

Let A, be the disc algebra, that is, the algebra of all continuous
functions on C={z: |2|=1} with continuous extensions to D={z: |z|<1},
analytic in the interior of D. Wells [7] has proved the following
theorem: Let J be a non-zero closed ideal in A4, and let F be the
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intersection of zeros of the functions in J on C. Then W(J) is the
set of all H* functions continuous on D~F. We see here that F
has (P) since F' has Lebesgue measure zero, and A(J) is non dense
in D (cf. [5]). Moreover, we easily see that in the disc algebra
A, Hy is equal to the set of all H* functions continuous on D~ F'

Following theorem is a generalization of the theorem mentioned
above.

Theorem 2. Let A be an essential maximal algebra and let J
be a mon-zero closed ideal in A. If Fy=h(J) has (P) (cf. §1) and
if Fy=nh(J) is non dense in S(A), then M(J)=M(kF,)=Hz,.

Although any function ¢ is M(J) is a continuous function on
S(A)~F,, it can be extended continuously to a unique function in
C(S(A)~F,). By a function ¢ in M(J) in the above theorem, we
mean the extended function of ¢. Suppose that ¢ is a function in
M(J). To show that ¢ can be extended continuously to a function
in C(S(A)~F,), we put F,=N F,, where F,={x: g.(x)=1}, g, is a
function in A and | g. (o) |<1 if v@ F,. If hy=1—g., ho(F.)=0, and
ho(x)#0 for xe X~F,. If ¢ is the restriction of ¢ to X, ¢ € WM(J)
and +rh, is a continuous function on X. Since +h.JCyJCJ, by
Wells ([7], Theorem 7), 4rh,e A. On the other hand, for any f in

(pfh —geJ If we set h,yr= Das then fp,.=g, fpa—g, and gofh
—f Do Since f( e A) is arbitrary, oh,=5, on S(A)~F Since k., never
vanishes on S(A)~F, (cf. [2]), 0u(®)=P.(®)/h.(x) is continuous on
S(A)~F,. Since S(A)~F, is dense in S(A)~F, and ¢ is equal to
0. on S(A)~(F,UF,) for any «, ¢ can be extended to a function in
C(S(A)~F).

We first prove the following lemmas.

Lemma 1, If Fy=h(J) has (P/?, the;zz, W(J ):)EJJ/&\(kFO).

Proof. If ¢ e M(kF,), then ¢-kF,CkF, where kF,={F: fe kF,).
For any feJ, we have gof-k/Focf-lg\Focf. Since F, has (P), there
is a net {u,} in kF, such that u; converges to 1 under the topology
B, so u;f converges to f unlformly Since @, f converges to f
uniformly and ;e lcFO, of eJ and oJcJ.

Lemma 2. If A is an essential maximal algebra and if F,
=n(J) is non dense in S(A), M) CWM(ELF,).

Proof. If ¢eM(J), oJcJ. For any e Ic/ﬁ’.,, ¢d is continuous
on S(A) and eaJcalcd, so goaei)ﬁ(J ). By the following lemma,
e A, and since pA(F,)=0, pl e kF This shows that ¢ e M(EF,).

We shall prove the following lemma, which is similar to a
theorem of Wells ([7], Theorem 7).

Lemma 3. If F,=nJ) is non dense in S(A) and if A is an
essential mawximal algebra, then any function ¢ in M(J) which
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can be extended continuously to a function in C(S(A)) is in A.

Proof. We set B={f¢c C(S(A)): the restriction of f to S(A)~F,
is in M(J)}. Then we easily see that B is a closed subalgebra in
C(S(4)) and BoA. To prove that the Silov boundary 0, of B is
equal to 0, (=X), it suffices to show that the Choquet boundary M,
of B is contained in o, ([6], p. 40). If x,e€ M;, then for any neigh-
borhood V(x,) of ®, in S(A) there is a function f,e B such that
| fo(we) |>1 and |fi(x)|< some 7n<1 for any xe S(A)~ V(x,). Take
a neighborhood W(x,) of x, in S(A4) such that V(x,)> W(x,) and
| fo(x)|>1 for any «e W(x,), then there is a point &’ e Wi(w,)~F,,
since F, is non dense in S(A). Since F,%a’ there is a function
geJ such that §(2')0, and we can here assume that §(@)=1. If
we set h=§fy, then heJ and for a sufficiently large n, |h(z’)|>1
and Iﬁ(y) |< some 7'<1 for any y in S(4)~ V(x,), so x,€d,. Now
if B, is the restriction of B to X, AcB,cC(X). Since A is
maximal, it follows that A=B, or B,=C(X). If A=B, we
obviously see that B=A since & ,=0;=X. In this case, any
FeC(S(A)) whose restriction to S(A)~F, is in M(J) is a function
of A. Next we shall show that B, is not equal to C(X). Assume
the contrary and let f, be a non-zero fixed function in J, then
Z(f)p X, where Z(f)={xe S(A), f(x)=0}. We take an open set
U in X such that Z(f)Nn Xc Uc U< X, where U is the closure of
U in X. We shall prove here that any function fe C(X) such that
f(U)=0 is in A. If this were proved, A would be not an essential
algebra ([17). This contradiction shows that B, is not equal to
C(X). Let f be a function in C(X) such that f(U)=0. Since f,
never vanishes on X~ U, f;* can be extended continuously to a
function %~ of C(X). If we put ¢=fh, then goeC(X) and ofo=1f.
Since B,=C(X), ¢=b on X for some be B, and bf,ebJcJcA and
f=fweA.

The proof of Theorem 2. By Lemmas 1 and 2, it remains
only to prove that MM(kF,)=Hj,. Since F, has (P), Fj is an intersec-
tion of peak sets in X. Since A is an essential maximal algebra,
by Bear [2], F, is an intersection of peak sets in S(A). By the
remark of Theorem 1, for any u in MM(kF), there is a net {ﬁk}clﬁf’o
such that ||4,]|=2 ||| and for any Ffe Iﬁf" @i, f converges uniformly
to uf on S(4), so it is clear that M(kF,)c H. o Conversely, let u
be a function in Hf,, then there is a net {u,}cA such that || 4;||
<some M and #@; converges uniformly to w on every compact subset

in S(A)~F,. Since there is a net {?o,c}ck%'o such that || ¢,||<2 and
¢, converges to 1 under B, we obviously see that the net {#,5,} CkF,
converges to # under the topology B on S(A)~F,. This shows that
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Hz CUEF). ~
Remark. In Theorem 2, if we assume “A is an analytic

algebra” in the place of “F, is non dense”, the conclusion still
holds.
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