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0. Introduction and summary

The concept of the Kronecker product for matrices was first introduced to
the experimental designs by Vartak [58]. He defined the Kronecker product of
designs and the reduced designs, but did not discuss explicitly the association
schemes (Bose and Shimamoto [10]) concerning those designs. When there
exists an arrangement with the parameters of a partially balanced incomplete
block (PBIB) design first introduced by Bose and Nair [9] and generalized by
Nair and Rao [38], it is important to find the association scheme matching its
design in relation to the problem of determining the uniqueness of the association
scheme and also of characterizing association schemes.

An association scheme was originally studied in relation to the definition of a
PBIB design which has been derived from describing relations among treatments
in terms of the structure of treatment-block incidence of the design. Bose and
Shimamoto [10] rephrased the definition of a PBIB design so as to stress that the
relations among treatments are determined only by the parameters n; and p¥,
(i,j, k=1,2,...,m). Bose and Mesner [8] studied the algebraic structure con-
cerning an association scheme of a PBIB design. An association scheme,
however, has been defined and characterized independently of treatment-block
incidence of the design. .

When the parameters 4; (i=1, 2,..., m) of a PBIB design are not all different,
the m associate classes of the PBIB design based on an association scheme may
not be all distinct. Two approaches will be considered for reductions of the
number of associate classes. One (cf. [28; 58]) consists in using the parameters
4; and the second kind of parameters pi, of the PBIB design N being a standard
approach generalized by Kageyama [28]. Another (cf. [23]) consists in using
A; and the latent roots of the matrix NN’. The former approach is much useful
to the discussions, for reduction on associate classes of an association scheme,
which will appear in this paper. To a group of PBIB designs of a certain Kro-
necker product type, we may be encouraged to apply the latter approach in
preference to the former. The relationship between two approaches is studied
in this paper. The theorems on the reductions give some criteria to determine
whether PBIB designs with | associate classes of the various types are reducible
to those with I, distinct associate classes (I, <I) when their parameters 4,, 4,,...,
A; are not all different.

We, usually, deal with a PBIB design with equi-replications and equi-size
blocks. From a practical point of view, however, it may not be possible to
design the equi-size blocks accommodating the equi-replication of each treatment
in all the blocks. For incomplete block designs in such a situation, a balanced
block (BB) design was introduced by Rao [47]. A partially balanced block (PBB)
design was essentially introduced by Kishen [32] and was explicitly defined by
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Ishii and Ogawa [20]. From a combinatorial point of view of a BB design and
a PBB design, the constructions and combinatorial properties are reported by
several authors throughout the literatures [3; 4; 20; 21; 32; 33; 43;45]. In
addition to the discussion about reductions of the number of associate classes for
a PBB design and a PBIB design, we shall deal with these combinatorial aspects
of a BB design and a PBB design.

This paper consists of three parts. In Part I, the reductions of the number
of associate classes for PBIB designs are treated. Section 1 gives definitions of
an association scheme, a PBIB design and a BIB design, and describes some of
their properties. Section 2 presents some necessary and sufficient conditions that
a PBIB design with m associate classes is reducible to a PBIB design with m,
associate classes (m,; <m). Section 3 contains three PBIB designs giving the va-
lidity of the necessary and sufficient condition in Section 2. Section 4 deals with
the relation between generalized Vartak’s and Kageyama’s condition. The
relation for a general PBIB design is studied through the properties of the latent
roots of the matrix P, =|p%. | (k=0,1,..., m). Section 5 gives some necessary
and sufficient conditions for PBIB designs of certain Kronecker product types
to be reducible. By using generalized Vartak’s and Kageyama’s condition,
Section 6 is devoted to clarify the algebraic structures of PBIB designs constructed
by generalization of Sillitto’s product, and contains Table useful to investigate
the reducibility in an F; type association scheme of v (=v,v,v;) treatments. An
interesting association scheme will be presented.

In Part II, some series of association schemes reducible by combining some
associate classes, and the reductions of two association schemes with four as-
sociate classes are discussed independently of treatment-block incidence of the
design. Furthermore, we shall find a note concerning a series of not reducible
association schemes. Sections 7 and 8 cover a series of reducible N,, type associa-
tion schemes and a series of reducible orthogonal Latin square type association
schemes, respectively. Section 9 treats a series of reducible F, type association
schemes and gives remarks on a series of C, type association schemes being a
special case of an F, type association scheme. Section 10 deals with a series of
reducible m-associate cyclical type of association schemes, and with a series of not
reducible T,, type association schemes. We give properties of reduction for a
generalized right angular association scheme and for a rectangular lattice type
association scheme reducible to association schemes of two and three associate
classes. These two association schemes may not correspond to any of the known
association schemes. Section 11 gives remarks on the reductions of associate
classes for association schemes and for PBIB designs based on certain association
schemes.

In Part III, the constructions and combinatorial properties of BB designs and
PBB designs are discussed. Section 12 presents another useful description for
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the definitions of a BB design and a PBB design. Section 13 characterizes a BB
design and a PBB design. Sections 14 and 15 deal with the constructions and some
examples of BB designs and PBB designs. It is noted that the complements of
a BB design and a PBB design are generally not a BB design and a PBB design,
respectively. Section 16 treats the constructions and some examples of (u,,
Uas..., U)-resolvable BB designs and PBB designs. Section 17 deals with the
reduction procedures of the number of associate classes for PBB designs based
on the results in Parts I and II, and gives some examples. Section 18 contains
inequalities to hold for a BB design and/or a PBB design. A general inequality
for an equireplicate PBB design based on an association scheme with m associate
classes is presented. The bound on the latent roots for the C-matrix of a PBB
design is also given.

For convenience, the notations and symbols shown below are used throughout
this paper. Unless stated otherwise, their meanings are as follows:

I : The unit matrix of order s.

E,.. :  An s x t matrix whose elements are all unity. As a special case,
E,, is denoted by G,.

0;xj :  An ixj matrix whose all elements are zero.

A’ : Transpose of the matrix A.

A®B : Kronecker product of the matrices A=| a;;|| and B, i.e., AQB=
lla;;Bl.

[A: B] : The juxtaposition of the matrices A and B.

trA : The trace of the matrix A.

A* : The superscript? indicates that the matrix A* is an idempotent
matrix.

Zij : Latent roots of the matrix B;=|| p¥;|| (i, k=0, 1,..., m) consist-
ing of parameters p¥; in an association scheme with m associate
classes.

&(x) : A function of x which assumes either the value zero or one
according as x is zero or not.

( :1 > : The binomial coefficient.

diag{a,, a,,...,a;} : An Ix! diagonal matrix with the diagonal elements
a, a,,..., a,.

A=[A¥;i=0,1,..., m] : An algebra generated by the linear closure of
those commutative matrices indicated in the bracket [ J.

Part I. Reductions for the number of associate classes for PBIB designs

The Kronecker product of designs and the reduced designs were first defined
by Vartak [58], who gave a necessary and sufficient condition that a PBIB design
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with m associate classes is reducible to a PBIB design with m — 1 associate classes,
but his condition was incomplete. The association schemes concerning those
designs were not considered explicitly. From this point of view, Kageyama
[23; 28; 30] dealt with the reduction of associate classes for PBIB designs con-
structed by the combinations of Kronecker products of BIB designs and he also
considered together the association schemes matching their designs and the
necessary and sufficient conditions for reductions. His approach uses the num-
bers, 4;, of blocks containing a pair of treatments and the latent roots p; of the
matrix NN’ for an incidence matrix N of a PBIB design. The approach is differ-
ent from generalized Vartak’s approach using 4; and p, of a PBIB design. The
problem considered in Parts I and II will be of both theoretical and practical
importance with regard to constructing and analyzing certain PBIB designs.

1. Association schemes, PBIB designs and BIB designs

Given v treatments 1, 2,..., v, a relation satisfying the following three condi-
tions is said to be an association scheme with m associate classes [10]:

(a) Any two treatments are either 1st, 2nd,..., or mth associates, the relation
of association being symmetric, i.e., if treatment « is ith associate of treatment p,
then f is ith associate of treatment o.

(b) Each treatment has n; ith associates, the number n; being independent
of the treatment taken.

(c) If any two treatments o and f are ith associates, then the number of
treatments which are jth associates of « and kth associates of f is p%; and is inde-
pendent of the pair of ith associates a and S.

REMARK. It is shown by Bose and Clatworthy [7] that for an association
scheme with two associate classes (m =2), the condition (c) could be replaced by

(c)) If any two treatments o and f are ith associates, then, the number, p’ ;
for i=1, 2 of treatments which are the first associates of o and the first associates
of B is independent of the pair of ith associates « and .

The numbers

v, ni’ p_l[k; i’ j’ k = 19 2"-'9 m

are called the parameters of the association scheme; all must be nonnegative inte-
gers.

It is useful to make the convention that each treatment is the Oth associate of
itself and of no other treatments. Then we must have
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Y =p% =0, if i#j,
= n;, if i=j,
Pko = Pbr =0, if i#k,
=1, if i=k.

Hence the following relations among the parameters are easily shown:

m m
— i i i
v“zoni’ Dk = Dijs kZonk‘-nja
S -

- - k
n;phx = N;piy = M pi; .

Let the association matrices Ag, 4;,..., 4,, s a matrix representation of the
association scheme be

Ai = “agi”, o, ﬂ = 19 2,“-9 v; i= 09 19'“9 m,
where '
ab, =1, if ath and Pth treatments are ith associates,

=0, otherwise.

It will be clear that A, is nothing but the unit matrix of order v. Then from the
very definition of the association matrices, it follows that they are all symmetric,
linearly independent,

(L) BA=Gu Ay =mE and Ad; = 4,4 = 3 phidy.

Following Ogawa [40], if the association algebra generated by the matrices
Ao, A4,..., A, may be denoted by A, which may be also expressed by indicating
its ideal basis as W=[A4§, 4%,..., 4%] provided the mutually orthogonal idem-
potents of U are given by A§, 4%,..., A%, then (1.1) defines the regular re-
presentation of the association algebra:

(W: 4; — B;,

where B; =1 p%ll, j=0, 1,..., m.

We can choose a nonsingular real matrix

1 1 o1

C=|€o €11 - Cim

Cmo Cm1 oo Crum
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which makes all B; diagonal simultaneously, in such a way that

sz

(1.2) cpci=| zy, O j=0,1,..,m,
0 .zmj

where

(1.3) Zgj = Ny, 200 = 210 = = Ziyo T

Furthermore, it is known (cf. [8; 40]) that

(14) jgozoj =0, jgozij =0, i=1, 2,..., m,
(1.5) Zuzay = 3 Pizae 4 =0,1m,

and let the matrix Z, whose (j + 1)st row is the diagonal elements of (1.2), be defined
by

200 210 -+ Zmo
(1.6) Z=|%1 Z11 - Zm
Zom Zim -+ Zmm

with (1.3), (1.4) and (1.5), then the matrix Z of order m+1 is nonsingular. Fur-
thermore, a relation between A; and 4¥ (i=0, 1,..., m) is given by

A, A5
(1.7) 4, | =1z®1,]| 4
Ay 43

If we have an association scheme with m associate classes, then we get a
partially balanced incomplete block (PBIB) design [9; 38] with b blocks, r replica-
tions, and block size k based on the association scheme, provided we can arrange
the v treatments into b blocks such that

(i) each treatment occurs at most once in a block;

(ii) each block contains k distinct treatments;

(iii) each treatment occurs in exactly r blocks;

(iv) if two treatments « and § are ith associates, then they occur together
in A; blocks (not all 4,’s equal), the number 4; being independent of the particular
pair of ith associates « and f (1<i<m).
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The numbers
v, b9 v, k; Ai (i=1,2,...,n1)

are called the parameters of the design. The 4; and p, are called the coincidence
numbers and the second kind of parameters of the design, respectively.

A balanced incomplete block (BIB) design [62] with parameters v, b, r, k
and A is an arrangement of v treatments into b blocks such that

(i) each treatment occurs at most once in a block;

(ii) each block contains k distinct treatments;

(iii) each treatment occurs in exactly r blocks;

(iv) every pair of treatments occur in exactly A blocks.

Note that, though (i), (ii) and (iv) lead to (iii), we follow the traditional
definition of a BIB design. Among parameters v, b, r, k and A, the following
relations hold:

vr = bk, Mv—1)=r(k—1) and b =v.

The last inequality is due to Fisher [15]. Incidentally, note that vr=bk and
Mv—1)=r(k—1) lead to b—2r+A=r(v—k)v—k—1)/k(v—1)=0, and that the
equality b—2r+A=0 holds when and only when the parameters of the original
BIB design satisfy v=k+1. The number, b—2r+ 4, is the coincidence number of
the complement of a BIB design with parameters v, b, r, k and . On the other
hand, from the known relations, i.e., vr=D>bk, i n;=v—1, :Yl A, =r(k—1),
among the parameters of a PBIB design with m assécilate classes,lwe cannot derive
the relation, b—2r+A;=0for all i. Hence, this inequality is a necessary condition
for the existence of a PBIB design [35]. The numbers, b—2r+4,, are the coin-
cidence numbers of the complement of a PBIB design with parameters v, b, r, k
and 4; (i=1,2,..., m).

After numbering v treatments and b blocks in some way, we can define the
incidence matrix of a PBIB design or a BIB design to be the matrix:

N = |n;|; i=1,2,.,v and j=1,2,.,b,

where n;;=1 or 0 according as the ith treatment occurs in the jth block or not.
Then for the incidence matrix N of a PBIB design the following lemma is
obtained (cf. [59]):

LEMMA A. NN’ belongs to the association algebra U and can be ex-
pressed as

NN' =3 1,4, =3 pAi,
Jj=0 0

i=
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where the last member of the expression is the spectral expansion of NN’ in .
The densities

(1.8) pi=3% Az, i=0,1,.,m,
Jj=0

are the latent roots of NN'. In particular,

po = rk = —io nili.

The p; satisfy the inequalities
(1.9) 0 < p; = rk, i=0,1,..,m.

The multiplicity of p; is the tr A%.

Finally, since a design uniquely determines its incidence matrix and vice
versa, both a design and its incidence matrix may be denoted by the same symbol
throughout this paper.

2. Necessary and sufficient conditions for reductions

When the coincidence numbers 44, 4,,..., 4,, of a PBIB design with m associate
classes are not all different, the m associate classes of the PBIB design based on a
certain association scheme may not be all distinct. Then when A, =1, in a PBIB
design with m associate classes, Vartak [58] gave a necessary and sufficient condi-
tion for the PBIB design to be reducible to a PBIB design with m —1 associate
classes. Moreover, he stated that repeated applications of the result to any
PBIB design will ultimately give a PBIB design whose associate classes are all
distinct. As indicated in the next section, however, we have reducible PBIB
designs to which Vartak’s iterative procedure does not apply. Then we need to
generalize Vartak’s condition. The following lemmas useful later give criteria to
determine whether a PBIB design with m associate classes is reducible to a PBIB
design with fewer distinct associate classes, when 1, 4,,..., 4,, are not all different.

LemMmA 2.1 (Kageyama [28]). Let a PBIB design N with m associate
classes and with parameters

v, ba r, k’ li: n;, pj'ka i’ ja k= 13 25~-~a m,

be such that A,, A,,..., A, are not all different so that at least | of them are equal.
Without loss of generality we can assume that A, =A,=---=A4,. In this case, the
number of associate classes of the design N can be reduced from m to m—1I1+1
by combining its first | associate classes if and only if
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l 1 ]
1 1
Z pua zpi,l+l,"'s Z Dim
i,j=1 i=1 i=1
1
3 Pl ph 1
2 Pre1,j Pist,1415+5  Piyi,m
'l_ . . .
,lemp Pm,l+ls'--’ DPmm
j=
2 L 2 ! 2
2 Dijs _Zpi,l+la"-a 2 Pim
i,j=1 i=1 i=1
! 2 2 2
(2.1) = let+1,j, Dixvi,1+15++5  DPixtm | =
j=
L 2 2. 2
lemjs Pinyi+10000s Pmm
j=
! 1 I 1l .
E pU’ z Dii+15:05 Z Dim
i,j=1 i=1 i=1

i

1 1 1
zlpH-l,js Pis1,1415++s  Pi+t,m
i=

1
1 l 1
lemjs Dm, 141500 Pmm
j=

Furthermore, if (2.1) holds, then the parameters of the reduced PBIB design
with m—1+1 associate classes are as follows:

vV=v, b=b, r=r" k =k,

[ — —— — — — —
A’l —j'l -—)-2 —“'—Al’ /1'2 —2,[_!_1,..., A.,’"._[_‘_l —-lm,
L — — —
ny =ng+ny+--+n, Ny =MNggsees Mpppy =
! t L t ! t
Z Dijs _Z DPii+15000s 2 Pim
i,j=1 i=1 i=1
1 ! t t t
’ _—
Pl = leHl,j’ Plot,141500s Pivi,m
‘,= . . .
t t t
mej’ Pm,l+1""’ DPwmm
+i1-1 ! +1-1 ! +1-1
W - W - w -
4 pij ’ Z Dii+1 500 Z im
i,j=1 i=1 i=1
TAsd ! w+l—1 w+1—1 +1—1
—_ - - W -
”puv” - _lel‘l'l,] s Plet, 141500 Divi,m»
j=
: . +1-1 -;—l 1 .+l 1
W - W - -
mej s Pmi+1 5005 m
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where t=1,2,...,0r l; w=2,3,....m=I1+1;u,v=1,2,..., m—I1+1.

LemMmMA 2.2 (Kageyama [28]). Let a PBIB design N with m associate
classes and with parameters

v, b, r, k, A, n;, iy, Lj,k=1,2,...,m

be such that i, A,,..., A, are not all different so that each of I; V’s (j=1,2,..., 1)
is equal. Without loss of generality we can assume that for 1<0,<0,+1,<0,
<-<O,_1+1,_,=0,=m,

/19, =/101+1 = e =/101+1,_1,

loz =doy+1 =" = doyt1,-15
(2.2)

Ao, = Ag4q = = /10.+1,—

In this case, the number of associate classes of the design N can be reduced from

t
mtom— 3 L.+t by combining its l; associate classes for each l;, if and only if
J=1

. Op+lp=1 0g+1g—1 0p+ip=1 Og+1q—1
(1) E Z pu_ Z Z ploj+l =

i=0p Jj=0q =0p Jj=04q

-

Op+lp—1 Og+lq—1
= "Z" "z“ p0+1.. 1

i=0p Jj=0g4

for u,p,g=1,2,...,t

0;+1—1 0 0j+1;—1 ot 1
11 —_ + —_
(11) Z Dilgtaj—~j+1 = __Z Difgvaj-—j+1 =
i=0; =0
05+1;—1
_— +1 1
= i=20j pluq+;, 1—j+1
(2.3) for j,u=l, 2,--.,t; Oj_l—aj_2+j—1§q§0j-—aj_1+j—2;
oyt 05+1;~1
(lll) Z pi,uq+a‘—t = Z pz q+a¢ t =
i=0; i=0;
0+1;—1 .
—_ +
= izz‘;.l pl uq+;¢—t

for j,u=1,2,..,t;0,—a,_,+t<q=<m—a,+t;

(v) = plt == pYH for u=1,2,.,1,
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t
1<a, BeU{0,0,+1,...,0,+1,—1} < m,
i=1

where the notation o ¢ U {6,,0 +1} means that an integer o does not belong to
the set {0,,0,+1, 62,62+1 w0, 0,+1};
(v) the above conditions (1), (ii), (iii) and (iv) remain true under any permuta-
tion of two subscripts of p%,, where as=fgllf, s=j—2,j—1,t—1,1t.
Furthermore, if (2.3) holds, then the parameters of the reduced PBIB
design with m—fill,—}-t associate classes are as follows:

’

vV=v, b'=b, r=r, k'=k,
by=a;1+j-1 = Ao; = Age1 == Ag,41,-15
I’ ['li+aj—1—j+l if 0;_1—a;_,+j—1=5i=0;—a;_;+j-2,
i=
Ai+ﬂt—t i_f 9,—(1,‘1+t é l é m—a,-l-t,

Ngjma;_y+j—1 = NgytNgpq+ - +’?oj+1,—1s

n} =

[ni+aj_1—j+l if 0;-1—a;_,+j—1=5i<0;—a;_;+j-2,
Nita -t if 6—a,_1+t=<is<m—a+t,

for j=1,2,...,t. |p,:ll can be written in a form similar to that of Lemma 2.1
and hence omitted here.

Though Lemma 2.1 is a special case of Lemma 2.2 when 0, =1, 0,=I1+1,
0;=1+2,...,0,=1+t—1; 1, =1, 1,=1,..., ,=1, it has been written especially be-
cause of its frequent use in the subsequent sections. We shall refer to the condi-
tions in Lemmas 2.1 and 2.2 as generalized Vartak’s condition.

3. PBIB designs validating necessary and sufficient conditions for
reductions

DEesigN (I). When N; are BIB designs with parameters v;, b;, r;, k; and 4,
i=1, 2, 3, we consider the 7-associate PBIB design N=N;®N,® N, based on an
F5 type association scheme given in Kageyama [23] with the following parameters:

v’ = U10,03, bl = b1b2b3, r' = Fr1ryrs, k’ = k1k2k3,
A”l = rllzrs, 12 = 11r2r3, }.’3 = }51}»2"3, 1'4 = r1r213,

’5 = rllzl3, }"6 = /117’213, };’7 = 111213, nl = 02‘—1,
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n,=v,—1, ny=@—-0)0,—1), ng=0v3—1, ns=0,—1(vz—-1),

ne = (v3—1)(v,—1), n; = (v;—1)(v,—D(v;—1),

v,—2 0 0 0 0 0 0
0 v,—1 0 0 0 0
(v;—1D(y,—2)0 0 0 0
Ipisl = 0 vs-1 0 0 )
Sym. (v3—1)(v,—2) 0 0
0 (vi—1D(v3—1)
(v, —1D(vy—2)(v3—1)
0 0 v,—1 00 0 0
v, —2 0 00 0 0
(v;—=2)(v,—1) 0 O 0 0
Ip3l = 00 o1 0 :
Sym. 0 0 (v,—1)(v3—1)
(v;—2)(v5—1) 0
(0, =2) (v, —1D(v3—1)
0 1 vy—2 0 0 0 0
0 vy, —2 0 0 0 0
(v,—2)(v,—2) 0 O 0 0
I3l = 0 0 O v3—1 ,
Sym. 0 vy-—1 (v,—2)(v53—1)
0 vy —=2)(v53—1)
(v{—2)(v;—2)(v3—1)
0 00 O v,—1 0 0
00 O 0 v,—1 0
Iotl = 0 0 0 0 (0, =12 —1)
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vy—2 0 0 0
(v,—1)(v3—2) 0 0
Sym. (v,=Dw3-2) 0
(w,—1D(w,—1)(v3—2)
0 0 0 1 v,—2 0 0
0 0 0 0 0 vy—1
0 0 0 v,—1 (v;—D(,—2)
231 = 0 v3-2 0 0 ,
Sym. (v;—2)(v3—-2) O 0
0 (vy—1D(w;3;—-2)
(vi—1D(v2—2)(v3-2)
0 0 0 0 0 0 vy,—1
0 0 1 0 v,—2 0
0 0v,—1 0 (v —2)(v,—1)
2§l = 0 0 vy3—2 0 ,
0 0 (v,—1)(v3—-2)
Sym. (vy—2)(v3—-2) 0
(01 =2)(v,—1)(v3—-2)
0 0 0 0 0 1 ‘ v,—2
0 0 0 1 0 v, —2
0 1 v,—-2 v,—2 (v,—2)(v,—2)
Ipi;ll = 0 0 0 v3—2 ,
0 v3—2 (v—2)(v3—2)
Sym. 0 (v, —2)(v3—2)
(v, —2)(v,—2)(v3—2)
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where v,=22, i=1, 2, 3.

In this design, it follows from the form of A (i=1,2,...,7) and Lemma 2.1
that by assuming a relation A=A (i#]; =1,2,4 or 3,5, 6) only, the design N
is not reducible to a 6-associate PBIB design. Thus, every combination of two
associate classes in the sense of Vartak does not lead to a reduced PBIB design,
so that Vartak’s iterative procedure is impossible. Some other combinations of
associate classes, however, lead to reduced PBIB designs under certain restrictions.
It follows from Lemmas 2.1 and 2.2 that all the cases of reductions are as follows:

(i) When A =14 and A5 =15, if v, =v,, (ii) when A}, =2, and A5 =15, if v,
=v;, or (ili) when A5 =214 and A4 =415, if v;=v,, then the design is reducible to
S-associate PBIB designs and vice versa. (iv) When A} =44 =414 and A5 =A1%5=
A%, if v, =v, =vj3, then the design is reducible to a 3-associate PBIB design with
the cubic association scheme [46] and vice versa.

DEsiGN (II). Consider a S-associate PBIB design based on the hypercubic
association scheme [34] (or the C5 type association scheme which will be described
in Section 9) with the following parameters:

v=s% byrk 4;({i=12,..5), n =5s5-1),

n, =10(s—1)2, ny; =10(s—1)3, n, =5(-1*, ns=(—1)5,

s=2  4(s—1) 0 0 0
4(s=1)(s=2)  6(s~1)2 0 -0
Il = 6(s—1)2(s=2)  4(s—1)3 0 ,
Sym. 4(s—1)3(s=2) (s—1)*
(s=1*(s-2)
2 2(s—2) 3(s—1) 0 0
(s=2)2+6(s—1) 6(s—1)(s—2) 3(s—1)2 0
Pl = 3(s=1)(s=2)2+6(s=1)>  6(s—1)2(s—2) (s=1* |,
Sym. 3= (s=2)2+2(s = 1) 2(s—1)*(s=2)
(s=1)%(s-2)?)
0 3 3(s~2) 2(s=1) 0
6(s—2)  3(s—2)2+6(s—1) 6(s—1)(s—2) (s—1)2
I pl= (=20 +12(s=1)(s=2)  6(s=1)(s—2)2+3(s—1)2  3(s—1)%(s-2) |,
Sym. 2(s=1)(5—2)3+6(s—1)2(s—2) 3(s—1)2(s~2)>

(s—1)?%(s—2)3/
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00 4 4(s-2) s—1
6 12(s-2) 6(s—2)2+4(s—1)  4(s—1)(s—2)
Ipdl= 12(s—2)2 +6(s—1) 4(s—2)3+12(s~1)(s—2) 6(s—1)(s—2)2],
Sym. (s=2)4412(s—1)(s—2)2 4(s—1)(s=2)3
(s—=1)(s—2)*
0 0 0 5 5(s—2)
0 10 20(s—2)  10(s—2)?
Ipfl= 30(s—2) 30(5—2) 10(s—2)3 |,
Sym. 20(s—=2)* 5(s—2)*
(s=2)%
where s>2.

In this design, it follows from Lemmas 2.1 and 2.2 that this design is not re-
ducible to a 4-associate PBIB design. Thus, every combination of two associate
classes in the sense of Vartak does not lead to a reduced PBIB design, so that
Vartak’s iterative procedure is impossible. Some other combinations of associate
classes, however, lead to reduced PBIB designs under certain restrictions. For
example, it follows from Lemmas 2.1 and 2.2 that when (i) 4; =43 =45, (ii) 4, =4,
and A3=A4,, (iii)) A, =15 and A,=4,, (iv) 4, =4, and A,=41;, or (V) 1, =15 and
A, =24, if s=2, then the design is reducible to 3-associate PBIB designs and vice
versa. (vi) When A, =1, and 1,=A4,, if s=3, then the design is reducible to a
3-associate PBIB design and vice versa. (vii)) When A, =1,=1;=1,, if s=2,
or (viii) when A, =1, and i, =1;=A4,, if s=4, then the design is reducible to 2-
associate PBIB designs and vice versa.

DEesiGN (III). Consider a 4-associate PBIB design based on the association
scheme given by Adhikary [1] with the following parameters:

v = ml(m2+1)(m3+1)3 b’ r, k, Ai (i = 1’29 3’ 4)9

ny, =m;, n; =mz, hz=m,m;,

ny = (m;—1)(my+1)(m;+1),
0 msy 0
I pd;ll = ,
m3(m,—1) 0

Sym. (m;—1)(m,+1)(m3+1)
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0 0 nm, 0
m3_l 0 0
my(ms—1) 0
Sym. (mi—1D)(my+1)(mz+1)
0 1 my,—1 0
0 my—1 0
Sym. (mz_ 1)(m3 - 1) O

(my—1)(my+1)(ms3+1)

0 0 0 m,
0 0 mj
I pdill = ,
Sym. 0 myms

(m;=2)(my+1)(m3+1)

where m; =2.

All the cases of reductions in this design are as follows:

(i) When A, =1,, if m,=m;, then the design is reducible to a 3-associate
PBIB design and vice versa. (ii) When i, =45, or (iii) when 1, =45, the design
is reducible to 3-associate PBIB designs. When (iv) 4, =4, =4;, (v) 1; =43=14,,
or (vi) A, =45 =4,, the design is reducible to 2-associate PBIB designs.

This design has an interesting property, which is that Vartak’s iterative
procedure depends on the order of combining some associate classes. For
example, in Case (v), though we cannot apply Vartak’s procedure in combining
the 4th associate class and another associate class, we can apply Vartak’s iterative
procedure in combining the 1st associate class and the 3rd associate class, and then
combining the 4th associate class.

4. Relationship among coincidence numbers, latent roots and second kind
parameters with respect to reductions

On the derivation of conditions for the reduction of associate classes for cer-
tain PBIB designs, Vartak’s approach [58] (i.e., generalized Vartak’s condition
given in Section 2) uses the coincidence numbers and the second kind of parameters
of the PBIB design N, while Kageyama’s approach [23] uses the coincidence
numbers and the latent roots of the matrix NN’. As a necessary and sufficient
condition for reductions in certain cases, Kageyama’s condition is more practically
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useful than generalized Vartak’s one. If the two conditions are equivalent, then
we may be encouraged to use Kageyama’s condition in preference to Vartak’s.
For this reason, the relation between generalized Vartak’s condition and Kage-
yama’s one is generally studied through the properties of latent roots of the matrix
Br=pil for k=0, 1,..., m.

4.1. Reductions for PBIB designs of Kronecker product type

Let N; be BIB designs with parameters v;, b;, 1, k;, A; and N¥ be comple-
mentary BIB designs with parameters v¥ =v;, b¥ =b;, r¥ =b;—r;, k¥ =v;—k; and
A¥=b;—2r;+2; of N;(i=1,2,..., m). Consider the Kronecker product of these
designs in the forms N=N,®N,®:---®N,, and N=N,®N,+ N¥®N%. Then
the following theorems are obtained:

THEOREM A (Kageyama [23]). Given the BIB designs N; with parameters
v, by, 1y, k; and A; (i=1,2,..., m), a necessary and sufficient condition for the
Kronecker product PBIB design N=N;®N,®---®N,,, which has at most 2™ — 1
associate classes having the F,, type association scheme, to be reducible to a
PBIB design with only m distinct associate classes having the hypercubic associa-
tion scheme is that

(4,1) Ul =1)2 = ees == Um’ kl ] k2 = eee = km'

TrEOREM B (Kageyama [23]). Given the BIB designs N; with parameters
v;, by, 1y, kyand A, (i=1,2), a necessary and sufficient condition for a PBIB
design which has at most three associate classes having the rectangular associa-
tion scheme and which is constructed by the Kronecker product N=N,®N , +
N*¥®N% to be reducible to a PBIB design with only two distinct associate classes
having the L, association scheme is that

vy =0y, by(r—4;) = by(ri—4y), b;#4(r;—4), i=12

In the derivation of Theorem A, condition (4.1) was obtained by equalizing
all those among the latent roots of NN’ and among all the coincidence numbers
which may be equal to each other. On the other hand, the matrices P;=| p’,||
of the second kind of parameters of Kronecker product PBIB design N=N,®
N,®---®N,, can be constructed by repeated applications of Theorem 4.2 of
Vartak [58] (or by Theorem 2 of Surendran [54] or (9.2)).

In design N, when all those which may be equal to each other among all the
coincidence numbers are set to be equal, a necessary and sufficient condition for
the PBIB design N which has at most 2™ —1 associate classes to be reducible to
a PBIB design with only m distinct associate classes is given by Lemma 2.2.
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Furthermore, from Lemma 2.2 and the method of constructing the matrices P;,
it follows that this necessary and sufficient condition is equivalent to v, =v, =--- =
v,. Then from v; =v,=---=uv,, and the fact that all those which may be equal to
each other among all the coincidence numbers are set to be equal, it is clear that
all those which may be equal to each other among the latent roots of the matrix
NN’ become equal. Therefore from Theorem A we have

THEOREM 4.1. Vartak’s and Kageyama’s condition are equivalent for
Kronecker product PBIB design N=N;®N,®---®N,, which is reducible to a
PBIB design with only m distinct associate classes.

As an illustration, leaving aside certain trivial or uninteresting cases, the case
m=3 is considered. In design N=N,® N,®N; with parameters v’ =v,0,0;,
b'=bbybs, r'=rr,r3, k'=kk ks, Ay =rArs, Ay=Air,rs, Ay=AAors, Ay=
PPyl As=rid A3, Ay =Arhs, Ay =A1A45, ny=v,—1, ny=v,—1, ny=(,—
D,—1), ng=v3—1, ns=0,—1)v3—1), ne=(v3;—1)v,—1) and n,=(v,—
1)(v,—1)(v3—1), the relations obtained by equalizing all those among the latent
roots of NN’ and among all the coincidence numbers which may be equal to each
other are as follows (cf. [23]):

(among the coincidence numbers)
4.2) iy =1y, Fady =r3dy, A =rady,
(among the latent roots)
(4.3) riky(ry—2;) = rakay(ri—4y), ryka(rz—2;) = riks(ry—4,),
rik(ry—2;3) = riks(ri—24)).

The matrices P;=|p%| (i,j,k=1,2,...,7) are shown in Design (I) of Section 3.
As shortly mentioned there, since under (4.2) we have distinct coincidence num-
bers A7 =15 =14, A3 =A5=41% and A4, from Lemma 2.2 a necessary and sufficient
condition that the PBIB design N with at most seven associate classes is reducible
to a PBIB design with only three distinct associate classes is that

i

1= S p2 = 3 pt
(a) 2 pij—i,z'jpij—i,sz”,

3 — = 6
o . Z pij_Zpij—'Z.pija
i,j=1,2,4 ,j=1,2,4 i,J i

(b) . ) pi;j= Z.pij = Z_P?j’
J" 1,2:4 i,J i,J

>, pi= X pi=2pf,
% 2,2 i,j i,J

LRl
W

J

© X ph=Xph=XpH, X ph=XpH=2pH,
i=1,2,4 i i i=1,2,4 i i

(d) > pilj = iszij = iEjP?j,

3 — — 6
. Pij_zpij_zpij9
i,j=3,5,6 i,j iJ

>
i,j=3,5,6
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(e) > p37=;p%7=;p?7, > p?7=§p?7=;p?7,

i=3,5,6 i=3,5,6
1 p2 — p4 3 — p5. — pnb
) P17 =P%7 =P77, P77 =P377 =P77.

Substituting the elements of P; (i=1,2,..., 7) into the above conditions (a) to (f),
it is clear that conditions (a) to (f) are equivalent to a condition

4.4) vy =0y = V3.

Now if (4.2) and (4.3) are satisfied, then from the relations among the pa-
rameters of the BIB designs, i.e., 4,(v;—1)=r(k;—1), i=1, 2, 3, we can obtain
vy =0, =03 and k, =k, =kj3, and hence (4.4) holds. On the other hand, it follows
from A(v;—1)=r(k;—1),i=1,2, 3 that if (4.2) and (4.4) are satisfied, then
ridj=r;A; and v;=v; lead to rik(r;—A)=r;k(r;—4;) for i,j (i#j)=1,2, 3 and
hence (4.3) holds. Therefore generalized Vartak’s condition obtained by using
the coincidence numbers and the second kind of parameters of PBIB design N
are equivalent to Kageyama’s one obtained by using the coincidence numbers
and the latent roots of the matrix NN’ for PBIB design N=N;®N,Q®N;.

In a similar way, from the derivation of Theorem B we have

THEOREM 4.2. Vartak’s and Kageyama’s condition are equivalent for
PBIB design N=N,®N,+Nt¥®N% which is reducible to a PBIB design with
only two distinct associate classes.

4.2. Reductions for general PBIB designs

When there exists equality relation (2.2) among coincidence numbers 4; of
a PBIB design N with m associate classes, a necessary and sufficient condition

for the PBIB design N to be reducible to a PBIB design with m — 2' I+t associate
=1

classes is given by (2.3) in Lemma 2.2. Then it is clear that there are the equality
relations among latent roots p; of the matrix NN’ corresponding to its coincidence
numbers 4;. Thus generalized Vartak’s condition always leads to Kageyama’s
one. Therefore in the rest of this section, the converse of this fact will be dis-
cussed. That is, do the relations among coincidence numbers 4, and among
latent roots p; (i.e., Kageyama’s condition) lead to the relations among coincidence
numbers ; and among the second kind of parameters like (2.3) (i.e., generalized
Vartak’s condition)?

Since it is sufficient to consider the form (2.2) as equality relations among
coincidence numbers /;, the equality relations among latent roots p; of the matrix

NN’ (=§: ;A j=§‘, p;Af in Lemma A) corresponding to its coincidence numbers
Jj=0 i=0 P
J; are also considered as the assumption, We now begin by separating this into
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two cases (i.e., t=1 and t=2 in (2.2)).

Case I (type t=1 in (2.2)), i.e., the case of Lemma 2.1. The conditions to

be assumed are 4;, =4,=---=}4,and p,=p,=---=p,.

(i) Case l=m: In this case it suffices to assume A,=A1,=-.-=4,, only.
For, this condition leads to p, =p,=:--=p,, by (1.3), (1.4) and (1.8). From
(1.3) and (1.4) we have
4.5) DI =N 2y == 2 L

Jj=1 Jj=1 Jj=1

Furthermore, from (1.3) and (1.5) we have
(X2 WX zy) =2 m+ (X pl)zi (X pE)ziat+ (X Pl Z1ms
j=1 Jj=1 i=1 i,j=1 iyJj i,Jj

(X 22)(X z35) = 2 m+ (X plpzay H(Z pE)zao++ (X P Z2m
j=1 Jj=1 i=1 i,j=1 iJ tJ
(X z2m) (X 2mj) = 20+ (X PE)zms (X PE) Zma+ -+ PT) Zoum »
Jj=1 j=1 i=1 i,j=1 i,Jj L,

which from (4.5) lead to
(212—222)(;‘ J_Z=1pi2j_l_ J_Z=1pilj)+(213_zz3)(i2jp?j_izjpilj)+'“

+(zlm—22m)(z.p'i"j_ Zpllj) =0,
i,J J

(212—232)(leizj—.zlpilj)+(zl3_233)(z_pi3j—Z.pilj)'*'"'
L,J= c L= tJ i,J
ot (2ym— 23 (X P — 2 Pl) =0,
isJ i, J
(zll—zml)(_ J.le,?j—‘.;‘: 1}’i1j)+(213“2m3)(217?j" _zpilj)‘f"“
i, j= I, j= i,J i,J

+(zlm_zmm)(sz’i"j_ Zpilj) =0.
i, i,J

Since the matrix Z is nonsingular as described in Section 1, it follows that the
determinant
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2327222, 21372235+ Z21m— Z2m

# 0.
2127 Zm2> 213" Zm3s+-> Z1m ™ Zmm
Therefore we obtain Z Pij= Z p, ; 2 p7; which coincides with (2.1)
l_] 1 =1
in this case. That is, Kageyamas condmon leads to generalized Vartak’s
one in this type. Note that if 1, =1,=---=4, holds in a PBIB design with m

associate classes, then the PBIB design reduces to a BIB design. This is well
known.

(i) Case I=m—1: Ay=dy=-=A,_y (=4, say); py=py=++=pp_1.
From (1.3), (1.4) and (1.8) we have

P = Ao_l_zlm(;{_}'m)s
P2 =to—A—Z2m(A—4m),

Pm-1 = )'O—A_Zm— 1,m('1_j'm) .

Hence from p, =p,=:--=p,_, and 1—4,,#0 we have
(46) Zim = Zom = " = Zm—1,m>
m=1 m—1 m—1
(4.7) Zzlj=222j="'=zzm_1,j.
Jj=1 Jj=1 Jj=1

Furthermore, from (1.3) and (1.5) we have
m—1 m—1 m—1 m—1 .
(,;1 21;)(j§121j) = ig.lni‘*'(”z:lpilj)zl 1+ (IZE pPi)ziat +(iZ}P'i"j)21m >

m=—1 m—1 m—1 m—1
(X 22)(X 225) = X+ (X plpzar + (X pE)zaa+ -+ (X PT)Z2ms
Jj=1 Jj=1 i=1 i,j=1 i, J i,J

(Z Zm— 1,])(2 Zm—1 j) = Zn +(2 p”)zm—l 1+(Zpu)zm—l 2+

i,j=1

o +(Z p'inj)zm—l.m ’

i,J

which from (4.6) and (4.7) lead to
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m—1 m—1
(212—222)(i JZ=1Pi2j—i jz;ll’ilj)'i'(zls—zzs)(izjl’?j—Zl’ilj)+

ij
ot (21— Za - NPT =2 Pl =0,
iy ivJ
m—1 2 m—1 1 3 1
(212—232)( X pli— 2 pip+(z13—z33) (X pli—2Z P+
i,j=1 i,j=1 isJ i,J
"'+(21,m—1_Zs,m—1)(isz'i"j_l‘"iszi1j) =0,
m—1 2 m—1 " 3 1
(22— 2Zm-1,2)C 2 PYi— 2 Pl +(213—2u—1,3)(X P} — 2 Pij)+
i,j=1 i,j=1 i,Jj iJ
"'+(21,m—1_Zm~1,m—1)(zj.l";"j—1—iszi1j) =0.
L, 3
Since it follows from the property of the matrix Z that
21272225 21372235+ Zy,m—1"22,m-1

2127232, 2137 Z335-s Z1,m-1"Z23,m-1

4.83) #0,

2127 2Zm-1,2> 2137 Zm-1,3>-3 Z1,m—1" Zm—-1,m-1
we obtain
m—1 1 m—1 2 m—1 1
(4.9) Z pij = > pij="'=zp'inj .
i,j=1 i,j=1 i,j=1

From (1.5) we have
m—1 m—1
(zlzlj)zm = (.leilm)zl 1 +(ZP%m)212 + e +(Z Pi)Zims
i= i= i '

m—1 m—1
(lezj)zzm = (_zlpilm)zﬂ (X pi)zazt o+ (X Pi)Z2m
j= i= i i

m—1 m—1
(.lem—l,j)zm—l m = (leilm)zm—l,l + (2 pizm)zm—l »2 +eet (Z p'inm)zm—l,m'
i= i= i i

Hence from (4.6), (4.7) and (4.8) we similarly obtain

m—1 m—1 m—1
(410) iglpim = iglpizm == glp'tnm-l .
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From (1.3) and (1.5) we have
ZimZim— ZamZam = (211 = Z20)Pmm+(Z12— 222)Ppm+
“+(Zym-1—Z2,m-1)Pmm" >
ZimZim= Z3mZ3m = (211 = Z31)Pam+(Z12— 232)Poam +
o (Zy 1= Z3m— 1) P
ZimZim = Zm—1,mZm—1,m = (211~ Zm= 1,m)Pmm+ (Z12= Zm—1,2)Paam+
o+ (Zime 1= Zm=1,m- )P+
Hence from (4.6), (4.7) and (4.8) we similarly obtain
(4.11) Pim = Pinm =***= P+

Conditions (4.9), (4.10) and (4.11) coincide with (2.1) in this case. Therefore
Kageyama’s condition leads to generalized Vartak’s one in this type.

(i) Case I=m=—2: Ai=ly=-=Ay_, (=4, say); py=pr=+""=pPp-2.
From (1.3), (1.4) and (1.8) we have

Py = lo_l_zl,m—l()‘_)‘m—1)_Zlm(j'—)“m)’

p2 = A’O —l_zz,m— l(l—lm— 1)_22m()'_/1m),

Pm-2 = lo—l—'zm-—l,m— l(i_lm— 1)_ zm-—2,m()'_}'m)'

If we suppose a condition

(412) Zim-1 = Z2am—1 =" = Zpm—2,m-1s
then from p; =p,=:--=p,_, and 1—1,#0 (i=m—1, m) we have
(413) Zim = Zoam = T Zm-2,mo
m—2 m—2 m=2
(4.14) Zzlj=222j="‘=zzm_2,j.
j=1 j=1 j=1

From (1.3) and (1.5) we have

m—2 m—2 m—2 m—2 m—2
(2 )X z1)=2m+(X pl)zi++(X PP)Zims
Jj=1 Jj=1 i=1 i,j=1 1

LJ=
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(:lé:‘: 2])(2 221) = 2”,+(Z pu)221+ +(Z pu)ZZm’

i, j=1

............................................................

(Z Zm—-2 ,J)(sz—z 1) = Zn +(Z pu)zm 2, 1+ +(Z pu)zm 2,m>

i,j=1 i,j=1

which from (4.12), (4.13) and (4.14) lead to
m—2 2 m—2
(212_222)(i JZ;lpij_i JZ;lpilj)'{'(zl:i —223)(§P?j—;jpi1j)+
R (Zl,m—l _Zl,m—z)(izj p'inj_2 - lzlplll) =0 )
m—2 2 m—2
(212—232)(i JZ;IPU_'_ JZ;lpilj)+(zl3_z33)(isz?j— iiji‘j)+
. +(21,m—2 _23,m—2)(z p’inj_2 - ijllj) = 0’
i,J 1,
m—2 m—2
(le_zm—z,z)(zlpz'zj—_ leilj)+(zl3_zm—2,3)(z Pii— ijilj)'l'
i,j= i,j= i,j i,
. +(Zl,m—2 _Zm—z,m—z)(z p'inj_2 - Z p:lj) = 0.
isJ i,J
Since it follows from the property of the matrix Z that under (4.12)

21272225, 213722355 Z{,m-2"22,m-2

2127232, 21372335 2 ,m-2"Z3,m-2
(4.15) # 0,

2127 2m-2,29 2137 Zm-2,3>+3Z1,m-2"Zm-2,m-2

we obtain

(4.16) Z plj = Z pi== Z 4¢3

i,j=1 i,j=1

From (1.5) we have
m—2 m—2 " m—2
(_zlzlj)zl ym—1 = (iZIPi,m—x)Zl 1ttt (izlp'i",m—-l)zm )
J= == =

m—2 m—2 1 m—2
(21 23)Z2,m-1= (izll’i,m—l)zz 1+t (le'i",m—l)zzm s
= = f
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............................................................

m—2 m=2 " m—2
(j;lzm—l,j)zm—z,m—l = (iglpi,m—l)zm—l, 1 +eet (iglp'in,m—l)zm—z,m .

Hence from (4.12), (4.13), (4.14) and (4.15) we similarly obtain

m—2 L m—2 2 m—2 2
(4.17) 2 Pim—1 =2 Pim-1 == 2 PTr1.
i=1 i=1 i=1
.. m—2 m—2 m—2 .
Similarly, from (X z,))z1m = (X 22))Zom =" = (X Zm-2, j)Zm-2,m WE Obtain
Jj=1 Jj=1 Jj=1
m—2 1 m—2 2 m=2 s
(418) 2P;m=21’un==zp':"m .
i=1 i=1 i=1
Further similarly, from z, ,, 12, o1 —Z2m-1Z2.m-1 =Z1m-1Z1m-1—23,m=1Z3,m~1
= =Ztm-1Z1,m-1 " Zm-2,m-1Zm-2,m—1 =09 Zim-1Z21im— Z2,m-1Z22m=Z1,m-1Z1m
—Z3m-1Z3m=— """ =zl,m—lzlm—zm—Z,ln—lzm—Z,m=0 and ZimZim— Z2mZ2m=Z1mZ1m
—Z3mZ3m=""" =ZimZim— Zm-2,mZm-2,m =0, W€ oObtain respectively
1 — 2 i = pm—
Pm—1,m—1 = Pm—t,m-1 == Pm—%,mﬂ s
1 — 2 -
(419) pm—l,m_pm—l,m'""'_pm—%,m!
1 — p2 —un = pm—
Pmm = Pmm == p%mz .

Conditions (4.16), (4.17), (4.18) and (4.19) coincide with (2.1) in this case. There-
fore Kageyama’s condition leads to generalized Vartak’s one in this type provided
that (4.12) holds. Note that, though (4.12) is a general assumption, there may be
an association scheme satisfying (4.12).

(iv) Casel=m—q(q23): Ay=A,=-=Au_y; py=py=+"=pPp_, When
a positive integer q is equal to 3, if two conditions like (4.12) are assumed, then in
a similar way as in Case (iii), we can get conditions like (2.1) corresponding to this
case. In general, if g—1 conditions like (4.12) are assumed, then the required
conditions like (2.1) can be similarly obtained.

Therefore, for the case in which l=m —q (¢ =2), Kageyama’s condition leads
to generalized Vartak’s one with some additional assumptions.

Case 11 (type t=2 in Lemma 2.2). The conditions to be assumed are

Aoy =Ag 41 =" =g, 41,-15 Po, =Po,+1=""" = Poy+1,-1>
(4.20) Ao, = Agyuy =0 = Aortia-1> Por = Poy+1 = """ = Poyti-1>
Aoy = Ag,r1 = =g, 11,~1> Po, = Po,+1 * = Po+1-1-
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Since the conditions of each row to hold in (4.20) are of the conditions of types in
Case I, from the discussion of (iii) and (iv) in Case I, we can see that in type
(4.20) if some conditions like (4.12) are further assumed, then a necessary and
sufficient condition for the reduction of associate classes like (2.3) is obtained.
Therefore in Case II Kageyama’s condition leads to generalized Vartak’s one with
some additional assumptions like (4.12).

We shall conclude this section by giving an effective example. Consider
a PBIB design with five associate classes satisfying the conditions such that 4, =
A, (=84, 5ay), A3=A4 (=5, say); p;=p,, P3=ps- From (1.3) and (1.8) we
have

p1 = Ao+51(z11+212) +52(213+214) + 45215,
P2 = Ao+51(221 +222) +52(223+ 224) + 45235,
P3 = Ao+51(231+232) +52(233+234) + 45235,

Pa = Aot 51(Za1+242) +52(243+244) + As524s5.
If we impose a condition
4.21) Z15 = 235, 235 = Z4s,
then from p, =p,, p3=p4, S #5, and (1.4) we have
Zy1+212 = 231+ 233, Z31+ 233 = 241+ 249,
(4.22)

Zi3+tZ14a =233+ 234, Z33+Z34 = Z43+Z44.

From (1.3) and (1.5) we have

2 2 2
(z11+212)(211+212) =izlni+(izlpilj)zll+"'+(izlpi5j)215s
- = -~

2 2 2
(z21+222)(221F252) = izlni+(i _leilj)ZZI et ( leisj)zzs )
< =

L=

2 2 2
(z31t232)(231+232) = Zlni+(_ leilj)z31+"'+(_ lefj)zss s
5

i, j= L, J=
2 2 2
(z41+242)(241F242) = izlni‘i‘(i _leilj)z4l +e +(i jzlpisj)z45 s
- &= =
which from (4.21) and (4.22) lead to

2 2 2 2
(z212—222)( 2 p%,-—,Z P+ (z14—2,0(2 ph— 2 p3) =0,
i,j=1 i,j=1 i,j=1 1

LJ=
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2 2 2 2
(z32—242)( Z pizj_. Z P;’lj)+(234"z44)( )Y P?j—. > p)=0.
i,j=1 i,j=1 i,j=1 i,j=1
If

Z12— 222, Z14—Z24
(4.23) £0

232— 242> Z34—Z44

can be further assumed, then we obtain
2 1 2 5 2 2

(4.24) Z pij =i21pij9 ZP?, =.Z P?j-
J= sJ= sJ=

Similarly, from (z;3+214)(213+214)=(223+224)(223+224),  (233+ 2340233+
234) =(243+ 244)(Z43+244) and (4.23) we obtain

4 4 4 4
(4.25) Z pilj =,Z pizj’ Z P?j =_Z P?j-
i,j=3 i,j=3 i,j=3 i,j=3

From (z;;+21,0(213+214) =(221+222)(223+ 224)s (231+232)(233+234) =(241 +
Z42NZ43+ 244) and (4.23) we similarly obtain

(4.26) 2 pilj = Zzpizj9

1,2 i=1,
Jj=3,4 Jj=3,4

Furthermore, from (zy; +21,)215=(221+222)225, (Z31+232)235 =(241 +242) 245}
(z13+214)215=(223F 224)225, (233 +234)235 =(243+244)245 and 245215 =252)s,
Z35Z35 =Z45Z45, under (4.23) we obtain respectively

4 4 4 4

(4.27) 2 pis = E rks, 2 pis = 2 pis
i=3 i=3 i=3 i=3
pis = pis, pis = pis.

Conditions (4.24), (4.25), (4.26) and (4.27) coincide with (2.3) in this case. There-
fore Kageyama’s condition leads to generalized Vartak’s one in this type provided
that (4.21) and (4.23) hold. Note that these additional conditions (4.21) and
(4.23) can be replaced by z,5=2,5, 235 =245, Z13 =233, Z33 =243 OF Zy5=2Zp5=
Z35=245=Zs5.

At the conclusion of Section 4, it might be said that generalized Vartak’s
condition is easier to use than Kageyama’s one, since checking the conditions on
the z;;’s requires some calculations.
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5. Reductions for a certain PBIB design

Let N; be BIB designs with parameters v;, b;, r;, k;, A; and N} be comple-
mentary BIB designs with parameters vf=uv,, b¥=b,, r¥=b;,—r, k¥ =v,—k,
A¥=b;—2r;+4; of N;(i=1,2,...,m). Then Kageyama [23] gave a necessary
and sufficient condition that a PBIB design N,=N;®N, + Nf® N% with at most
three associate classes having an F, type association scheme is reducible to a
PBIB design with only two distinct associate classes having an L, association
scheme. Furthermore, Kageyama [30] showed necessary and sufficient condi-
tions for PBIB designs N,=N;®N,QN;+ NTQN3@N% and Ny=N,@N,®--
®N,,+ N¥QNI®:--@N} to be reducible. N, is different from N{@QN,QN;+
N, QN3 QN%(+NIQN,QN%5+ N¥®N$¥®N; constructed by Sillitto’s product
of N, and N;, where N, is a BIB design provided b;=4(r;—2,), i=1, 2 [50; 52].
A generalization of the Sillitto type of product will be treated in a subsequent
section.

By use of Kageyama’s condition, we have as a generalization of PBIB design
N, the following

THEOREM 5.1 (Kageyama [30]). Given the BIB designs N; with parameters
v, b, 1, k and 4; (i=1,2,..., m), a necessary and sufficient condition for a PBIB
design N=N,®N,®:-®N,,+ NTQN3®---QN* with at most 2™ —1 associate
classes having the F,, type association scheme to be reducible to a PBIB design
with the hypercubic association scheme of m associate classes is that

5.1) b(rj—4;) = bjri—4)

hold simultaneously for every i, j (i#j)=1, 2,..., m.

For Kageyama [30], we remark that necessary and sufficient conditions for
two distinct PBIB design based on the same association scheme to be reducible
are generally different.

Further, note that (5.1) can be replaced by r;A;=r;4;, because b(r;—A;) =
bj(r;—4;) is equivalent to r;A;=r;A; under conditions v;=v; and k;=k;. Since
we can also see that by(r;—4;)=b;(r;—4;) is equivalent to v;=v; under r;i;=r;4;
and k;=k;, as compared with Theorem 5.1 from a combinatorial point of view
of the design we have

COROLLARY 5.2. Given the BIB designs N; with parameters v;, b;, r;, k and
A; (i=1,2,3) satisfying rid,=r,A, ryA3=r3i, and r A3 =r3A,, a necessary and
sufficient condition for a PBIB design N=N;QN,QN;+N¥QN4¥Q N% with at
most seven associate classes having the F type association scheme to be reducible
to a PBIB design with only three distinct associate classes having the cubic
association scheme is that
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Ul = 1.72 =U3.

We will deal with the problem in Section 7 of Kageyama [23], i.e., the
derivation of a necessary and sufficient condition for a PBIB design with at most
2m—1 associate classes having the F,, type association scheme to be reducible to
a PBIB design with m, associate classes for a positive integer m, such that m<
m,<2m™—1. Here we shall consider the case m =3 concerning Corollary 5.2.

As shown in Kageyama [30], when N,; are BIB designs with parameters
v;, by, 1, k; and A, i=1, 2, 3, the parameters of PBIB design N=N;®N,®N;+
N¥*®@N%® N% based on the F; type association scheme are given by

v =uv,0,05, b =bb,b;,
' =rirary+(by—r)(by—ry)(bs—r3),
k' = kikyks+ v, —ky)(v,—ky)(v3—k3),
M =rdary+(by—r)(by—2r,+A)(bs—r3),
Ay = Agrars+(by —2r  +A)(by— 1) (b3 —13),

5.2 Ay = A3+ (b —2ri +4,)(by—2r, + A,) (b3 —13),
Ay =rirpAs+(by—r)(by—1) (b3 —2r3+43),
Ay = 11243+ (b =1 )(by—2r,+A,) (b3 —2r;+ 43),
Ag = ArpAa+ (b —2r  + A )(by— 1) (b3 —2r;+ 13),
Ay = A543+ (b —=2ry + A )(by—2r, + A,)(b3 —2r3+43)

+2(ry —A)(ry—A)(r3—43).
It follows from (5.2) and some calculations that
(5.3) A=Ay and A3 = A5

are equivalent to

5.4) by(r3—23) = by(r;—4,),
under
(5.5) vz = U3 and k2 = k3.

In a similar way, if (5.5) is replaced by v, =v, and k, =k,, then (5.3) is replaced
by Ay =45 and A5 =21}, while (5.4) by b,(r,—A,)=b,(r;—4,). Furthermore, if
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(5.5) is replaced by v, =v; and k, =k, then (5.3) is replaced by 15 =4} and A5 =
A%, while (5.4) by b,(r;—A43)=Dbs(r;—A4;). Therefore, since the properties for
reductions of the F; type association scheme are given in Design (I) of Section 3,
we can establish

THEOREM 5.3. Given the BIB designs N; with parameters v;, b;, v, k; and
A (i=1, 2, 3) satisfying

(5.6) Uy = Uy and k, = ks,

then a necessary and sufficient condition for a PBIB design N=N,®N,®N;+
N¥® N3® N% with at most seven associate classes having the F4 type association
scheme to be reducible to a PBIB design with five associate classes having an as-
sociation called a singular reduced F, type association scheme [28] is that

(5.7 by(rs—43) = bs(r,—4,),
which is equivalent to
(5.8) Fohs = Fad,.

RemARrk. If (5.6) is replaced by v, =v, and k, =k,, then (5.7) is replaced by
b,(r,—Ay)=b,(r,—41,), while (5.8) by r;A,=r,A;. Furthermore, if (5.6) is
replaced by v, =v; and k, =k;, then (5.7) is replaced by b (r;—1;)=b;3(r; —4,),
while (5.8) by riA; =rii,.

Generalizations of Corollary 5.2 and Theorem 5.3 are easily given and hence
they are omitted here,

6. Algebraic structures of PBIB designs obtained by generalization of
Sillitto’s product

In the previous section, we dealt with necessary and sufficient conditions that
the PBIB design given by the Kronecker product of BIB designs in the form
N=N,®N,®---QN,+NIQ®N3®---®@N}¥ is reducible to a PBIB design with
fewer associate classes. In this section we shall deal with the generalization of
the Sillitto type of product concerning the product type stated above. That is,
for usual Sillitto’s product N(W=N,®N,+ N ®@N%, we study the algebraic
structures of N =NMOQN;+ ND*R® N% and in general NW=N""DQ®N,,,
+ N=D*Q N* .. where N;’s are BIB designs. The approach used here is
standard, being the use of generalized Vartak’s condition.

Let N; be BIB designs with parameters v;, b;, 1, k;, 4; (i=1,2,...,n+1)
and let the parameters of PBIB design N(® be denoted by v(®, b(®, p(@) k(@ A{x)
and n{®, Then it is known (cf. [23]) that the parameters of the PBIB design
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NW=N,®N,+N¥®N% based on a rectangular association scheme are as
follows:

v =ypv,, bV =b,b,,
r) =rir,+(by—r)Xby—r3),
kD = kk,+ (v, — k)0, —k»),
6.1) MY = ridy+(by—ri )by —2ry+ Ap), nY =v,—1,
AP = radyt(by=ry)by=2r +4y), n§ =01,
A0 = Ahy+(by =27, + A X(by =27, + Ap) +2(ry — A )y — A,),
n§t = (v; —1)(v,—1).

Furthermore, as indicated in Section 5, N(1) is a BIB design when the parameters
of the original BIB designs N; satisfy b;=4(r;—4,), i=1, 2. Since the algebraic
structures of the PBIB design N(!) with at most three associate classes are
discussed in Kageyama [23], we begin by considering the design N =N
N3+ NW*Q N% as the Sillitto type of product of NV and N.

Before a further consideration, we prepare the following lemma which plays
an important role in this section.

LEMMA 6.1. Let M, be a PBIB design with m associate classes and with
parameters v(D, b1, rO, O YD p(O pikD - j k=0, 1,..., m, and let N,
be a BIB design with parameters v,, b,, r,, k, and A,. Then N=M,®N,
+M¥®N% is a PBIB design with at most 2m+1 associate classes and with
parameters

v=0vMyp,, b=>bWVp,,

r=rWr,+ GO —-rM)(b,~r,),

k = kWky + (0D — kD) (0,—k,) ,

Ay =M+ —rW)(by—2r,+1,), ny=v,—1,

Aai=ra AV + (by—r) (B = 2P+ A(D), ny=niV,

Aaipr =AMV + (BN =2r D + AV (b, — 27, + 1)
+2(r O =AY (ra=43)s Bairy=(v2—Dn{?,

for i=1,2,..., m. In addition, the following relations hold:
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Ay = Ay if and only if b (ry—A,) = by(r(H — V),
Ay = Agisq if and only if (r™ —2{)b, = 4(r) = 2V)(ry— 4,),
Do = Aajey if and only if b5V —AD) = (r,— A)[b) —4(r) — A§VY],
Ay = Ay if and only if 24V = AV,
Azis1 = Azj+1 if and only if(/151)—,15-1’)[b2—4(r2—,12)] =0
forall i, j=1, 2,..., m.

Since it is clear that in general the complement of a PBIB design M with
parameters v, b, r, k, A;, n; and pi, (if the design exists, then b+ ;= 2r holds for
all i) is also a PBIB design M* with parameters v*=v, b*=b, r*=b—r, k*=
v—k, Af=b—2r+4;, nf=n; and pif=pi, having the same association scheme
as M, so that N=M,®N,+ M¥® N3 has the same association scheme as the
design M, ®N,, the second kind of parameters p%; of N coincide with those of
M;®N,. The latter can be found in Vartak [58] and hence we omit describing
them here.

The proof of Lemma 6.1 is easily given by enumeration from the structure of
N=M,®N,+M*¥®N% and the combinatorial properties of M, and N,, or with
the help of association matrices for the purpose of the essential use of Lemma 5.1
due to Bose and Mesner [8]. The association matrices matching the design N
can be also represented by the Kronecker products of those of designs M, and N,.
Note that in Lemma 6.1 if M, has an F, type association scheme which will be
given in Section 9, then N has an F,,; type association scheme.

Since
(Ny @ N+ Nt ® N$)* =N, @ N5+ N¥ Q@ N,,
we have
(6.2) N® = N @ N;+ ND* @ N*
(6.3) =N, QN @N;+Ni®NIQ@N3;+N, @ N3 ® N}

+Nf® N, ® N%.

ReEMARK. The complement of a design of the Sillitto type of product is easily
made from a structural point of view, that is, it is essential to make the complement
of the last BIB design only in each term consisting of Kronecker products of BIB
designs. For example, the complement of N(?) is as follows:

N®* =N, @ N, ® (N3)*+ NT®N% ® (N3)*
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+N, ®@NEQ (N)*+ NI ® N, ® (N$)*
=N, @N,QN{+NiQ@N5Q@ N5+ N, @ NY®@ N,
+NY®N,® N;.

It is convenient to consider N(?) in the original form (6.2) rather than in an
expansion form (6.3) for the sake of the easy use of Lemma 6.1. Thus, from
(6.1) and Lemma 6.1 we have

PROPOSITION. N =NMDQRN;+ ND*QN4 =N, QN,QN;+ N *QNi®
N3+ N, QNIQN5+ NTQN,®N% is a PBIB design with at most seven
associate classes having an F type association scheme and with parameters

v(?) = v,0,05, b3 =b,b,b,,
r? = {riry+ (b, —r )by —r)}rs+(byry+byry —2r,r,)(bs—rs),
k@ = {kiky+ @, — k) v, —k)} ks + (v, ks + v,k — 2k k) (v —ks),
A2 = b bydy+(biry+byry=2r 1) (by—2r3), n$? =ov;—1,
AR = AVby—(by—2r)(by—2r,)(by—r3), n%P =n{Y,
A2h1 = biby(by—2r3+A3)+ AV {by—4(ry—13)}

=2{r,ry+(by—r )by —ry)}(bs—3r;+24,),

n$hy = (03— DnfV,

for i=1,2, 3, where 2V’ and n{V are given in (6.1). In addition, (i) when
b;=4(r;—1), i=1,2,3, N® s originally reducible to a BIB design. (ii)
When b,=4(r;—1,), i=1, 2 and b3 #4(r;—23), N® is originally reducible to a
PBIB design with at most three associate classes having a rectangular associa-
tion scheme, and is further not reducible to a 2-associate PBIB design based
on the L, association scheme.

On the reduction of associate classes for N(2) as a PBIB design with seven
associate classes having the F; type association scheme (see Section 3 for matrix
expressions P;=|pi|| of the second kind of parameters), the representations
corresponding to the places of letters (A4), o, (B) and (C) in the following pro-
position are given in the table:

PROPOSITION: When there exists the relation (A) of equality among the
coincidence numbers A{?, a necessary and sufficient condition that a PBIB
design N® with at most seven associate classes having the F type association
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scheme is reducible to a PBIB design with a associate classes is condition (B).
Furthermore, relation (A) holds when the parameters of the original BIB designs
satisfy condition (C).

Table
No relation (4) of 2(» a (B) condition (C)
1 4=5,6=7 5 b1=4(r1— 1)
2 4=6, 5=7 5 bi=4(r1—21)
3 2=3,6=7 5 ba=4(rg—42)
4 2=6,3=7 5 ba=4(ra— 22)
5 1=3, 5=7 5 b3=4(rz3—23)
6 1=5,3=7 5 b3=4(r3— 13)
7 1=2,5=6 5 V=02 ba(rg—A3) =ba(ra— 12)
8 2=4,3=5 5 v1=uv3 bi(ra—A2)=ba(r1— A1)
9 ]=4, 3=6 5 V2=03 bl(r3~13)=b3(r1—21)
10 1=5,2=6 5 v=v9=2 be=4(ra— 22), ba=4(r3—13)
11 1=3, 4=6 5 112=03=2 b1=4(r1—21), b3=4(73—13)
12 2=3,4=5 5 v1=v3=2 b1=4(r1—41), ba=4(ra—22)
13 2=7,3=6 5 va=v3=2 ba=4(ro—22)
14 4=7, 5=6 5 01=Uz=2 b1=4(7’1—~21)
15 4=5=6=7 4 bi=4(r1—21)
16 2=3=6=7 4 ba=4(ra— A2)
17 1=3=5=7 4 bz=4(r3—23)
18 2=3,4=5,6=7 4 bi=4(r1—21), ba=4(r2—22)
19 2=3=4=5 4 01=v3=2 b1=4'(71—-11), bz=4(72—12)
20 1=3=4=6 4 va=v3=2 b1=4(r1— A1), ba=4(r3—23)
21 1=2=5=6 4 v1=ve=2 by=4(ra—A2), ba=4(r3— 13)
22 2=3,4=5=6=7 3 b1=4(r1—21), ba=4(ra— 22)
23 4=5,2=3=6=7 3 b1=4(r1— 21), ba=4(ra— 13)
24 1=3,4=5=6=7 3 bi=4(r1—21), ba=4(r3—23)
25 4=6, 1=3=5=7 3 b1=4(r1—21), ba=4(rg— 23)
26 2=6,1=3=5=7 3 ba=4(rg— 23), ba=4(r3— 13)
27 1=2=3,5=6=7 3 ba=4(ra— A2), ba=4(r3— 13)
28 2=4=6,3=5=17 3 bi=4(r1—21), ba=4(ra— 22)
29 1=4=5, 3=6=7 3 bi=4(r1—21), ba=4(r3—13)
30 2=3=4=5,6=7 3 v1=u3 bi=4(r1—21), ba=4(ra— 22)
31 2=4, 1=3=5=7 3 v1=03 bi=4(r;—2;),i=1,2,3
32 1=2,4=5=6=7 3 v1=0v2 bi=4(r1—21),
b2(73-—23)=b3(1’2—-12)
33 3=7,1=2=5=6 3 v1=u3 bo=4(ra— 23), bs=4(rg— 23)
34 5=7,1=3=4=6 3 v2=103 b1=4(r1—211), ba=4(rg—13)
35 1=2=4,3=5=6 3 V1=Ug3=103 bi(r3—23) =ba(r1— A1),
ba(rg— 23) =bs(ra— A2)
36 2=5=6, 3=4=7 3 v1=ve=2 bi=4(r1—21), ba=4(ra—12)
37 1=3=6,2=5=7 3 va=0v3=2 ba=4(rg—A3), ba=4(r3—13)
38 1=7,2=3=4=5 3 v =v3=2 bi=4(r;—2;),i=1,2,3
39 1=4=7,3=5=6 3 v1=2, va=v3=4% bi1=4(r1—21), ba=4(rz3—23)
40 1=2=7,3=5=6 3 n=ve=4, v3=2 be=4(ra— A2), ba=4(ra—A2s)
41 2=3=4=5=6=7 2 bi=4(r1—21), ba=4(ra—23)
42 1=2=3=5=6=7 2 ba=4(ro— A2), ba=4(r3—43)
43 1=3=4=5=6=7 2 b1=4(r1—21), bg=4(r3—A3)
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(Continued)
No. relation (4) of (¥ a (B) condition (C)
44 1=2=3,4=5=6=7 2 bi=4(r;—2;),1=1,2,3
45 | 1=4=5,2=3=6=7| 2 by=4(ri—2;),i=1,2, 3
46 1=2=3=4, 5=6=7 2 VU2 =03 bi=4(r;—2;),1=1,2,3
47 1=2=4=5=6=7 2 v1=vp=2 bi=4(r;—2;),i=1,2,3
48 1=4=7,2=3=5=6 2 v1=4%4, v2=v3=2 bi=4(r;—2;),i=1,2,3

The numbers in the column of relation (4) denote suffices i of coincidence
numbers A{?) as follows; for example 4=5, 6=7 means the relation 1{2’ =1’
and 1{?) =1{?), and 2=3 =6 =7 means the relation 1%’ =1{?) =1{2) =1, and so
on. The blanks in column (B) mean that condition (B) is automatically satisfied
under relation (4). Condition (B) can be easily checked by generalized Vartak’s
condition. Though generally v;=>2 in BIB designs N;, i=1, 2, 3, we omit the
cases in which v, =v,=v;=2 and which is reducible to a BIB design in Table,
since they are not interesting for us.

Note that under the same condition (C), by combining associate classes in
some ways, N(?) is reducible to PBIB designs with fewer associate classes. Of
course, there are many cases other than those given in Table concerning the
reduction of associate classes. In particular, there are many combinations of A{2
for the cases reducible to PBIB designs with two or three associate classes. Okuno
and Okuno [41] have also studied PBIB designs based on the F type association
scheme of v=m;m,m, treatments in some detail.

Further, note that the reduced design of No. 18 is a 4-associate PBIB design
based on a generalized right angular association scheme which will be indicated
in Section 10, and that the reduced designs of Nos. 27 and 35 are, respectively,
3-associate PBIB designs based on the F, type association scheme and the C,
type association scheme which will be described in Section 9. There are some
2-associate PBIB designs based on the well known association schemes. For
example, the reduced designs of Nos. 41, 42, 43, 44, 45 and 47 are 2-associate
PBIB designs based on the N, type association schemes which will be described
in Section 7. The reduced design of No. 46 is a 2-associate PBIB design based
on the L, association scheme provided v,v, =v;#4 from the uniqueness of the
L, association scheme [49]. The reduced design of No. 48 may be a 2-associate
PBIB design based on the following association scheme with parameters

v=16, n, =5, n, =10,

0 4 2 3
Ilp},ll =[ ], “PIZJ” ={ ]
4 6 3 6

for i, j=1,2. Suppose that there are treatments represented by S-tuples (o,
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oy, O3, 04 &s) Where o;=0 or 1 for i=1, 2, 3, 4, 5 and 5-tuple (a;, o5, o3, 0tg, As)
is identified with its complement (1—o, 1 —a,, 1—a3, 1 —0y, 1—as). Among
these 24 treatments, an association is defined as follows. Two treatments (o,

5
oy, O3, 4, os) and (B4, B2, B3, B4, Bs) are ith associates if le(ak—ﬂ,,)=i. Each
k=

treatment is the Oth associate of itself. In fact, we can see that this association
satisfies three conditions (i.e., (a), (b) and (c)’ in Section 1) of the association
scheme with two associate classes. This association scheme was suggested by
Enomoto [14].

As a generalization of the Sillitto type of product, we have

N®O=NOQN,+NO*QN%
=N QON,QON;QN,+ NI QNI @N;®N,
N, @NIQNIQ@ N +NTQN, ®NI® N,
+N,QN,QNS@NI+NT QNSNS ® Ni.
+N, @NIQN; QN{+NT® N, ®N; Q Ni
and for n=>1
N =NT"DQN, (+NTD*Q Ny g,

where N=D*= N=2DQN¥ 4 NO=2*Q N NO=N, (ie., v =p,, bD=b,
rO=p, k®=k, 29°=1,) and then N™ is developed into 2" terms each
consisting of Kronecker products of n+1 BIB designs.

From Lemma 6.1 and a PBIB design N1 in which an F, type associa-
tion scheme can be introduced, it follows that N( is a PBIB design with at most
2n+1 1 associate classes having the F,,, type association scheme and with
parameters

v = 0,0;...0p41,

b™ =bb,...b, 4y,

P = = Dp (B — =Y — ),

kM = k0=Dk,  + 0" D=k D) (0,0 — ki),

AP = rm= D0+ (D — DY (b =27 F A r)
l(z”i) = ;Lgn—l),”ﬂ _,_(b(n-1)_2r(n—1)+lgn—1))(bn+l —rpr1) s

APy = 200, + (B = 2r =D =D (By =27y Agrq)
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+2(r "D = 2 DY (rpg g = Ar1) 5

nP = v, =1, aW =n""V, nf = (00— Dni"" D,
fori=1,2,...,2"—1. If the parameters of N are represented by the parameters
of n+1 BIB designs N, N,,..., and N, , then their expressions are very com-
plicated. The PBIB design N(, therefore, remains to be discussed with the
parameters of N(*~1) and N,,,. The following relations among coincidence
numbers A{" can be obtained:

AM =2 ifandonly if By, (X0 =AY = b V(L —Auiy)
AW =27, ifand only if (F=D—AD)p,

= 40D =AY (ryey = Aner) 5
AW =2%)y, ifandonlyif (A0 —-2A"")b,,,

= (Fur1 = Aps D[BC™D —4(r=D = 2410,
AW =2%) ifandonlyif A" V=2A¢"1  and
APy = 480y if and only if  (A{" V= AP" )by —4(russ —Ape1)] =0

for all i, j=1, 2,..., 2"—1.

Using these relations and an F,,, type association scheme, we may be able
to make statements on the reduction of associate classes for a PBIB design N
such as Table concerning those of a PBIB design N(?), Furthermore, they also
depend on the algebraic structures of a design N*~1), For example, (i) when
b;=4(r,— 1), i=1,2,...,n+1, N® is originally reducible to a BIB design, (ii)
when b;=4(r;—12,), i=1,2,....,n and b, #4r,+1—A,+1), N is originally
reducible to a PBIB design with at most three associate classes having a rectangular
association scheme, and (iii) when b;=4(r;—4,), i=1, 2,...,n—1 and b;#4(r;—
A7), j=n, n+1, N™ is originally reducible to a PBIB design with at most seven
associate classes having the F type association scheme, because N*~1) is a PBIB
design with at most three associate classes having an F, type association scheme,
and so on. Cases (ii) and (iii) are, respectively, included in the algebraic structures
of PBIB designs NV)=N,QN,+N¥®N% and NO=NUOQN,+ N*QN%
as shown before.

The reducibility of associate classes for a PBIB design N may be studied
from exhaustive combinations of associate classes in the F,,; type association
scheme by Lemmas 2.1 and 2.2, similarly as for N(®), but they will not be carried
out here.
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COMPLEMENTARY REMARK. As a generalization of Lemma 6.1, when M,
and N, are PBIB designs with s and ¢ associate classes, respectively, we can give
all the parameters of a PBIB design N=M;® N, + M¥® N% with at most s+ ¢+ st
associate classes. However, they are omitted here.

Part II. Some types of reducible association schemes

We shall discuss some series of association schemes, each series of which is
reducible to an association scheme of the same type with fewer associate classes
by combining some prescribed associate classes. The discussion is independent
of treatment-block incidence of the design and is useful to the reductions of the
number of associate classes for an incomplete block design based on a certain
association scheme as seen in Part I and, also, useful to the characterization of
the association scheme.

7. Nested type of association schemes

Following Yamamoto, Fujii and Hamada [61], suppose that there are
U =8,5,...5, treatments ¢(«,, «,,...,®,) indexed by m-tuples (ay,0s,..., %,)
where o;=1, 2,..., 5, (Z2) for i=1, 2,..., m. Among these treatments, we can
define the following association called here an N, type association scheme
(or an m-fold nested type association scheme) satisfying three conditions of the
association scheme with m associate classes, which is also called a generalized
group divisible association scheme with m associate classes by Raghavarao
[42]:

DeriNIiTION: Two treatments ¢(aq, ®,,..., o,) and @¢(By, B,,..., B,) are ith
associates if and only if a;=p; for all j=1,2,...,m—i and o, ;41 #Pu-i+1.
Each treatment is the Oth associate of itself.

After numbering v, treatments lexicographical order, we can express ith
association matrices as

(7'1) Ai = Ivm—i ® (Gsm—i+1_1sm-i+ 1) ® Gsm—i+z ®-® Gsm

for i=0, 1,..., m, where v;=s;s,...s;. Furthermore, the parameters of this
association scheme are known to be

Uy = 8152+ Spps

Ny = SuSm—1--Sm—i+2 Sm-ir1— 1),
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Oi-1yxii-1) . Xi-1)  O-1yx(m-1)

(7.2) P; = || pikll =| X{i-1y
O(m—i)x(i-l)

for i, j, k=1, 2,..., m, where x;_,, is the (i—1)st order column vector with
elements n,, n,,..., n;_1; X(;_1 is the transpose of x;_); and Dgy_i4 1yx(@m-i+1)
is a diagonal matrix with diagonal elements $,.S,_1---Sp-i+2(Sm—i+1—2)> Mi+ 1>
Rt 2.5 N, (for i=0 the first element is put equal to n,), respectively.

We shall now show that an N,, type association scheme is reducible to an
N,._. type association scheme for a positive integer m =3 (for brevity, this fact
is denoted hereafter by N,2N,,_,, m=3).

In the association matrices (7.1) of an N,, type association scheme of v,,=
5,8,...5, treatments, for example, consider the following form:

(73) Am—2+Am—1 = Isl ® (Gszsg—lszs;;) ® GS4 ®® Gsm :

Let s, =u,, $,53 =u,, S, =us,..., and s, =u,,_,;. Then (7.1) and (7.3) imply that
we can obtain the association matrices of an N, _, type association scheme of
Uy =58,85...8y =U U,...U,_, treatments by combining (m—2)nd and (m—1)st
associate classes in the N,, type association scheme. Furthermore, (7.2) yields

ny 0 0
n, 0 0
O(m-3)x(m-3) L N
Py = ,
ny n, R,-3 a 0 0
0 0 0 0 =n,y O
0 0 0O 0 0 =
ng 0
n 0
P, = Om-2)x(m-2) nim_z 6 |
ny ny .. Ry, b 0
0 0 .. O 0 n,

where a=s,S,_...54(s3—2) and b=s,s,_1...53(s,—2). In these matrices
P,_, and P,,_,, it is clear that the following relations hold:
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> prt= X pEt,
i,j=m—2 t i,j=m— H
m—1 m—1
> pr2= Yy pri for /=1, 2,..., m—3, m,
i=m—2 i=m-2
Pt = prt for i, j=1,2,...,m—3, m,

which are a necessary and sufficient condition (i.e., generalized Vartak’s condition)
for an N,, type association scheme to be reducible to an association scheme with
m—1 associate classes. Hence it follows that N,,2N,,_,, m=3.

Incidentally, it is clear from (7.1) and (7.2) that this statement is also shown
by combining other two consecutive associate classes. Moreover, it is useful to
note that N, 2N,,_,,, holds, by combining !/ consecutive associate classes in the
N,, type association scheme for [=2, 3,..., m—1. This note is described in
Raghavarao [42].

ReMARK. The N, type association scheme was called a hierarchical group
divisible association scheme with m associate classes (shortly, a HGD,, type
association scheme) by Roy [48]. That is, the parameters of the HGD,, type
association scheme expressed in a slightly different form can be identified with
the parameters of the N, type association scheme by renaming the different
associates suitably.

8. Orthogonal Latin square type of association schemes

Following Yamamoto, Fujii and Hamada [61], suppose that there are
v=k? treatments indexed by 1, 2,..., k2 and they are set forth in a square B
so that the {(i — 1)k + j}th treatment lies in the jth column of the ith row. Suppose,
further, there are r—2 mutually orthogonal Latin squares, Bj, B,,..., B,, of
order k (r<k+1). Among these treatments, an association called an OL™
type association scheme (or an orthogonal Latin square type association scheme
with m associate classes), satisfying three conditions of the association scheme
with m associate classes, is defined as follows:

DerFINITION: Two treatments « and f§ are 1st associates if they occur in the
same row, 2nd associates if they occur in the same column, and ith associates if
they correspond to the same letter of ith Latin square B, (i=3,4,...,r). Other-
wise they are (r+ 1)st associates. Each treatment is the Oth associate of itself.
Note that if r=k+ 1, there is no pair of treatments which are neither 1st, 2nd,...,
nor rth associates. The number of associate classes is therefore m=min(r+1,
k+1).
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Then we have the following association matrices:

Aoy =1, A;=FF;—1I, i=1,2,.,r
8.1)

Ay =G,— Z' A;,
i=0

where Ay, A; and A4,,, are Oth, ith and, if r<k, (r+1)st association matrices,
respectively. Furthermore, F, is a vx k incidence matrix for treatments vs.
rows, F, is a vx k incidence matrix for treatments vs. columns and F; are v x k
incidence matrices for treatments vs. letters of the ith Latin squares (i =3, 4,..., r)
which satisfy the following relations:

Fi=L®Ex;, F,=Ex®I,
FiF, =kI, (i=12..7),
FiF; =G,  (i#j;i,j =1,2,.., 7).
The parameters of this association scheme are known to be
v=k>2? ny=1, n=n,=--=n,=k—1,
if r<k, ny, =(k=1)k=-r+1),

(8.2) P, =pi I

Gir— 1y Oyt Ewcoomny  k=r+ DEg iy
3 0y x(i-1) 3k—2 - VOle;r-H-l)

E—iyx(i-1) O¢r-iyx1 Gi—1I,—; (k—r+1DE;-i)x1

(k=r+DEpxgesy 0 (k=r+1)Eysgepy k=n)k—r+1)

of order r+1, for i=1, 2,..., r;

of order r+1, for j, j,=1,2,...,r+1; if r=k+1,

(8‘3) Pl= ”p‘ijl_[z”
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Gioi—1liey 0G-1yx1 i Egenyxe-i-1y | E-1yx1
0yx(i-1) k=2 01 x(r—i)
Ei-1yxi-1) Groimr—1miy Ei—1yx1
................................ : (r—i))( 1 i[..V..............V....A...”,....A...v‘v..VV.A..A.........,.......
E;xi-1) ;Elx(r~i—1) 0

of order r, for i, j,, j,=1,2,..., 1.
We shall now show that OL"20L™"! for a positive integer m=4 and, in
particular, m=3 when r=k+1. This is shown by separating into two cases.
Case (I) when r<k. Then m=r+1. It follows from (8.2) that

m 1 m
> byt = 2 11";'",',

i,j=m-1 i,j=m—

m m
2 prt=% pn  forl=1,2,...,m-2,

1 i=m—-1

prt = pn fori, j=1,2,..., m—2,

which are a necessary and sufficient condition (i.e., generalized Vartak’s condition)
for an OL™ type association scheme with m =r+ 1 associate classes to be reducible
to an association scheme with m—1 associate classes. Furthermore, since we
have from (8.1)

m—2
Am—1+Am = Gv— Z Ais
i=o

it is clear from the combination of (m —1)st and mth associate classes that OL™ 2
OL™ ! for m=4 when r<k.

Note that when m =3, i.e., r =2, an OL} type association scheme is reducible
to an L, type association scheme [10] with two associate classes by combining
Ist and 2nd associate classes.

Case (IT) when r=k+1, i.e., the case in which there exists a complete set of
mutually orthogonal Latin squares of order k. Then m=r. From (8.3) and the
same argument as in Case (I), by combining (m — 1)st and mth associate classes
we can show that OL"20L"™ ! when r=k+1. In this case, r=k+1 and k=2
lead to m=3.

ReEMARK. It is known (cf. [61]) that for r<k, OL™=L, holds by com-
bining 1st, 2nd,..., and m — 1 =rth associate classes.
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9. Factorial type of association schemes

Following Yamamoto, Fujii and Hamada [61], suppose that there are v,=
$185...5, treatments ¢(ay,a,,...,®,) indexed by p-tuples («;,,,...,,) where
o,=1,2,.,s(=22) for i=1,2,..., p. Among these treatments, we can define
the following association called an F, type association scheme satisfying three
conditions of an association scheme with 27 —1 associate classes, which is also
called an extended group divisible association by Hinkelmann [16] and
Hinkelmann and Kempthorne [17]:

DEfFINITION: Two treatments ¢(xy, ®,,...,«,) and @(By, By,..., B,) are
(&1, €25..., €)th associates if [e(a; —By), &(a, = B2)s..., &, — B)]1 =(81, &2,---» &p)-
Each treatment is the (0, 0,..., O)th associate of itself.

After numbering v, treatments lexicographical order, we can express (e,
€,,..., £,)th association matrices as

9.1) Aoy, = A4, @4, 9@ 4,,,
where
A, = (1 -&)l;, +e(G;,— 1),
=0 or 1, i=1,2,...,p,

i.e., A,, are the association matrices of an association scheme with one associate
class (e.g., a BIB design). Similarly, we can give the matrix representation of
parameters p’, as follows:

(9'2) Psgaz"-a,, = Ilpﬂ?%s?” = Pg}) ® Pz(zf) ®® Pﬁ‘;) >
for1,,1,=0, 1,...,27—1, where

1 0 0 1
+¢; ,

ng) = (1—¢;) [
1 s;-2

0 Si‘—'l
=0 or 1, i=12,.,p,

i.e., P$” and P{¥ are the matrix representations of parameters P of an associa-
tion scheme with one associate class (e.g., a BIB design).

Consider first an F; type association scheme of v =s, 5,55 treatments. Then,
letting s, =u, and 5,53 =u,, we have from (9.1) and v =s,5,5; =u,u,

Agoo = Isnszsa = Iuluz >

(9'3) A001 +A010 +A011 = Isl ® (GszS3_Is1S3) = Ilu ® (Guz—qu)a
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AIOO =(Gsl_lsl)® I.vzsg = (Gul_lul)® qu’
A101+Al)0+A111 =(G.\'|_Is,)®(cszsg_1szsg)
=(Gu1—1m)®(Gu2_Iu2)'

It is clear that the matrices in (9.3) are the association matrices of an F, type
association scheme of u,u, treatments. Furthermore, we can show that by
combining (0, 0, 1)th, (0, 1, 0)th and (0, 1, 1)th associate classes, and combining
(1,0, Dth, (1, 1,0)th and (1,1, 1)th associate classes, a necessary and sufficient
condition for an F; type association scheme with seven associate classes to be re-
ducible to an F, type association scheme with three associate classes is satisfied.
It holds that Fy;2F,.

Moreover, it follows from the definition of the association and Lemma 2.1
that an F, type association scheme (or a rectangular association scheme) of s;s,
treatments is (i) automatically reducible to an N, type association scheme (i.e.,
F,2N,) and is (ii) also reducible to an L, association scheme with two associate
classes provided s, =s, (i.e., F,2L,, if s; =s,). Since these reduced association
schemes are different from a series of F, type association schemes in the strict
sense, we will consider an F, type association scheme for p=2.

Next, we shall show that F,2F,_, for a positive integer p=3.

In the association matrices (9.1) of an F, type association scheme, consider
the following form:

(9-4) Az;ez-"zp_zOl +A5182"'£p—210 +A£;sz'-~£p_1l 1
= Ae; ® Aaz ®® As,,_-z ® (Gsp_ls,,_lsp..xsp)

for all 2772 possible combinations of e, ¢,,..., and ¢,_,. Let s,=u,,s,=
Ugyeooy Sy =Up_, and s,_;5,=u, ;. Then (9.1) and (9.4) imply that we can
obtain the association matrices of an F,_; type association scheme of v, =s,s,...
Sp=Uil,...u,_, treatments by combining three associate classes, (&, €,..., &p—3,
0, Dth, (g4, &5..., €2, 1, 0)th and (ey, &5,..., &, 5, 1, th, in the F, type associa-
tion scheme for all 2?=2 possible combinations of &;, &,,..., and ¢,_,. Further-
more, we have from (9.2)

P

£1£2"Ep

01 = P§})®P§§>®---® P(p—2)® ng—1)® P(lp)’

E€p-2
(95 Pigeey10 =PV R®PP Q@ PPIYQ PPV PP,

Pc = P,(,:})® P§3)®"'® P(p—2)® P(lp—l) ® P(lp)'

182°ep-211 Ep-2

Since
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0 1 0 0
1 v,-2 0 0

P%P—l) ® P(1p) — ,
0 O 0 Up—l_l

0 0 | 0

0 0 0 vp—l
P(lp—1)® ng) = ,

1 0 Vp-1—2 0

0 v,—1 0 (V-1 —=2)(v,— 1)

0 0 0 1

0 0 1 up——2
P(]p—l)@])(lp) — ,

0 1 0 vp_l-—?.

L v,-2 0,12 (v,-1—2)(v,—2)

p

it is clear that the following relations hold:

3 3
(9.6) E Pl = Z pid = 2 pld,

Therefore, from (9.6) and a part of the same matrix representation P{’® P ®
+@P{P=2) in (9.5), it follows that an F, type association scheme is reducible to
an F,_; type association scheme by combining three associate classes, (g4, &5,...,
€y-2,0, Dth, (g1, 85,..., 8,-2,1,0)th and (g, &,..., &5, 1, Dth, for all 2772

possible combinations of ¢,, ¢,..., and ¢,_,, i.e., F,2F,_, for p=3.

REMARK. As a special case of an F, type association scheme, we have a
hypercubic type of association schemes (cf. [34; 46; 61]). That is, suppose that
there are v,=sP treatments ¢(«,a,,..., ®,) indexed by p-tuples (x;, «,..., &),
(;=1,2,...,s;i=1,2,..., p). Among these treatments, an association called a
C, type association scheme (or a p-dimensional hypercubic association scheme)
is defined as follows:

DEerFINITION: Two treatments ¢(a,, d,..., a,) and ¢(B;, B»,..., B,) are ith
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p
associates if and only if ) &(a,—fB,)=i. Each treatment is the Oth associate of
k=1

itself.
Then it follows from the definition of the association that F,=C, provided
§; =8, ="-+=5, (=s, say). In this case, the association matrices of a C, type

association scheme of v=sP treatments can be expressed as follows:

(p)
Ci= 3 A4,®4,0®4,,

gytext-tep=i
i=0,1,2,..,p,

where A4,, are given in (9.1).

If a C, type association scheme of v=s? treatments is reducible to a C, type
association scheme of v=t! treatments for /< p, then we have first s =¢ and then
s=n't and t=nr! for a positive integer n, where (p, )=a, p=p,a, I=1,0 and
(p1, 1,)=1. Thus, the association matrices (a and (Cl),. are, respectively, Kro-
necker product representations of the matrices of order s=n't and t=nP:. These
patterns of association matrices may imply that a C, type association scheme is
not reducible to a C, type association scheme for p>1=2 (for brevity, C,3C)).
Practically, we can show that C;22C,; C,2C;, C,; Cs2Cy, C3, C, and C,, P
C,, for many other prescribed integers p; and p, such that p, > p,>2. Incidental-
ly, it is conjectured [28] that a necessary and sufficient condition for a C, type
association scheme of v =sP treatments to be reducible is that s=2, 3 or 4. Indeed,
this conjecture holds for p=3, 4 and 5.

10. Other types of association schemes

We shall deal with the known types of two association schemes with four
associate classes and of two instructive association schemes with m associate
classes.

10.1. An m-associate cyclical type of association schemes defined by
Nandi and Adhikary [39], which is a generalization of a cyclic type association
scheme with two associate classes defined by Bose and Shimamoto [10]. For the
definition of this association scheme refer to Nandi and Adhikary [39] for details.
Since this association scheme includes an N,, type association scheme as a special
case, it is clear from an argument in the N,, type association scheme of Section 7
that an m-associate cyclical type of association schemes is reducible to an (m—1)-
associate cyclical type of association schemes, after renumbering the associates.

10.2. A generalized right angular association scheme with four associate
classes of v=pls treatments introduced by Tharthare [57], which leads to a right
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angular association scheme [56] provided p=2. That is, suppose that there are
v=pls treatments denoted by (a, B, y) fora =1, 2,..., I; =1, 2,..., p; y=1, 2,..., 5.
For the treatment (o, 3, y), 1st associates of it are those that differ in the third posi-
tion; 2nd associates are those that differ in the second position while being the
same or different in the third position; 3rd associates are those that have the same
second position, a different first position, and the same or different third position;
the others are 4th associates. Each treatment is the Oth associate of itself. The
parameters of this association scheme are as follows:

v=rpls, n,=s—-1, n,=s(p—1),

ny =s(1-1), ny=s(-1)p-1),

s—2 0 0 0
s(p—1) 0 0
Ipl;ll = ,
Sym. s(l—1) 0
s(I—=D(p-1)
0 s—1 0 0
s(p—2) 0 0
Ipdll =
Sym. 0 s(I-1)
s(I-1D(p-2)
0 0 s—1 0
0 0 s(p—1)
”p?_,” = ’
Sym. s(I—2) 0
s(p—1(-2)
0 0 0 s—1
. 0 K s(p—=2)
Il = ,
Sym. 0 s(1-2)
s(I—=2)(p-2)

for I, p, s=2.
It is useful to note that as shown in Section 6, an F; type association scheme
is reducible to the generalized right angular association scheme by combining
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three pairs of associate classes, the 2nd and 3rd, the 4th and 5th, and the 6th and
7th, referring to the matrix representations of the p,’s of Design (I) in Section 3.
It follows from Lemmas 2.1 and 2.2 and the structure of an N,, type association
scheme for m =2 and 3 that all the cases of reductions are as follows:

(1) By combining 2nd and 4th associate classes, or combining 3rd and 4th
associate classes, it is reducible to an N, type association scheme.

(2) By combining 2nd and 3rd associate classes, it is reducible to an associa-
tion scheme with three associate classes if and only if [ =p.

(3) By combining 2nd, 3rd and 4th associate classes, or combining two pairs
of associate classes, the 1st and 2nd, and the 3rd and 4th, or similarly combining
the 1st and 3rd, and the 2nd and 4th, it is reducible to an N, type association
scheme.

(4) By combining 1st and 4th associate classes, and combining 2nd and 3rd
associate classes, it is reducible to an N, type association scheme if and only if
I=p=2.

Note that the above cases (1) and (3) are stated in Tharthare [57] by the form
of a generalized right angular design. The reduced association scheme in Case
(2) may correspond to the association scheme matching a 3-associate PBIB design
given by Nair [36] as follows:

Let v=p2s. Assume them to be arranged as a three-dimensional lattice of
points, p along x- and y-axes and s along z-axis. If the blocks are formed con-
sisting of all treatments represented by points lying in planes parallel to the xz
or yz coordinate planes, we get a PBIB design with three associate classes. Its
parameters are given by

v=p3?, k=ps, r=2, b=2p,
}‘1=2’ 2,2=1, ).3'-:0,

ny =s—1, n, =2s(p—1), nz =s(p—1)2,

§—=2 0 0
Ipdil=| 0  2s(p—1) 0 ;
0 0 s(p—1)2
0. s—1 0
Ip#ll =] s—1  s(p=2) s(p—1) ,
0 s(p—1)  s(p—1)(p-2)
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0 0 s—1
lpll=] O 2s 2s(p—2)
s—1 2s(p=2) s(p—2)2

The parameters of this association scheme coincide with those of the reduced
association schemes of Nos. 30, 33 and 34 in Table, after renaming the as-
sociates.

10.3. A rectangular lattice type association scheme with four associate
classes of v=s(s—1) treatments, which, though inherent in Nair’s definition [37]
as a simple rectangular lattice design, was explicitly introduced by Ishii and
Ogawa [20] as an association scheme as follows:

Suppose that there are v=s(s—1) treatments represented by the ordered
pairs of two integers out of the set (1,2,...,5). That is, the s(s—1) positions
excluding the principal diagonal of an s xs square are filled by different treat-
ments. Among these treatments, the association is defined as follows:

DEerFINITION: For a treatment in (i, j) cell, 1st associates of it are the treat-
ments in the ith row or in the jth column, 2nd associates are the treatments in the
ith column or in the jth row (excluding the treatment in (j, i) cell). The 3rd
associates are the treatments in the rows and columns excluding the i, jth rows
and columns, 4th associate is the treatment in the (j, i) cell. Each treatment is
the Oth associate of itself.

The parameters of this association scheme are given by

v=s(s—1), n, =2(s-2),

np = 2(3_2)a n3 = (8‘2)(5_3)9 ng = 1,

s—3 1 s—3 0
s—3 s—3 1
"plljn = H)
Sym. (s—3)(s—4) O
0
1 s—3 s=3 1
1 s=3 0
”P;zj” = ’
Sym. (s—3)(s—4) O
0
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2 2 2(s—4) 0
2 2(s—4) 0
I pdll =
Sym. (s—4)(s=5) 1
0
0 2(s—2) 0 0
0 0 0
”p:‘j” = 3
Sym. (s—2)(s=3) O
0

for s=4.

It follows from Lemmas 2.1 and 2.2 that all the cases of reductions are as
follows:

(1) By combining Ist and 2nd associate classes, it is reducible to an associa-
tion scheme of three associate classes.

(2) By combining 1st, 2nd and 3rd associate classes, it is reducible to an as-
sociation scheme of two associate classes.

(3) By combining 1st and 2nd associate classes, and combining 3rd and 4th

associate classes, it is reducible to an N, type association scheme if and only if
s=4. '

REMARK. The reduced association schemes in the above cases (1) and (2)
may not correspond to any of the known association schemes. Association
schemes of Cases (2) and (3) can be also derived from further reductions of the
reduced association scheme of Case (1). Incidentally, by renaming the associates,
the parameters of the reduced association schemes in Cases (1) and (2) are respec-
tively

v=s(s—1), n, =4(s—=2), n, =(6-2)(s=3), nz=1,

2(s=2)  2(s=3) 1
Ipiill =|2(s=3) (s=3)(s—4) 0],
1 0 0
8 4(s—4) 0
IpZll =| 4(s—4) (s—4H(s=5) 1|,
0 1 0
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4(s—2) 0 0
o3l =] O (5—=2)(s—=3) 0];
0 0 0

=s(s—1), ny=((-2)(s+1), n, =1,

s2—s—4 1

> lpEl =

5s2—5—2 0
”P},” = )

0

From the octahedron in the following figure, we get a design (cf. [10]) by
considering the faces as blocks and points as treatments, having the blocks,
1,2,3),(1,2,6), (1,3,5), (1, 5,6), (2,3,4), (2,4,6), (3,4,5) and (4, 5, 6).

Through the treatment-block incidence of this design, we obtain a PBIB design
with the following parameters:

Al=2’ 1.2:0,
n1=4, n2=1,

2 1 40
Ipd;l =[ NV ={ ]
10 00

This corresponds to a special case of the above case (2) when s=3.

10.4. As another familiar association, there is a T, type association scheme
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block (BB) design having respect to a PBB design in a combinatorial sense.

12. BB designs and PBB designs

Consider v treatments arranged in b blocks in a block design with incidence
matrix N =|n;;||, where n;; denotes the number of experimental units in the jth
block getting the ith treatment. If n;;=1 or 0, the design is called a binary
design ; we deal with only binary designs in Part III. The ith treatment is replicat-
ed r; times (i=1,2,...,v) and the jth block is of size k; (j=1,2,...,b). Let T;
be the total yield for the ith treatment and B; that for the jth block (i=1,2,..., v;
j=12,...,b). On writing T'=(T\,..., T,) and B'=(B,,..., B,) in matrix notation,
the normal equations (cf. [12; 31]) for estimating the vector of treatment effects
t can be written under the usual assumptions as

Q=Ci,
where # is the estimate of ¢,
Q = T—Ndiag {k7',..., k;'}B
and
(12.1) C = diag{r,,..., r,} — Ndiag {k7,..., kz 1 }N'.

The matrix C defined in (12.1) is well known as the C-matrix of the incomplete
block design and is very useful in the theory of incomplete block designs.

Since each row (or column) of C adds up to zero, the rank of C is at most
v—1, and (u"zl‘, u‘%,..., v“%) is the latent vector corresponding to the zero
root. If the rank of C is v— 1, the design is said to be connected (cf. Bose [6]).
Throughout Part III we shall deal with only connected designs.

DEerFINITION (cf. Rao [47]): A block design is said to be balanced if every
elementary contrast is estimated with the same variance.

Rao [47] has shown that a necessary and sufficient condition for a block
design to be balanced is that the C-matrix has v—1 equal latent roots other than
zero. In this case, since

for an orthogonal matrix
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of vm=<,§1> treatments (or a triangular type association scheme with m associate

classes). Suppose that there are v,,,=<’“:1) treatments ¢(a,, &y, ..., &,,) indexed by

the subsets of m integers («y, a5,..., ®,) out of the set of s integers (1, 2,..., s).
Among these treatments, the association is defined as follows:

DEeFINITION: Two treatments ¢(ay, d5,..., a,) and @By, B2s--., B.) are ith
associates if their indices (o, «,,..., «,,) and (B, Bs,..., B.,) have m—i integers in
common. Each treatment is the Oth associate of itself.

Since this association scheme is well-defined for a positive integer m such that
2<m<s/2, we can show that

(;;);é(‘;) for I<m

under this restriction. It follows therefore that T, T, for positive integers m
and [ such that m>1[=2.

11. Remarks

As mentioned in Sections 7, 8,9 and 10, we can discuss without difficult
the reductions of the number of associate classes by use of Lemmas 2.1 and 2.2
provided that the integral values of parameters p, in an association scheme are
explicitly known or the patterns of p%, are concretely known. Then, when there
are association schemes described in this part, the reducibilities of the number of
associate classes for PBIB designs based on the association schemes have only to
check the coincidence numbers A; of the PBIB designs from Lemmas 2.1 and 2.2.
For example, though we have F;2 F, as shown in Section 9, the PBIB design (I)
with the F5 type association scheme in Section 3 is not reducible to a PBIB design
with the F, type association scheme, since relations A7 =1, =15 and A5 =15 =214
do not hold.

Part III. Combinatorial properties of a balanced or partially
balanced block design

We dealt with incomplete block designs with the equi-replications and the
equal block sizes in Part I. From a practical point of view, it may not be possible
to design equi-size blocks accommodating the equi-replications of each treatment
in all the blocks. We shall, here, deal with the block designs with unequal block
sizes and/or different replications. Before considering a partially balanced block
(PBB) design generalized a PBIB design in a sense, we shall discuss a balanced
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L v—1
L= L s
vV 2E «,

(12.2) C=p<lv—%GU),

we can write as

where p=(n—>b)/(v—1) and n =.Zvjl r; =.Zb:1 k;.
i= ji=

Thus, a balanced block (BB) design is given by an incidence matrix N
satisfying

(12.3)  diag{ry, r3,..., ro} — N diag {k7!, k3',..., kz '}N' = p<1,,——11)— G,,) ,

where p =()_2: r;—b)/(v—1).
i=1

Note that a BIB design is a special case of BB designs.

Following Ishii and Ogawa [20], suppose that the association matrices A,
Aq,..., A, are defined as mentioned in Section 1. Furthermore, 4%, i=0, 1,...,m,
rank A¥ =a; are the mutually orthogonal idempotents of the association algebra
A.

DEerFINITION: A block design is said to be partially balanced with m associate
classes if the C =D,— ND; ! N’ matrix of the design has the latent roots 0, p,, ps,...,
p. With multiplicities 1, «,, a,,..., «, and the linear space spanned by the latent
vectors corresponding to a root p; is equal to the linear space spanned by the
column vectors of Af, i=1, 2,..., m (by a suitable change of order of p;), where
D,=diag{r, r,,..., r,} and Di!=diag {k71, k31,..., kz'} in (12.1).

In this case there exists an orthogonal matrix L such that

C=1L Pm. L,
0 .°pm} £
0
L=[L,:L,:--:L,: v‘%E,,,q]' ,

where L; are of order v x a; and each column of L; is the independent latent vectors
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corresponding to p;, i=1, 2,..., m,
LiL; = I,
and L;L} are the projection operators to the linear space spanned by L;. Then
L,L; = Af.
Hence
(12.4) C =p,LiLy+p,L,LY++-- +p,L,Li,
=p A} +p A5+ - +p AL

Thus, a partially balanced block (PBB) design with m associate classes is given by
an incidence matrix N satisfying

(12.5) C = diag{ry, ry,..., r,} —Ndiag {k7', k3',..., kg 1}N’
= p1Af +p A5+ + pudl .

Furthermore, from relation (1.7), (12.4) can be written as

(12.6) C = diag{r,, r,,..., r,} — Ndiag {k7', k31,..., kz L} N’

=agAo+a A+ +a, A

where

(12.7) ao = (2 ri=b)fv
and

(12.8) a; 20, i=1,2,...,m.

For, from a comparison of diagonal elements in both sides of (12.6) we have
(12.7). Furthermore, from a comparison of off-diagonal elements and af;=1
or 0, we have (12.8).

Explicitly,

pi=ao+a,z;+axzip+  +ayZims i=012..,m
with py =0, or
a; = p,zt 4+ p,zi2 4o pzim, i=01,.,m

where ||zH]|=Z ! for Z=|z;]|| in (1.6).
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For a PBIB design N with m associate classes we have from Lemma A
NN’ = rkA§+p, A5+ +p AL
and
I, =A§+A41+-+45,.
Then

C= rI,,—%NN’

=(r=P1)4%+... — Pm )\ 4
<r k>A1+ +<r k>Am.

Thus, a PBIB design is a special case of PBB designs.

Finally, though the incomplete block designs satisfying 1<r;<b and 1<
k;<v are generally considered, we will not deal with the three cases in which r;=
b, ;=1and k;=1foralli=1, 2,..., v; j=1, 2,..., b throughout Part III.

13. Properties of BB designs and PBB designs

From a structural point of view in a BB design or a PBB design we have the
followings:

THeOREM 13.1. A BB design with a constant block size is a BIB design.

Proor. In this case, for a BB design N = n;;|| we have from (12.3)

diag {ry, r3s..cs 1y} ——Ilc— NN’
_bkob( L),
v—1 v

Hence from comparisons of diagonal elements or off-diagonal elements in the
above both sides

re _bk=b/, 1 ._
ri—T_ﬁ 1 p ), 1—1,2,..., v,

and

1 & __ bk—b
_—k——lgln”n” - _U(U—l) ’
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for all i, j (i#j)=1, 2,..., v, which lead respectively to

_ b(v=Dk(k—1)

(13.1) ] ) i=l9 2""301

v(v—1)
and
b __ bk(k-1)
(13.2) lgln“njl —m,

for all i, j (i#j)=1, 2,...,v. Therefore, from Section 1 (13.1) and (13.2) imply
that a BB design N with a constant block size, k, is a BIB design. This result
was essentially derived in Ishii [19] and Rao [47].

THEOREM 13.2. A PBB design with a constant block size based on an
association scheme of m associate classes is a PBIB design based on the same
association scheme.

PROOF. As shown in Section 12, for a PBB design N =|n;;| in this case,
we have
1

(13.3) diag {rl, Fogeeey rv}_—k—NNl

= aoA0+a1Al+"'+amAm.

Hence from a property of the association matrices described in Section 1 we obtain
after a comparison of diagonal elements in (13.3)

%:ao foralli=1, 2,..., v,

ri—

which imply that the replication of each treatment is a constant. Furthermore,
from a comparison of off-diagonal elements in (13.3) we obtain

iww=—mm forall i,j(i%j)=1,2,.,0
provided the ith and jth treatments are pth associates (p=1,2,..., m). Setting
A,=—ka, shows that a PBB design N with a constant block size, k, based on an
association scheme of m associate classes is a PBIB design based on the same
association scheme having the coincidence numbers 4, (p=1,2,..., m).

As another property in a BB design, Bhaskararao [4] showed that an equi-
replicate BB design with b=v is a symmetrical BIB design. The proposition to
hold for a PBB design corresponding to Bhaskararao’s result does not hold. In
fact, there exists a PBB design with v=b=6, r=3, k;=2, 3 or 6 based on the F,
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type association scheme of v=2x 3 treatments which will be seen in Example
18.6.

14. Construction of BB designs
We begin by describing trivial methods of constructing a BB design.

THEOREM 14.1.* If N; are BB designs with a common treatment number
for i=1, 2,..., I, then juxtaposition of its designs

N =[N;: N,:---:N{]

is a BB design.

Proof is given by the fact that the C-matrix of N is equal to the sum of C-
matrices of N;, i=1, 2,..., . Simple examples are made when N; are BIB designs
with a common treatment number and different block sizes. Furthermore, in
this case cyclic solutions of BB designs N are obtainable through more than one
initial block (i.e., difference set). For example, juxtaposition [N,: N%] of a BIB
design N, with parameters v, b, r, k, A and v+# 2k, generated by some initial blocks
and its complement N*. For difference sets geherating BIB designs with the
parameters of practically useful range, we refer to Takeuchi [55], Sillitto [53],
Clatworthy and Lewyckyj [13] and Kageyama [25].

COROLLARY 14.2. When N is a BB design,
[N:1,] and [N:E,«,]
are BB designs.

COROLLARY 14.3. When N and N, are BB designs in N=[N,: N,], N, is
a BB design provided N, is connected.

THEOREM 14.4 (cf. [20]). Suppose that there are | PBB designs N, (t=
1,2,..., ]) based on the same association scheme of m associate classes, whose
C-matrices are given as

Cy = p{V A  +pSV A+ +piV AL,

Cy = p\P A  +pP A5+ +p D Af,,

..........................................

*) After writing this paper we came to know that Theorem 14.1 was shown in a different
expression by A. Hedayat and W.T. Federer (Pairwise and variance balanced incomplete
block designs. To appear in Ann. Inst. Statist. Math.).
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Cr=p P AT +pP A+ +piP A}
If
(14.1) p=pPV+pP+..+p¥  for alli=1,2,...,m

then juxtaposition of its PBB designs N=[N,: N,:---: N;] is a BB design.

Proofis similar to that of Theorem 14.1 and hence omitted here. An example
of this theorem is shown in Ishii and Ogawa [20] by use of PBB designs based
on an N, type association scheme.

COROLLARY 14.5. When N, in Theorem 14.4 are PBIB designs with replica-
tions r®, block sizes k' and coincidence numbers A for t=1,2,...,1; i=1,
2,..., m, condition (14.1) can be replaced by a condition such that

yisy 2(2) D
ottt o

(14.2) = constant

foralli=1,2,..,m

Proor. First, we shall show that condition (14.1) is equivalent to

[1] 4 P2 pf”

[
k(l) L 4o P

(14.3) kzl) = constant (= «, say)
for all i=1, 2,..., m, where p! are latent roots of N,N; for PBIB designs N,
fort=1,2,...,1;i=1,2,..., m

From Lemma A in Section 1, we have
N,N} — r(t)k(t)Ag [r]Aﬁ +.. +p[r]A#

Then the C-matrices of N, are

C,=r®I,— — _ N,N;

k(')

= £ (ro—£00) a1,

for t=1, 2,..., 1. Hence, the above implies that (14.1) is equivalent to (14.3).
Next, we shall show that condition (14.2) is equivalent to condition (14.3).
From Lemma A we have

m
P =3 M0z, t=1,2., 050 =0, 1., m.

As a matrix notation, we obtain
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sz] P[1'] PEnt] _ 0 ;L(lr) ;{'(nr) 7
k(2 g 2 Tl kKO F@ 0 TR ’

where Z =||z;;|| is given in (1.6). Then we can have

[2] ! L] ! [7]
P P Pm
(14.4) {:tgl k?t) s tzlﬁ(lfj— seees tgl k(t):l
3 ) 1 A(lt) | }»f,.t)
N |:t§1 k> :;1 k@ > zg'l k® J z

Hence it clearly follows from (1.4) that condition (14.2) implies condition (14.3).
Conversely, assume that condition (14.3) holds. Then, letting f= ZI r® [k
t=1

and xi=zl 20 k™, we have from (14.4)

t=1
211X F 20Xt 2y Xy = 00— B,
221Xy + 222Xy F  F ZopXy = 2= B,
Zy1 X1t ZpmaXot ot Zyy X = CZ—B.
In this case, it is sufficient to show that x, =x, =--- =x,, and hence (14.2) holds.

From (1.4) we now obtain
(212—222) (X2 —X1)+(213—223)(X3—X)+ - + (21— Zom)(Xw—X1) =0,
(212—232)(X2—X1)+(213—233)(X3—X )+ +(Z 1= Z3m)(Xm—X1) =0,
(14.5) e
(Z12=Zm2)(X2— X))+ (213 = Zm3)(X3—X )+ - +(Z 1m— Zm) X — X1) = O.

Since the matrix Z is nonsingular as seen in Section 1, it follows that the determi-
nant

21272225 Z137Z235+vs Zim— Z2m
2127 %325 213723355 Zim— Z3m
2127 Zm2s 2137 Zm3sevs Z1m— Zmm

Therefore from (14.5) we obtain
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xl =x2 = s =xm'

Thus, we have the required result.
Note that in Corollary 14.5 condition (14.2) can be replaced by condition
(14.3).

COROLLARY 14.6. Suppose that there exists an association scheme of m
associate classes with parameters v, n;, p%,, whose association matrices are
Ay, Aqs..., and A,,. If

L Pl' .
Pii 4 Fii — constant for all / = 1, 2,..., m,
n; n;
then [A;: A;] is a BB design.

For, the association matrices are symmetrical PBIB designs with the same
association scheme and hence from (1.1) we obtain the result.

RemMARK. Considering a mixed type of a linear combination and juxtaposi-
tion of association matrices, Kageyama [29] has constructed a series of BIB
designs under some restrictions. The method used in them may lead to the various
BB designs under some restrictions, but they are omitted here.

THEOREM 14.7. If b=(v+1)/2, then the following matrix is a BB design
with parameters v'=v+2, b'=b+v+1,r;=v+1 or b+1, k=2 or v+1 (i=
1,2,...,v;j=1,2,...,b):

For, we have the C-matrix of N as

by 1 _L b b
v +1 T2 2 To+1° T o+1
1 v 1 1 1
-2 2tz T T
€=l __» 1
v+1° 2°
X 1 b
) <b+T>I" v+1 G,
__»b _ 1
v+1° 2°
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THEOREM 14.8. If there are a BIB design N, with parameters v, b, r, k, A
and a BB design N, with parameters v, b', r;, k;, n= Z r= Z k; for positive

integers | and m such that

m _v(w=1)(r—2)

I (n=b)(k+1)’

then there exists a BB design N with parameters v*=v+1, b*=I1b+mb’, rf =
Ib or Ir+mr;, k% =k+1 or k;:

! times m times

Proor. The C-matrix of N is given by

b1t Ir _Ir
T TEFT0 TR
__Ir
C= F+1° ,
I’Iv k+1 Nl ’1+m(D,2“N2D;21N’2)
__Ir
k+1°

where D,, =diag{ry, ry,..., r,} and Dy} =diag {k7!, k3',..., k3!}. Then N is a
BB design, if and only if

_Ir _ 1A mp
(14.6) k+1~  k+1 v
and

b _ Ir 1

where p=(n—">b")/(v—1).
Since ! and m should be chosen so that both the above equations are satisfied
simultaneously, we have

ml = v(w—1)r—A))(n—b")k+1)

which is actually derived from (14.6), but it satisfies (14.7). Hence the theorem
follows.
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Note that when N, is a BIB design, Theorem 14.8 leads to the result of the
binary type of Theorem 2.1 in Kulshreshtha, Dey and Saha [33]. Whenl=m=
we have

COROLLARY 14.9. If there are a BIB design N, with parameters v, b, 1, k,
A and a BB design N, with parameters v, b', r;, k;, n= Z r= Z‘, k; such that

(14.8) n—b" = ow—1)r—)/(k+1),

then the following matrix is a BB design with parameters v*=v+1, b*=b+b’,
=borr+r, k¥ =k; or k+1:

ExampLE 14.1. Consider a BIB design with parameters v=35, b=10, r=4,
k=2, A=1 of the unreduced type and the following BB design with v=5, b’ =12
and n=32:

1 2345678 9101112]r,
111110011000 1]|7
2010001 1001 11 1] 7
3]0 1001 1111000 6,c=5(15—%65>
400101 11101006
5/0001 111100106
kil2 222444422222

Then these two designs satisfy condition (14.8) and hence Corollary 14.9 yields a
BB design with parameters v=6, b=22, r;=10 or 11, k;=2,3 or 4 (i=1,2,..., 6;
j=1,2,...,22).

COROLLARY 14 10. If there exists a BB design N with parameters v, b, r;,
k;and n= Z r= Z k; such that w(v—1)=2(n—Db), then the following matrix

is a BB des:gn wzth parameters v'=v+1, b'=v+b, ro=v, r;+1, kg=2, k; for
i=1,2,.,v;j=1,2,..,b:
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Note that when N is a BIB design, Corollary 14.10 leads to the result of
John [21].

ExAMPLE 14.2. Consider a BB design with parameters v=>5, b=6 and
n=16 satisfying v(v— 1) =2(n—b), which is constructed by the first six columns
(blocks) in the BB design of Example 14.1, i.e.,

1 23 45 6|r
11 11100]|4
2010001 1] 3
3lo 1001 1] 3, c=%(15—ias)
400101 1|3
slooo0 1 1 1|3
k|2 222 4 4|16

Then Corollary 14.10 yields a BB design with parameters v=6, b=11, r;=4 or
5,kj=2o0r4(i=1,2,..,6;j=1,2,..,11).

Note that Theorem 14.8, Corollaries 14.9 and 14.10 imply the method of
constructing a BB design with v+ 1 treatments from a BB design with v treatments.
If we have I, or E, ., as a BIB design N, in Theorem 14.8, then it seems that a
BB design with v treatments can be extended to a BB design with v+ 1 treatments
when and only when Theorem 14.8, Corollaries 14.9 or 14.10 hold.

Pairwise balanced designs of index A, introduced by Bose and Shrikhande
[11] for constructing counterexamples to Euler’s conjecture, may lead to BB
designs, which are constructed by the juxtaposition of BIB designs with a common
treatment number and different block sizes, and which are obtained by omitting
some treatments in BIB designs. However, the BB designs so obtained may be
included in Theorem 14.1.

Note that the complement of a BB design is generally not a BB design and
that Corollary 14.10 also implies a method of constructing a BIB design with
v"=v+1 and k'=2 of the unreduced type from a BIB design with »*=v and
k*=2 of the unreduced type. Incidentally, from Theorems 13.1 and 14.8 the
following BIB design is constructed. That is, if there are two BIB designs,
respectively, with parameters v, b, r, k, A and with parameters v, b’, ', k'=
k+1, 2, then for positive integers ! and m such that (r—A2A)/A’=m/l, there
exists a BIB design with parameters v*=v+1, b*=Ib+mb’, r*=Ib, k*=k+1
and A*=lIr.

Finally, we will review the construction of a BB design from a structural point
of view. As stated in Section 12, a block design is balanced, if and only if C is
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of the form
C= (x_y)Iv+yGua

where x and y are two constants. Then from (12.3) a BB design N =||n;;|| with
parameters v, b, r; and k; is given if

(14.9) r,-—(%+ ']1;2 e+ ’l?b ) = constant,
1 2 b

for all i=1, 2,..., v and

ninjy RioMjz , ..., MiMjp _
(14.10) x, + i, +-+ %, constant,
for all i, j (i#j)=1, 2,...,v. Empirically, if condition (14.10) is satisfied, then
condition (14.9) is often satisfied automatically.
Consider an equireplicate BB design N with [ kinds of block sizes. By
permuting the blocks, we can write N as

N =[N1:N2:"': N’],

where the blocks of N, are of size k, (p=1,2,..., ). Denote by A{?’ ‘the number
of blocks containing the ith and jth treatments together in N, and A{y’ =r{®’ for
p=1,2,...,1. Then from (14.9) and (14.10) there exists an equireplicate BB
design N, if and only if

pIes 2

+ .-+ —2 = constant,

i
+ x,

and
r=r{ 42 oD

for all i, j=1, 2,...,v. Furthermore, in a similar way, there exists a BB design
N with [ kinds of block sizes, if and only if

CSY AT U e __1_> (z)( _L>
r (1 kl)+r, (1 x; + 4P 1 %,

= constant,

for all i=1, 2,..., v, and

AP A0
—+ =4 +...4 =L = constant
kl kz kl
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for all i, j (i#j)=1, 2,...,v. These necessary and sufficient conditions are useful
when we want to construct BB designs by trial and error.

15. Construction of PBB designs

Similarly to Section 14, we can consider the construction of PBB designs.

THEOREM 15.1. If there are | PBB design N; with the same association
scheme for i=1, 2,..., I, then juxtaposition of its designs

N=[N1:N2:"’: Nl]

is a PBB design with the same association scheme as N,.

Proof'is given by (12.5) and the fact that the C-matrix of N is equal to the sum
of C-matrices of N;, i=1,2,...,1. Simple examples are given when N; (i=
1,2,..., 1) are PBIB designs, based on the same association scheme, with a common
treatment number and different block sizes. Furthermore, in this case cyclic
solutions of PBB designs N are obtainable through more than one initial block
(i.e., difference set). For example, juxtaposition [N,: N¥] of a PBIB design N,
with parameters v, b, r, k, A; and v# 2k, generated by some initial blocks and
its complement N%, since an association scheme of the complementary PBIB
design is the same as that of the original PBIB design.

Note that symmetrical unequal-block arrangements with two unequal block
sizes, introduced by Kishen [32] and their constructions and analysis have been
thoroughly investigated by Raghavarao [44], are essentially included in the type
of Theorem 15.1. Further, note [44] that no symmetrical unequal block arrange-
ment with two unequal block sizes is balanced.

CoROLLARY 15.2. If there exists an association scheme of m associate
classes with association matrices Ay, Ay, ..., A, then

[4;: Aj]
is a PBB design with the same association scheme.
Proof is included in that of Corollary 14.6.

ReEMARK. Considering a mixed type of a linear combination and juxtaposi-
tion of association matrices, Kageyama [29] gave a remark on the construction
of PBIB designs under some restrictions. The approach used in them may lead
to some PBB designs under conditions, but they are omitted here.

CoROLLARY 15.3. If there exists a PBB design N based on an association
scheme of m associate classes, then
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[N:1I,] and [N:E,«{]

are PBB designs based on the same association scheme.
For, since the C-matrix of E,, ; is

L= EpxiEyx, = Af+ A3+ + 45,
from Theorem 15.1 we have the required result.

Note that if N is a disconnected PBB design, then from Corollary 15.3 we
can have a connected PBB design [N: E, ;] and hence we may treat disconnected

PBB designs.

COROLLARY 15.4. When N and N, are PBB designs with the same associa-
tion scheme in N=[N,: N,], N, is a PBB design with the same association
scheme provided N, is connected.

When there are two PBB designs N; with D, =diag {r{’, r¥,..., ¥/} and
Dy =diag {k, kP,..., k§D} for i=1, 2, the C-matrix of N=N,®N, is as
follows:

C=D,» ® D,&y—(N;y ® N,)(Dyry ® Dy2y) (N @ Ny)'
= D,t» ® D,2y— N1 Dy{ub Ny ® N, Dy N
=D, ® Dyiy = (Dypy = Cy) @ (Dyir — Cy)
(15.1) =D.n®C,+C; ® D,»»—C; ® C,,
where C; are C-matrices of N;, i=1, 2. Then we have

THEOREM 15.5. If there are equireplicate PBB designs N; (i=1,2) with
parameters vV, b®, r® kW (j=1,2,..., bD) having association schemes of s
and t associate classes, respectively, then

N=N,®N, (or N;®N,)
is an equireplicate PBB design with at most st+ s+t associate classes.

Proor. Denote the association matrices and the corresponding mutually
orthogonal idempotents of association schemes of s and ¢ associate classes, re-
spectively, by By, By,..., B;; B§, B%,..., B and A,, A,..., A;; A§, A%,..., A%
Since we can now write C-matrices of N; (i=1, 2) as

Cy = p{V'Bi+p§VBs+-- +p{VBE,

C, = pP A +pP A+ +piP 4],
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from (15.1) the C-matrix of N is
C=r"(By+Bi+-+B)) ® (p1V A} +- +pP 4])
+r@(p{VBY + - +pVB]) @ (Af+ AT+ + 4D

—(p{VBi+ - +pVBY) ® (p{P Al +-- +piP A}

= rY pP(BE @ A% +rD Y p{V(B} ® 4B)
Jj=1 i=1

Mn

-+

i

t
] j;l(r‘”pﬁ-”+r(2’p5”—p‘i“p‘,~2’)(3? ® A‘}) .

Furthermore, it is easily shown that the association matrices of design N are given
by B;®A; for i=0, 1,...,s; j=0, 1,..., t and that

(B?l ®A.‘;‘)(B?2 ® Aiz) = Bfl ® A.’;l’ lfll = iZ and jl =j2,
= 0,(1) 2 x (1) p(2)5 otherwise .

Therefore, definition (12.5) implies the result. The case of N,® N, is also shown
similarly.

COROLLARY 15.6. If there exists an equireplicate PBB design N based on
an association scheme with m associate classes of v treatments, then for a positive
integer 121,

E,.,,® N (or N® E, )

is an equireplicate PBB design with at most m? +2m associate classes.

Pairwise balanced designs introduced by Bose and Shrikhande may lead to
PBB designs. For example, if there exists a PBIB design N with parameters
v=mn, b, r, k, A, =0 and A,=1, based on an N, type association scheme of
v=mn treatments, then, by adding m new sets corresponding to the groups of the
association scheme, we obtain a pairwise balanced design of index unity provided
k#n, ie.,

[N:1,,®E,«]

which is a special case of Theorem 15.1 and hence this design is a PBB design.
It is useful to note that the complement of a PBB design is generally not a
PBB design, though an association scheme remains invariant by the complement.
However, the complement of a PBB design may become a PBB design. For ex-
ample, the PBB design of Example 17.1 which will be given in Section 17 has this

property.
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Some examples of a PBB design are seen in [18; 19; 20]. In particular, Ishii
[18] has given a numerical example with an analysis of a PBB design based on a
rectangular lattice type association scheme with association matrices Ay, A;, 45,
Ajand A,. That is the case in which s =4 in Section 10, and hence v=12, whose
incidence matrix is given by

1 2 3 4 5 6 7 8 91011 | r;
1 1 11000 O0O0OOO0OO 3
21 0 01 1 00 0 O0O0TO| 3
3 1 000 01 1 1O0O0O0]| 4
4,11 10 0 0 O0OOOTO] 3
5 1 00 00 0T1O0OT1T1TO0, 4
6/ 1 0 01 1 00 0O0O0Of 3
7M1 0 0 1 10000 0 O 3°
8/ 1 0 0000 011 01 4
91 1 1 1 0 0 0 0 00O 0] 3
10/ 1 000 01 O0O0O0T1T1]| 4
11 1 001 1 00O0O0O0TO0O 3
12 1110 000 0 O0O0O] 3
kj|12 4 4 4 4 2 2 2 2 2 2|40
_ 29 _ 1 _ 7
C—ﬁAo "W(Al"'Az) —17(143"'144)
= 345 4345+ A5 +345,
where
1 1
A3=ﬁG12, A{=T(A0—A3+A4),

A =—%—(2A0—A1+A2—2A4),

A = (24— A — Ay +245+24,),

—
N

Aj

—zl;‘ QAo+ A, — A, —24,).

As other simple examples we present
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ExampLE 15.1. A PBB design based on an N, type association scheme of
v=5,5,53 treatments defined in Section 7.

AO = Itn Al s;sz ® (ng s3) A2=Is1 ® (Gsz_Isz) ® Gs; ’

A3 = (Gsl_Isl) ® G5183 ’

ar=-1G, A= (s, Dot 4,+4)- 43},

N
oW
(=]
S
|
—
[N
o
I
—
—

Ay = Sa=l 1 40
Consider a design whose incidence matrix N is given by

N= [I.n ® Eszsgxl: Euxl] .

Then
C=2I,,—Ndiag{ Lo J—}N’
$283 5253 v
s T
s, times

=< s1+1> o——“*-—sl;_l (A1+A2)—%A3

A} +2(A45 + 4%) .
Thus, the design N is an equireplicate PBB design with unequal block sizes.

ExampPLE 15.2. A PBB design based on an F, type association scheme of
v =0,0,0; treatments provided v; =2, defined in Section 9.

Aooo =1,y A1 =1,,,,®(G,,—1,,),
Ao1o=1,®(G,,-1,,)®1,,,

Ao =1, ® (G,,~-1,,)® (G,,—1,,),
Ajoo =(Gy,—1,) ®1,,,,,

Aoy =G, —-1,)®1,,®(G,,—1,,),

AllO = (Gv|_lul) ® (sz—lv;) ® Iu; s
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Alll = (le_lvt) ® (Guz_Ivz) ® (Gug—lvg) ’

1
Afoo = TGv s

Abor = %{(Us“1)(A000+A010+A100+A1 10)—4oo1—4o1)
_AIOI_AIII}’

Af10 = %{(Uz—l)(Aooo+A001+A1oo+A101) Aoso— Aot
_AIIO_A111}9

Ay =~ {(02 =13~ )(Aggo+A100) — (2= D) (Aogs +4101)
—(3=1)(Ao1o+A110)+ 4011+ 4111},

Aioo = —— {(,= 1)(Aooo+ o1+ Aor0+ o1 ) = 4100 = 4101
—Allo_Alll}’

Aoy = {0, = )3 = D(Aogo+ Ao10)— (v, = 1) (Aoos + o1 1)
—(3=1)(Ay90+A4110)+ 4101+ 4111}

1o =~ {0, = (@2~ D(Agoo+ 4o01) — (0= 1) (Ag10+ o1 1)
— (0= 1D(4y00+4101) + 4110+t 4111}

Afyy = {0, = D02 = 103~ Dooo— (v, = (02~ D)oo,

—(v—D)(v3—1DAg10+ (@ —1)Ag 1 — (2= 1)(v3—1)A4100
+(Wy—DAyoy + (03— 1) A0~ 4111} -
Consider a design whose incidence matrix N is given by

N= [Im ® Eu;v;,Xl: EU1X1 ® Ivzv;,] .

_ _ . 1 1 1 11 A
C=2I, Ndlag{vzv3 s o T g }N
s -

v, times v,03 times
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3 1 1 1
= (5= 5,0y ) A000= 57 (oo +oso + Aoss) =3 Asoo.

From (12.7) we have
(El"i“'b)/v=(3/2—1/vzl’3)
which leads to v, =2. In this case

C=Adbo,+Ab 10+ 4511+ 4500 +2(Ai o1+ 4510+ 45,1

Thus, the design N is an equireplicate PBB design with unequal block sizes provid-
ed v, =2.

ExAMPLE 15.3. A PBB design with parameters v=35, b=6, r=3, k;=2 or §
based on the cyclic type association scheme with two associate classes of five
treatments, whose incidence matrix is given by

1 23 45 6] r
1/t 100103
210100 1| 3
3/1 101 00| 3
410101 0] 3
510010 1|3
ki|5 2222 2|15

For this cyclic type association we have, for example,

01 0 01 00110

1 01 0O 00 011
Ady=1I5, A;=|0 1 0 1 0|, 4,=[1 00 0 1],

001 01 1 1000

1 0010 01100
Ay = 4 (Ao+4,+45),

§ o 2 _1_<_1___1_> __1_(__1_ _1_)
1 5 A0+ 2 \/g‘ 5 Al 2 \/’5—+ 5 AZ:

8- 2 __1_<_l_ _1_> _1_(_1___1_>
=5 oo \Frts) itz (F—5)4

Y
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Then
=9 41 T
C"S—A" 5‘41 10A2
-(73) e (5) .

Examples of PBB designs based on association schemes of the other types
are easily given by Corollary 15.3 provided there are PBIB designs based on the
association schemes of the other types. Furthermore, since we may consider a
BB design as a PBB design with one associate class, if there exists a BB design
with v treatments, then the BB design may be considered as a trivial example of a
PBB design based on a certain association scheme of v treatments.

Finally, we will review the construction of a PBB design from a structural
point of view. As indicated in Sections 1 and 12, a PBB design with m associate
classes, whose association matrices are A4y, 4,..., 4,,, is given by an incidence
matrix N =| n;;|| such that

C = diag{ry,..., r,} —Ndiag {k7',..., ky '} N’
= agAo+a A+ +a,A,,
(15.2) ag+ang+--+aun, =0,
ay = (igl r;—b)/v, and
a; =0, i=1,2,..,m.

As an element-wise representation, we have that

15.3 SLCTRNI BRSNS (1] S
(15.3) 2 i .
forall i=1, 2,..., v, and

WIS MpaNqz ..., MebMap _ _
(15.4) kl + k2 + + kb a;

for all p, q (p#q)=1, 2,..., v, provided the pth and gth treatments are ith as-
sociates. Conditions (15.3) and (15.4) with (15.2) are very useful when we want
to construct PBB designs by trial and error.

16. p-resolvability of BB designs and PBB designs
It may be known that the resolvable solutions of a BIB design or a PBIB
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design are useful to the analysis of incomplete block designs and to constructions
of other combinatorial arrangements. In a similar sense, it is conceivable that if
the concept similar to the resolvability of a BIB design introduced by Bose [5]
is defined in an incomplete block design with unequal block sizes, then such a
resolvable solution generating the block design may be useful. In this section we
shall consider the only combinatorial aspects of incomplete block designs with the
concept of resolvability.

DEFINITION: A block design is called (i, Us,..., #,)-resolvable if the blocks
can be separated into ¢ (=2) sets of m; (=1) blocks such that the set consisting of
m; blocks contains every treatment exactly y; times (i=1, 2,..., t).

For a (uy, 4,,..., u,)-resolvable block design, we necessarily have

b=m;+my+---+m,
P=pyt iyt

and hence the block design is equireplicate. When u, =pu,=--- =y, (=, say),
it is called p-resolvable for u=1 and hence r=yut which is a necessary condition
for the existence of a u-resolvable incomplete block design. In this case, if the
block design has equal block sizes, then it corresponds to the definition of u-
resolvability of a BIB design introduced by Shrikhande and Raghavarao [S1].
A 1-resolvable block design may be simply called resolvable.

First, we will treat the resolvability of a BB design. Some examples are given
as follows.

ExAaMPLE 16.1. A 3-resolvable BB design with parameters v=S5, b=15,
r=9, k;=2,3 or 4, p=3 and m; =m,=m3=35, whose incidence matrix is given
by

1 23 45 6 7 8 9101112131415 r;
1{0 0111110101 1 100 9
2111000011171 1 100]| 9
3(r 110 0|1 1.010j0 01 11| 9,
4111 01 0f1 1 1 001 1 O 1 O} 9
s5{1t 10 0 1y1 1 00 1|1 1 0O 1| 9
kjl4 4 3 2 2 4 4 2 3 2 4 4 3 2 245
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ExampPLE 16.2 (cf. [20]). A (4,2, 2)-resolvable BB design with parameters
v=6,b=18,r=8,k;=2 or 4, u, =4, u,=p;=2 and m;=m,=m;=6, whose
incidence matrix is given by

1 23 45 6 7 8 9101112 13 14 1516 17 18 | r;
1o 011111 100O0O0O(1 1 0O0O0OO| 8
2,1 100111 01 0O0O0/0O0T1 100 8
3(1r1711100/(]0T11O0O0O0|0O0O00O0OTI 1| 8
41111 00/00O0T110{101O0UO0TO0| 8°
511001 100 01 0101 0O0T1O0]| 8
6/{0 01 11 1/]000O01T1/000T1O0 1| 8
k;j14 4 4 4 4 4 2 2 2222 22222 2|48

C= 6(16—% G,;).

Combining the 2nd and 3rd sets leads to a 4-resolvable BB design with m, =6
and m,=12.
Concerning the construction of these block designs, we have

THEOREM 16.1. When there are two resolvable BIB designs N; (i=1,2)
with a common treatment number and different block sizes, the matrix

[N1: N,]
is a resolvable BB design.

THEOREM 16.2. When there exists a resolvable BIB design N, the matrices
[N:1I,] and [N:E,.] for 1=1

are resolvable BB designs.

Note that a slight modification of these Theorems leads to pu-resolvable BB
designs for p=>1, and that even if BIB designs in Theorems 16.1 and 16.2 are
replaced by BB designs, the two Theorems remain valid. Since there are practi-
cally p-resolvable solutions of many BIB designs (cf. [24; 26; 51]), we can obtain
many u-resolvable BB designs for u=1. Furthermore, Theorem 14.1 leads to
(K15 Ua-.., Yy)-resolvable BB designs.

Next, we will treat the resolvability of PBB designs. Some examples are given
as follows.

ExamPLE 16.3. A PBB design in Example 15.1 is a resolvable design with
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parameters v=s,5,53, b=s,+1, r=2, k;=5,53 0r 5,5,83, p=1, my =s, and m, =1.

ExAaMPLE 16.4. A PBB design in Example 15.2 is a resolvable design with
parameters v=2v,0;, b=v,0;+2, r=2, k;=v,0; or 2, u=1,m;=2 and m,=
VyU3.

Further examples will be seen in the subsequent sections. Corresponding to
Theorems 16.1, 16.2 and the remarks pointed out there, methods of constructing
(uy, Uz,.-., w)-resolvable PBB designs are given after a slight modification of
Theorems 16.1 and 16.2 by referring to Section 15.

It should be noted that as mentioned in Section 15, if there exists a resolvable
PBIB design with parameters v=mn, b, r, k, 2, =0 and A, =1, based on an N,
type association scheme, then, by adding m new sets corresponding to the groups
of the association scheme, we can get a resolvable PBB design provided k#n.
This idea may be useful to constructions of these u-resolvable PBB designs.

17. Reductions for the number of associate classes for PBB designs

Discussions concerning the reductions of the number of associate classes for
a PBIB design based on a certain association scheme have appeared in Parts I
and II. In this section, we shall deal with the reductions of the number of as-
sociate classes for a PBB design based on an association scheme.

In a PBB design N with m associate classes, where

C=D,—ND;'N'
= p1Ai+prdi+-+pudn,
if some p;’s coincide, then C may be written as, for example,
(17.1) C=p, A+ +p(Af+ A4}, +---+4}).

In this case, the PBB design may be considered as m, associate classes for a posi-
tive integer m, such that [I<m, <m. However, (17.1) does not express completely
a criterion to determine which associate classes should be combined. An answer
about those criteria will be given.

As already shown in Section 12, when there exists a PBB design N with m
associate classes with association matrices Ay, 44,..., A,,, We can write the C-
matrix of N as

C=D,—ND{'N'’
(17.2) = p, A5 +pr A5+ + pp AL

(17.3) =a0Ao+a1A1+-~-+amAm,
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where ao—(Z ri—b)/v, ;=0 (i=1,2,..., m) and ag+an,+--+a,n,=0. In

this case, for the reductions of associate classes we have

CRITERION: Combine first those associate classes such that the correspond-
ing coefficients a; in (17.3) have the same value. The subsequent procedures are
all the same as those for a PBIB design with m associate classes. Thus, these
a; and coincidence numbers J; of a PBIB design play the almost same role for
reductions. Finally, combine the mutually orthogonal idempotents A¥ suitably.

ReMARK. (i) When the a;’s are all distinct, even if an association scheme
itself is reducible, the PBB design based on the association scheme is not
reducible. (ii) In (17.2), the suffices j of p; in the equality relations among
coefficients p; may mean the numbers j of combining which mutually orthogonal
idempotents A% corresponding to combinations of associate classes. However,
the suffices in equality relations among coefficients p; in (17.2) do not always
coincide with those of a; in (17.3).

Some examples explain this criterion for reductions.

ExamPLE 17.1 (cf. [19]). Consider a resolvable PBB design with parameters
v=6, b=5, r=2, k;=2 or 3, based on the F, type association scheme of v =2x3
treatments, whose incidence matrix is given by

1 23 4 5| r
1{1 01002
21001 0] 2
3/1 000 1] 2
40 1 1.0 0] 2
51010102
6/0 100 1|2
k; |33 22 2|12

Ago =1Is, Ao1 =1, ®(G3—13), Ao =(G,—1)®I;,
Ay =(G,—1) ®(G3;—13),

1
Abo = ——(4oo+ Ao 1+ 410+ 4,4),

(=)

1
Af, = T(ZAoo—Am +24,0—411) >
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#
Afo

1
—6—(A00+A01—A10—A“),

1
6

Aty (2400—Ag1 —24,0+A4,4) .

Then
C = A}, +4%,+24%,

Since a, = —%;éaz = ——;—, this design is not reducible, though p;, =p,=1.

ExAMPLE 17.2. Consider a resolvable PBB design with parameters v=6,
b=3,r=2,k;=3 or 6, based on the F, type association scheme of v=2x3
treatments, whose incidence matrix is given by

1 2 3|rn
1|1 0 1] 2
211 0 1| 2
311 0 1} 2
410 1 1| 2
5/0 1 1| 2
6(0 1 1] 2
k; |3 3 6|12
Then
(17.4) C =24, + 45, +24%,
3 1 1 1
=3 Aoo= 5 Aor= - Aio= = Air.
Since a, =a;= ———é—, by combining 2nd and 3rd associate classes, the PBB design

based on the F, type association scheme is reducible to a PBB design based on an
N, type association scheme by referring to Section 9. Furthermore, p; =p;=2
implies a combination A}, + A%, of mutually orthogonal idempotents. That is,
for an N, type association scheme of v=2 x 3 treatments with association matri-
ces By, B, and B,,



606 Sanpei Kaceyama
By =15, B, =1,Q(G3—1I3),
B, =(G,—1) ® G,

Gor Bi=—¢(Bo+B,—By),

Then letting By =A¢o, By =A4y, and B, =A,,+ A;, we have
B = A§o, B} = A4i,, B} =4}, +4i,.

In this case (17.4) becomes

C = B} +2B}
3 1 1
=2 Bommy Bimg B

which imply that the original PBB design is reducible to a PBB design based on
an N, type association scheme. '

REMARK. For a resolvable PBB design based on the F, type association
scheme of v=2 x 3 treatments whose incidence matrix is given by

1 2 3 4 r;
1{1 0 0 1| 2
210 1 0 1| 2
4 1 2 1
310 0 1 1 2 C=TA00"7A01"TA10_7A11
411 0 0 1| 2°

= A}, +245,+24%,,

510 1 0 1| 2 or Tl T
6/0 0 1 1] 2
k; |2 2 2 612

since it follows that a, =a;= -1 and p,=p;=2, we can make an argument

6
similar to Example 17.2.

ExampLE 17.3. Similarly to Example 15.1, consider a PBB design based on
the N; type association scheme of v=s,s,s; treatments whose incidence matrix
is given by
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[Isn ® Eszsgxl: val] .
Then
C = A5 +245+244

= S1+1 _Sl+l _ 1
( 518,53 4o 515,83 (d; +42) 518,53 As -

Let s, =u, and s,53=u,. From a,=a,=—(s;+1)/v and an argument in Section
7, by combining 1st and 2nd associate classes the PBB design based on the N
type association scheme is reducible to a PBB design based on an N, type associa-
tion scheme of v=s,5,5; =u,u, treatments with association matrices By, B, and
B,. Furthermore, p,=p;=2 implies a combination A%+ A% of mutually
orthogonal idempotents. That is, the correspondence is as follows:

By,=4,, B, =1, Q(G,,—1,,)=A,+A4,, B,=A4;,

By = A5, Bi = (Iul—;‘I—G,,,)@uLZG,,Z = A% and

BS =1, ® (L= Gun) = A3+ 45,

ExampLE 17.4. Similarly to Example 15.2, consider a PBB design based on
the F; type association scheme of v=2v,v; treatments whose incidence matrix
is given by

[IZ ® EUzvgxl: E2><1 ® 10203] .
Then
C=Afo1+Ab10+ 4811+ 4500 +2(A5 01+ A% 10+ 45,11)

31 1 !
= <-2—— 9,05 ) Aooo—m (doo1+4os0+4o11)——4100-

Let u=v,v;. From an argument in Section 6 and a, =a,=a;=—1/v,0;, as=
ag=a,;=0, by combining 1st, 2nd and 3rd associate classes, and combining 5th,
6th and 7th associate classes, the PBB design based on the F; type association
scheme is reducible to a PBB design based on an F, type association scheme of
v=2u treatments. Furthermore, p, =p,=p;=1 and ps=ps=p, =2 imply com-
binations A8y, + 4§10+ Af,1, and A%, +4%,0+ 4%, of mutually orthogonal
idempotents.

Finally, note that from sub-Section 10.3 and a PBB design based on the rec-
tangular lattice type association scheme of 4 x 3 treatments given in Section 15,
we can make an argument similar to the above Examples.
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18. Inequalities for incomplete block designs

Since a BB design with the equal block size is a BIB design (Theorem 13.1),
we shall deal with a BB design with unequal block sizes in this section. An in-
equality, b= v, obtained for a BIB design by Fisher [15] holds for an equireplicate
BB design with unequal block sizes. This result was first presented by Atiqullah
[3] and a simple proof was given by Raghavarao [43]. Bhaskararao [4] proved
that the equality sign in b=v holds when and only when the design is a symmetri-
cal BIB design. Raghavarao (cf. [43; 45]) also showed that for a p-resolvable
equireplicate BB design an inequality b=>v+t—1 holds, which is also given for a
u-resolvable BIB design by Kageyama [26]. The last inequality above is an
important necessary condition for the existence of a u-resolvable BB design.

If the restriction of an equi-replication in a BB design is. violated, then these
arguments are not valid as will now be shown by the following examples of un-
equal-replicate BB designs.

ExAMPLE 18.1. A BB design with parameters v=>35, b=6, r;=3 or 4, k;=2
or 4 given in Example 14.2. In this design, v=5<b=6.

ExAmpLE 18.2. A BB design with parameters v=3, b=3, r,=1 or 2, k;=1
or 3, whose incidence matrix is given by

l 2 3 r;
1 00
110 . p=3=b=3, C=I3——;)—G3.
10 1
k|31 1] s

ExXAMPLE 18.3. A BB design with parameters v=4, b=3, r;=1 or 2, k;=1
or 4, whose incidence matrix is given by

123",'
1l1 00/ 1
2010 0] 1 i ha
3/1 1 0] 2° v7%2°%
411 0 1| 2
kila 1 1] 6
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On the other hand, for a PBB design the inequality b=v does not necessarily
hold as will be seen from the following examples.

ExamPLE 18.4. A resolvable equireplicate PBB design with parameters v =6,
b=5,r=2, k;=2 or 3 given in Example 17.1 does not satisfy the inequality b=v.

ExAMPLE 18.5. An unequal-replicate PBB design with parameters v=6,
b=5, r;=2o0r3, k;=1, 3 or 6, based on the N, type association scheme of v=2 x 3
treatments, whose incidence matrix is given by

(9]
Y

; v=6>b=5.

A AW -
S O O = = -
—_——_— O O O
S O O O O =
S O O O - O ~
— et b e e
O 0N W W

k.

J

(=)}
—
EN

3 3 1

C = B} +2B%,

where Bf (i=1,2) are mutually orthogonal idempotents described in Example
17.2 for an N, type association scheme.

ExAMPLE 18.6. A resolvable PBB design with parameters v=6, b=6, r =3,
k;=2, 3 or 6 constructed from Corollary 14.2 and Example 18.4, whose incidence
matrix is given by

1 23 45 6| r
11 10100/ 3
211 1001 0/ 3
3111000 1] 3
41 01 100|335 v=0=b=6
s{1 0101 0|3
6/1 0100 1| 3
k;|6 3 3 2 2 2|18
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Since an unequal-replicate PBB design with unequal block sizes satisfying
b>v can be easily constructed, it is omitted here. Note that for a symmetrical
unequal-block arrangement of two block sizes, which is a special case of PBB
designs as mentioned in Section 15, the inequality b> v holds (cf. [44]).

In a p-resolvable equireplicate BB design, when u=1 we can easily get ex-
amples of resolvable equireplicate BB designs satisfying b > v+ r — 1 from Theorems
16.1 and 16.2. In particular, as a resolvable equireplicate BB design satisfying
b=v+r—1, we have, for example, the designs constructed by adding a block
consisting of all elements unity to the blocks of an affine resolvable BIB design
(cf. [5; 26]). When p=2, the inequality b=v+t—1 holds and we can construct
u-resolvable BB designs satisfying b>v+t—1 from remarks in Section 16. We
can also construct u-resolvable BB designs (u>2) satisfying b=v+t, but we have
failed to construct a u-resolvable BB design with unequal block sizes satisfying
b=v+t—1 for a positive integer u=>2.

Kageyama [22; 27] has shown that for a resolvable BIB design with parame-
ters v=mk, b, r, k and A, if b>v+r—1, then b=2v+r—2. For almost all the
resolvable equireplicate BB designs which can be constructed by the methods de-
scribed in Part III, if b>v+r—1, then b=2v+r—2 holds. We ,however, cannot
improve the inequality b=v+r—1. In fact, there exists the following resolvable
equireplicate BB design with unequal block sizes:

1 23456 7 8]|r
111010100 1|4

2/1 01 001 10| 4; v=40>b=8 r=4k;=1or3,
3]0 0 1 101 04 0 pp o
4/0 1101010/ 4

k;|3 13131 31|16

8 1
C=T<I4_‘TG4> .

As a bound of replication numbers, r;, in an unequal-replicate BB design and
PBB design with unequal block sizes, we can obtain in both designs

ilri_b 1
inr, ==
(18.1) Ilngl?g';' = 5 + o
and
1 n; n;
S>> il ib
(18.2) r;2 v + %, + -+ %,
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foralli=l1, 2,..., v, where k,,,, =max k; and (n;,,..., n;) is the ith row of an incid-
1

ence matrix N = || n;;ll of order v x bs(;’f a design.

Examples 18.2 and 18.3 attain the equality sign in (18.1). Though the right-
hand side of (18.2) depends on the suffix i, i=1, 2,..., v, that of (18.1) does not.
In this point, the bound (18.1) is more suitable than (18.2). The bound (18.2),
however, may be useful to construct a design by trial and error.

RemARK. In a PBB design, (15.2) and (15.3) together imply (18.1) and
(18.2). In a BB design, (12.3) and (14.9) together imply (18.1) and (18.2).

Finally, in particular, we shall consider inequalities to hold for the equi-
replicate PBB design based on an N, type association scheme of v =mn treatments.
As shown in Section 7, v( =mn) treatments are divided into m groups of n elements
each, such that any two treatments in the same group are 1st associates and two
treatments in different groups are 2nd associates. Then it is known (cf. [40])
that

ng=n—1, n, =n(m-1),

Ay = Im Al =I,® Gn_Iw A, = Gu—AO_Al’

Af = %(A0+A1 +4,), trd§ =1,

(18.3) A}

A {m-1)Ao+ 4D -4}, AL =1,

A5 = % {(n—1)Ag—A,}, tr 44 = m(n—1),

Zogy=ny=n—1, zy,=n—-1, z,,=-—1,
Zo, =n,=n(m—1), z,,=—n, z,,=0.

Let N be the equireplicate PBB design with parameters v, b, r, k; (j=1,
2,..., b) based on an N, type association scheme of v =mn treatments. Then from
(12.5), (12.6) and (18.3) we can write the C-matrix of N as

C = rl,— ND7'N'
(18.4) = p14i+p, 43

(18.5) = {(vr—b)/v}Ag+a A, +a,4,,
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where D;! =diag{k71!, k3!,..., k;'} and a;<0 (i=1,2). From (18.3) and (18.4)
we obtain

(18.6) ND;'N' = rd+(r—p,) A% +(r—p,) A}
(= 286,40 —p) L+02-L1(1,8G,)).

Then its determinant is

(18.7) INDEIN'| =r(r—p )™ 1(r—p)"" 1.
Now for Dyt =diag{k72, k3%,..., k3%}, since

(18.8) ND;'N' = (ND7L)(ND7L)',
which is a positive semi-definite matrix, we have

(18.9) r—p; 20, i=1,2.

From (18.6), if r—p, =0 and r— p, =0 hold simultaneously, then the PBB design
is reducible to a complete block design (i.e., N=E,,,) and vice versa. We shall
therefore confine ourselves to the case in which r—p, =0 and r— p, =0 do not hold
simultaneously. In this case, since we have from (18.8)

(18.10) rank NDi !N’ = rank NDj} =rank N < b,
we obtain from (18.3), (18.6), (18.7) and (18.9) the following

THEOREM 18.1. For an equireplicate PBB design with parameters v, b, r,
k; (j=1,2,..., b) based on the N, type association scheme of v=mn treatments
having (18.3) and (18.4), it holds that

(i) ifr—p;>0and r—p,=0, then b=m;
(ii) ifr—py=0and r—p,>0, then b=2v—m+1;
(iii) ifr—py>0and r—p,>0, then b=v.

If the design N is u-resolvable, that is, the blocks can be separated into ¢
sets of m; blocks such that the set consisting of m; blocks contains every treatment
exactly u times (i=1,2,..., t), then

rank ND;y !N’ = rank NDj} =rankN < b—t+1,

since in N the sum of the columns corresponding to each set must give a column
consisting of y’s. Thus not more than b—t+1 column vectors are independent,
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Hence we have

COROLLARY 18.2. For a p-resolvable equireplicate PBB design (u=1) with
parameters v, b, r=ut, k; (j=1,2,..., b) based on the N, type association scheme
of v=mn treatments having (18.3) and (18.4), it holds that

(i) ifr—p;>0and r—p,=0,then bzm+t—1;

(i) ifr—p,=0and r—p,>0, then b=v—m+t;

(iii)) ifr—p,>0and r—p,>0, then b=v+t—1.

REMARK. From Section 12, (18.3), (18.4) and (18.5) we have
r=blv—a,(n—1)—an(m—1),
r—p; = blv—a,(n—1)+a,n,
r—p, = bjv+a,,

which lead to

py = —ayv and p;—p, =n(a;—a,).

Conditions (i), (ii) and (iii) in Corollary 18.2, respectively, may correspond to
those of Singular, Semi-regular and Regular group divisible 2-associate PBIB
designs (cf. [10; 45]).

Furthermore, the above argument can be easily applied to an equireplicate
PBB design N with parameters v, b, r, k; (j=1,2,..., b) based on an association
scheme of m associate classes. By definition, we can write the C-matrix of N as

(18.11) C = rl,—ND;'N’
= p1Ai+p2AS+ - +pnds,
which leads to
(18.12) NDIN' =rA§+(r—p A5+ +(r—pn) AL .
Then its determinant is
INDFIN'| = r(r=p)*...(r= pp)™
where o; =tr A}, i=1, 2,..., m. Therefore from (18.10) we have

THEOREM 18.3. For an equireplicate PBB design with parameters v, b, r,
k; (j=1,2,..., b) based on an association scheme of m associate classes having
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(18.11), the following inequality holds:

bzv-3% a

i

where o;=tr A} and the summation extends over all the integers i satisfying r—
p;=0,i=1,2,..., m. Furthermore, for a p-resolvable equireplicate PBB design
it holds that

bzov+t—3 o—1.

RemARk. (i) From (18.11), if r—p;=0, i=1, 2,..., m, hold simultaneously,
then the PBB design is reducible to a complete block design (i.e., N=E,,,) and
vice versa. (ii) If r#p,; for all i=1, 2,..., m, then b=>v holds. (iii) The first
inequality in Theorem 18.3 may correspond to an inequality for a PBIB design
obtained by Yamamoto and Fujii [59].

Moreover, from (18.8) and (18.12) we have

THEOREM 18.4. For an equireplicate PBB design with parameters v, b, r,
k; (j=1,2,..., b) based on an association scheme of m associate classes having
(18.11) in which v>b, it holds that

H(r=py)t...r=pp)m =0,
so that r is equal to one of the p;’s. Furthermore, when v=b>b, it is necessary that
kik,...kyr(r—p)*t...(r—p,)*

is a perfect square.
Concerning the above arguments, as a bound on the latent roots of the C-
matrix for a PBB design, we have

THEOREM 18.5. For a PBB design N with parameters v, b, r;, k; (i=1,
2,...,0; j=1,2,..., b) based on an association scheme of m associate classes,
where

C = D,—ND;'N’
= p Al +pA5 + - +pndl,
the following inequality holds:

0<p, < min r;, 1=12,.,m.
15isv

Proor. It is known (cf. [19]) that the C-matrix of the incomplete block
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design is positive semi-definite. Hence we obtain p,=0 for [=0, 1,..., m. From
the definition of a PBB design p, =0 and p,>0 for I=1, 2,..., m. On the other
hand, since C is a positive semi-definite matrix and D; ! =diag{r7!, r3!,..., ry'}
is a positive definite matrix, we have from Corollary 2.2.1 in Anderson and Gupta

(2]

pl < -1) < pl
max r; = ch(CDY) = min r; °
15isv 15isv

l=0,1,..,v—-1,
where ch(CD;?!) for any (0<I<v—1) are the latent roots of CD; 1, which imply

(max r;)ch,(CD; ') max r;
1sisv < 1si

pl < 15isv < 1
min r; = min r; = minr; T °°
15isv 15isv 15isy

since it is known (cf. [60]) that 0<ch,(CD;!)<1 for =0, 1,...,v—1. Hence we
obtain
p; < min 1, 1=0,1,..,m (Zv-1).
15isy
Thus, we have the required result.
Some Examples in this paper attain the upper bound on the latent roots p,

in Theorem 18.5. For an equireplicate PBB design with replication number r,
Theorem 18.5 leads to

(18.13) O<p =, l=1,2,.,m,

which can be also derived from (18.8) and (18.12).
Note that when an equireplicate PBB design is a PBIB design, (18.13) leads
to (1.9).
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