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0. Introduction

In this paper we are concerned with the problem of existence of solutions
for a neutral functional differential equation of the form

(A) DATx(@) + f(t, x(9(®)) =0, =1,

where D" and 47 stand, respectively, for the n-th iterate of the differential
operator D and the m-th iterate of the difference operator 4, defined by

0.1) Dx(t) = %x(t) and 4,x(t) = x(t) — Ax(t — 7).

In case A =1 use is made of the symbol 4 instead of 4, ie,
(0.2) Ax(t) = x(t) — x(t — 7).
The conditions always assumed for (A) are as follows:

03) (@ m=>=1,n=>1,1>0, t>0 and t, >0
(b) geC[ty, ©), and lim g(t) = co;

t— o0

(©) feC([ty, ©) x R), and
|f(t’ X)l _<_F([,|XI), (t’ x)e[to, w) X R,

for some continuous function F(t, u) on [t,, ©) x R,, R, = [0, o0),
which is nondecreasing in u for each fixed ¢t > t,.

By a solution of (A) we mean a function x € C[T, — mt, o) for some
T, > t, + mt such that A7x(t) is n-times continuously differentiable and satisfies
the equation on [T, o0). A solution of (A) is said to be oscillatory if it has
an infinite sequence of zeros clustering at t = oco; otherwise a solution is said
to be nonoscillatory.

We observe that the associated unperturbed equation D"A%7x(t) =0 has
the solutions



54 Yuichi KiTaAMURA and KusaNo Takasi

04) ot j=0,1,...,m—1; et k=mm+1, ..., m+n—1
in the case A =1, and
(0.5) o)A, j=0,1, ..., m—1; ct*, k=0,1, ..., n—1

in the case 1 # 1, where w(tf) is an arbitrary continuous t-periodic function
and c is an arbitrary constant. It is then natural to expect the occurrence
of a situation in which the nonlinear term f{(t, x(g(t))) is so “small” that the
equation (A) admits those solutions which behave like the functions in (0.4)
or (0.5) at t > 0. Our objective here is to show that this expectation can
actually be realized by establishing sufficient conditions under which, given
any continuous t-periodic function w(t) # 0 and any nonzero constant c, (A)
possesses solutions which are asymptotic to the functions (0.4) and (0.5) in
the sense that

(I) x()=t[o@)+o0o(1)] as t—o0, j=0,1, ..., m—1,

(I) x@®)=t[c+o(l)] ast—o o0, k=m m+1, ..., m+n—1,
in the case 4 =1, and

(1) x@)=t'A"[w({)+o(l)] as t—> 0, j=0,1, ..., m—1,

(L) x(t)=t*[c+o(l)] as t—o0, k=0, 1, ..., n— 1,

in the case 4 # 1. Note that, because of the arbitrariness of w(t), the set of
solutions of type (I) [or (I,)] contains both oscillatory and nonoscillatory solu-
tions. Our results regarding type (I)-solutions [or type (I,)-solutions], there-
fore, establish the coexistence of oscillatory and nonoscillatory solutions for the
neutral functional differential equation (A). No such coexistence result seems
to be known for non-neutral equations of the form D"x(t) + f(t, x(g(t))) = O.
It is obvious that the solutions of type (II) and (II,) are all nonoscillatory.

The construction of these types of solutions of (A) will be presented in
Part 1 (A = 1) and Part 2 (4 # 1). Our main tool is the fixed point theorem of
Shauder-Tychonoff applied to nonlinear (functional) integral operators formed
by suitably chosen “inverses” of 4™ with 4 given by (0.2). In verifying the
applicability of the fixed point theorem, a crucial role is played by some
basic properties of the “inverses” of 4™, which will not be collected in one
place but will be stated with proofs in several sections where they become
necessary.

Qualitative theory of neutral functional differential equations has received
wide attention in recent years because of its importance in various theoretical
and practical problems. Needless to say, existence theory of solutions is a
fundamental question to be investigated in depth for neutral equations. It
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seems, however, that the existence results obtained so far have been primarily
concerned with the special case m = 1 of (A) (see e.g. the papers [2—8]) and
nothing is known, except for [1], about the existence of solutions, oscillatory
or nonoscillatory, for the case m > 2 of (A), that is, for neutral equations
whose leading parts contain difference operators of higher degree applied to
the unknown function. Motivated by this observation, the present work is
so designed as to cover the equation (A) with m > 1, thereby extending and
unifying all the basic results given in the above references.

Part 1. Existence of Solutions for the case 4 =1
1. Statement of Existence Theorems
We begin by considering the equation (A) with 1 =1, ie.,
D A"x(t) + f(t, x(9(1)) =0,  t>1,,

A4 being defined by (0.2), for which the conditions (0.3) are assumed to hold.
The main existence theorems for this equation are as follows.

THEOREM 1. Let je{0,1,...,m — 1} and suppose that there is a constant
a >0 such that

1.1 fw tmiTIE (L afg(t)))de < oo.

Then, for any continuous t-periodic function w(t) such that max |w(t)| < a, the
t

equation (A) with A =1 possesses a solution x(t) with the property that

1.2 x(t) = t/[o() +0o(1)]] ast—- .

THEOREM II. Let ke {m,m+ 1,...,m + n — 1} and suppose that there is
a constant a > 0 such that

(1.3) J tm kLR (e, a[g(t)]%)dt < oo.
to

Then, for any constant ¢ such that 0 < |c| < a, the equation (A) with A =1

possesses a solution x(t) with the property that

(1.4) x(t)=t‘[c+0(1)] ast—o0.

REMARK 1.1. The solution obtained in Theorem II is nonoscillatory,
whereas the one obtained in Theorem I is oscillatory or nonscillatory accord-
ing to whether the periodic function w(t) involved is oscillatory or nonoscilla-
tory. It is to be noted that the condition (1.1) which is independent of w(t)
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guarantees the existence of both oscillatory and nonoscillatory solutions of
(A). Thus one can easily speak of the phenomenon of coexistence of oscilla-
tory and nonoscillatory solutions for neutral equations of the type (A). This
is an aspect which is not shared by non-neutral equations of the form D"x(t) +
f(t, x(g(¢))) = 0. Naturally a situation may occur in which the equation (A)
with 4 =1 has all types of solutions listed in Theorems I and IIL

ExampPLE 1.1. For illustration of Theorems I and II we consider the
equation

(1.5) D"[x(t)—2x(t — 1)+ x(t—2)]+q@)|x(t—3)"sgnx(t —3)=0, t>¢,,

where y > 0, t, > 3, and q:[ty, ©©0) > R is continuous. Since 4%x(t) = x(t) —
2x(t — 1) + x(¢t — 2), this equation is a special case of (A) (A = 1) in which
m=2, t=1, g@t)=1t—3, and f(t, x) = q(t)|x|" sgn x. Clearly the condition
(0.3) is satisfied for (1.5) with F(t, u) = |q(t)|u’. The conditions (1.1) and (1.3)
written for (1.5) reduce, respectively, to

(1.6) j O g di < o0, je{0, 1)
to
and
1.7 J tmtHODR a1 dt < 0, ke{2,3,...,n+ 1},
to

which are sufficient for the existence of solutions of (1.5) having the asymptotic
behaviors (1.2) and (1.3), respectively.
If in particular

j t"q(t)|dt < oo for the case y <1,
t,

0

J "0 ()| dt < o0 for the case y>1,
t

\]

then (1.5) possesses solutions of the type (I)
Xo(t) = w(t) + o(1), x,(¢) = t[w(t) + o(1)] as t > ©
as well as solutions of the type (II)
x,(t) = t2[c + o(1)], x5(t) = t3[c + o(1)], ..., X401 (t) = t""[c + 0(1)] as t > O

for any nonzero constant ¢ and any continuous periodic function w(¢) of period
1. Typical examples of such w(t) are cos 2Int, sin2int, | =0, 1, 2, ....
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2. Proof of Theorem I (The case j = 0)

A) LemMas. The purpose of this section is to give a proof of Theorem
I for the case j=0. To this end we require some basic results regarding a
type of “inverse” of the difference operator 4 and its iterates.

We denote the S[T, oo) the set of all functions & € C[T, o0) such that
the sequence

1) =Y Et+in), t>T—x,
i=1

converges uniformly on compact subintervals of [T — 7, 0). We define ¥ to
be the mapping which assigns to each & e S[T, o) a function #5(t) defined by
(2.1). Further, for le N we denote by ¥' the I-th iterate of ¥ which is
defined on the set

S'[T, 0) = {¢ e ST, 00): '€ S[T — (I — 1)z, 0)}, =12 ...,

where it is understood that Y° =id (identity mapping) and S°[T, c0) =
C[T, o).

LEMMA 2.1. Let leN. If (€S T, ), then W& is a solution of the
difference equation

2.2) A'x(t) = (= 1)'E(t), t>T,
and satisfies
(2.3) PiE(t)=0(l) ast—oo.
Proor. Let I=1 and e S[T, o). That ¥¢ solves the difference equa-
tion Ax(t) = —&(t), t > T, follows immediately from the definition of ¥, so

that (2.2) holds for [ = 1. Let ¢ > 0 be given arbitrarily. Since (2.1) converges
uniformly on [T — 7, T) by hypothesis, there exists P € N such that

T &+ in)

i=p+1

2.4) <g for all te[T—1,T)and p>P.

Let t>t, =T + Pt and choose pe N so that t —pte[T — 1, T). Then

t - TW tl - Jﬂ
> =

p> P

T

and we have in view of (2.4)

P = i £ + in)| = i £t — pt + (G + p)Y)

<e,

¥ - pr+ i

i=p+1
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which shows that Y¢(t) >0 as t > co. Thus (2.3) holds for I = 1. This proves
the lemma for the case /| = 1. The proof for a general [ > 1 is done by an
inductive argument.

LEMMA 22. Let le N. If (€ S'[T, ) and E(t) >0 for t > T, then
00 i — 1
2.5) PiER) =Y, (; 1>§(t + it), t>T—Ir.
= \! —
PrROOF. Assume that (2.5) holds for some e N. Let &eS'""![T, o0) be
nonnegative for t > T. From the definition of ¥ we then see that

o0 00

i—1
EARUED) (’, _ 1)5@ + i+ )9

i=1 j=1

- {kil<]l.:i)}f(t+kr), £>T—(+ ).

k=1+1 Jj
k-1 H
=1\ (k-1
,2,(1_1)‘( ! )

P = il(k71>é(t+kf), t>T—(+ 11,

k=T+

Since
it follows that

proving the truth of (2.5) with [ replaced by [ + 1. Since (2.5) trivially holds
for I =1, the induction completes the proof.

LEMMA 23. Let le N and pe NU{0}. If FeC[T, ) and F(t)>0 for
t > T, then [ t""PF(t)dt < oo implies that [* (s — t)’F(s)ds € S'[ T, o), and

(2.6) ' <fm (s — t)"F(s)ds) < % fw s'*PF(s)ds, t>T-—Ir.

+lt

Proor. Applying Lemma 2.2, we have

! <fw (s — t)"F(s)ds) i <; h 1) Iw (s — t — it)PF(s)ds

¢ =1 - t+it
o i1\ o [ttt ’
22 (s—tPF(s)ds=1.

J=i Jt+jt

IA

Interchanging the order of summation in I, we see that

© t+(j+1)e j i—1
I= ;f . {Z‘l <l_1>}(s—t)”F(s)ds,
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from which, noting that

Loy
Z(E 1)=<’l> <jl<tis—1 for se[t+jmt+(j+ )],
=i\l —

we conclude that

2 (J‘w (s — t)pF(s)ds> <! i tH(+1)e (5 — 017 (s)ds

J=l Jt+je

= r"f (s — )'*PF(s)ds , t>T—-Ir.
t

+lIt
This completes the proof.

LEMMA 24. Let le N and ve S'[T, ). Suppose that v(t)>0 for t > T
and define

U={ueC[T, o):|u) <v(),t>T}.

Then the following statements hold.
(i) ¥ is continuous on U in the C[T — It, w0)-topology.
@) If U is locally equicontinuous on [T, ), then W (U) is locally equi-
continuous on [T — I, o0).

Proor. We need only to give a proof for the case I = 1.

(i) Suppose that ve S[T, o) and v(t) >0 for t > T. Let {u,} be a se-
quence in U converging to ue U in C[T, ). Take an arbitrary compact
subinterval I of [T — 1, o0). Since v € S[T, ), given any ¢ > 0, there is pe N
such that

(2.7 Y vi+it)<3e, tel.

o
p+1

i=

There is v, € N such that

lu,(t + it) — u(t + it)| < ie, tel, v>v,,

e

i=1

because of the uniform convergence u,(t) - u(t) on I. It follows that

|Pu, () — Pu()|

P 00 0
<Y lu(t+in)—ut+ i)+ Y lu+iDl+ Y lu(+ i)l
i=1 i=p+1 i=p+1

0
<3e+2 Y ve+i<e, tel, v>v,,
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implying that ¥Yu,(t) > Pu(t) uniformly on I. Since I is arbitrary, this means
the convergence Yu, - ¥u in the topology of C[T — 7, o0). Thus ¥ is contin-
uous on U.

(ii) Let I [T —1,00) be any compact interval. Let ¢ >0 be given.
Choose p € N so that (2.7) holds. By hypothesis, U is equicontinuous on I,
and so there is a constant § > 0 such that

s

lu(t +it) —u(s +it)) <3¢ for all ueU
i=1

provided |t —s| <4, t, sel. Using this inequality and (2.7), we see that
|t —s| <6, t, sel, implies that

[Pu(t) — Pu(s)|

00

< ) lu(t + it) —u(s + i)l + Y. |u(t + it)| + __i lu(s + it)]

i i=p+1

S

0 0
<je+ Y vt+i+ Y vis+i)<e forall ueU,
i=p+1 i=p+1
which shows that ¥(U) is equicontinuous on I. Because of the arbitrariness
of I it follows that ¥(U) is locally equicontinuous on [T — 7, 00). This
finishes the proof.

B) ProoF oF THEOREM I (j =0). Put ¢, = a — max |o(t)] > 0. Choose
T > t, large enough so that !

(2.8) T, = min {T — mz, inf g(t)} > t,
2T
and
2.9) pm <J s"TLF(s, a)ds) <&, t=T—mr.
t

That (2.9) is possible is a consequence of the condition (1.1) and Lemma 2.3
(I=mp=n—1). We consider the sets X < C[T,, c0) and Y < C[T, )
defined by

210 X ={xeC[T,,0):|x(t)| <a,t>T,},
. Y = {yeCLT, ©):1y@®)] <o), |yt) — y(s)| < [v(t) — v(s)], s, = T},

where v(t) is given by

2.11) u(t) = F %F(s, ayds, t>T.
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Further, we consider the mappings %;: Y —» C[T,, ©) and %,: X - C[T, o)
defined by

- _ o) + (= D)"¥P™y(@), t>T—mrt,
F1y) {ﬁly(T—mt), T,<t<T-m,
(2.12)
- © (S _ t)n—l
Fx(t) = (—1) - fs,x(g(s))ds, =T,
¢ (m=1)
and define the mapping #: X x Y - C[T,, o) x C[T, ) by
(2.13) F(x,y)=(Fy Fx), (xy)eXxY.

It can be shown that the mapping & is continuous and maps X x Y
into a relatively compact subset of X x Y.

(i) & maps X x Y into itself. 1t suffices to prove that #,(Y) = X and
F(X)c=Y. Let yeY. Then, in view of (2.12), (2.11) and (2.9), we have

|Zy@)] < o) + |P™(t)] < max |w(t)| + ¢ = a, t>T—mr,
t

and
[Z1y®)| = |FY(T —mi)| < a, T, <t<T-—mr.

This shows that #;(Y) =« X. Now let x € X. Then, by (2.12) and (2.11), we
see that

| F,x(t)] < th %F(s, ayds =o(t), t>T,
and that for s, t > T
|F#x(t) — Fx(s)| = J S(r, x(g(r))dr| < f F(r, a)ydr

= |v(t) — v(s)| f n=1,

and

| #2x(t) — Fox(s5)| =

t 0 (u _ r)n_z
Js gy x(e)dudr

f t f ) %F(a, a)dudr

= [v() — v(s)] ifn>2.

<

This implies that %,(X) c Y, thereby completing the proof that (X x Y) <
X x Y.
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(i) & is continuous. Let {x,} be a sequence in X converging to x € X
in C[T,, ). Then, using the Lebesgue dominated convergence theorem, we
see that

© n—1
[ s mtaomas [ 6 =1 i xtatonas
uniformly on [T, o0), so that #,x, - %,x in C[T, ov). This shows the conti-
nuity of &%, in the C[T, oo)-topology. The continuity of &; in the topology of
C[T,, «) is an immediate consequence of the first statement of Lemma 2.4. It
follows that # is continuous on X x Y in the topology of C[T,, o) x C[T, ).

(ili) F(X x Y) is relatively compact. The relative compactness of %;(Y)
in C[T,, «) follows from the second statement of Lemma 2.4, while that of
Z,(X) in C[T, ) follows from the inequality

(FH)OI<v®l, =T,

holding for all xe X. It follows that #(X x Y) is relatively compact in
C[T,, ©) x C[T, ).

Thus all the hypotheses of the Schauder-Tychonoff fixed point theorem
are satisfied, and so there exists an element (x, y)€ X x Y such that (x, y) =
F(x,y), ie, x =%y and y = F,x by (2.13). In view of (2.12) this implies that

(2.14) x(t) = o(t) + (= 1"¥™y(t), t>T—mr

and

© n—1
(2.15) y(@) = (=11 j %_—t)])Tf(s’ x(g(s)))ds , t>T.

. !
Operating 4™ on (2.14), we see from Lemma 2.1 that A™x(t) = y(¢t), t > T.
Combining this equation with D"y(t) = —f(t, x(g(t))), t > T, which follows from
(2.15), we conclude that x(t) is a solution of the neutral equation (A) with 1 =1
for t > T. This solution has the required asymptotic property (1.2) since
x(t) — w(t) > 0 as t > oo because of (2.14) and Lemma 2.1. This completes
the proof of Theorem I for the case j = 0.

3. Proof of Theorem I (The case 1 <j<m-—1)

A) LemMas. To construct solutions of type (I) for the case 1 <j<m —1
we need, along with the operator ¥ used before, another type of “inverse”
of the difference operator 4.

For a function £ e C[T, o) we define
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N((t'ZT)/T) He— i) + [t _1; T _ N<t _r T)] «ry, =T,

i=0

[t_tT—N< )}é(T) T—1<t<T,

where N(u) denotes the largest integer not exceeding u. It is easy to see
that n(t) is continuous on [T — 1, ©). Let & denote the mapping which
assignes to each £ e C[T, o) a function n e C[T — 1, o0) defined by (3.1), and
let @', le N, be the I-th iterate of &. Clearly, @' is defined on C[T, =)
and sends it into C[T — Iz, o0). The following three lemmas describing basic
properties of @' will be required in completing the proof of Theorem 1.

G.1) n@)=

LEMMA 3.1. Let le N and £ € C[T, ). Then, ®'¢ is a solution of the
difference equation

3.2) A'x(t) = &(1), t>T.
This is an immediate consequence of the definition of .

LEMMA 3.2. Let le N and pe NU{0}. If GeC[T, o) satisfies G(t) =
o(t?) as t - oo, then D'G(t) = o(t'*?) as t - oo.

This is an immediate consequence of the following lemma which is a
difference version of I'Hospital’s rule well-known in elementary calculus.

LemMmA 3.3. Let a, e C[T — 1, ) be functions such that

4P(t) #0 and lim B(t) = oo (or —0).

t— o0

Then

Ao(t) alt)
tl_.w 260 =ceR implies 111210 B0

In fact, using Lemma 3.3 and noting that
AP =(+pl+p—1)...(p+ DTt +o(t?) as t— o,

we obtain
D'G(t A'D'G(t G(t
o _ . ® _ i G0

lim ——= = —_— = ——
oo tl+p . Altl+p oo Altl+p

=0.

Proor oF LEMMA 3.3. With no loss of generality we may suppose that
AB(t) > 0, so that lim B(t) = co. Let T be such that (t) >0 for t > T — 7.

t— oo

Let t > T be fixed and choose r and s so that r > s>t + 1. Putting
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n(r) = N((r — t)/r) + 1, we define the sequences {a;}, {b.} by
a.=or+(k—n)r), b=+ (k—nr)), k=012 ...
Since the sequence {b,} is strictly increasing, we have

. — a - a —a a, — a._
inf ] -1 < n(r) 0 < sup 1 1-1
>1 bl - bl—l bn(r) - bO i>1 bl - bl—l

(see Lemma 7 of [1]), from which, noting that r + (| — n(r))t >t for | > 1 and
a— ap_y = da(r + (I — n(r))7), by —b_y = 4B(r + (I — n(r)1),
we see that

. Ao)  a, — ag
3.3 inf < <su
G3) 4B S By — by o
Since t — 1 <r —n(r)T <t and since

ap=ar —n(1),  bo=pr—n@)7), by =pHr),

Aa(u)
AB(u)’

we have

QAo At bo Bt
34 S =l
(3.4) b,»| ~ Inf B(u) by ~ inf B(u)
where

A= sup e, B= sup ).

t—t<uc<t t—t<u<t
Let S >t + t be such that
B, <
inf B(u)

uzs

(3.5) 1 for s>8§,

which is possible because f(s) —» o0 as s — oo.
Let r >s>S. Using (3.3), (3.4) and (3.5) in the relation

Aniry _ One) — a0<1 . bo > + )
- ’
bn(r) bn(r)

we find that

ar) Ay Ao(u) < b0> ao
<su 11— +
BO By st 4B@) " by

< Aa(u)_(l + a(t)B, ) A,
= 2Bw) inf B(w)) " inf Bw)

u=s u=s

bn(r)
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and

a(r) . dolu) _ by ag
B = 2 Apw (1 ) * b

Ao(u) . p(t)B, A,

> Inf 28 (1 " nf ﬂ(u)> * it Bw)

u=s uxs

bn(r)

ut

where o(t) = sgn [sup Aa(u)/Aﬂ(u):I and p(t) = sgn [inf Aa(u)/Aﬂ(u)]. It fol-

lows therefore that

sup

a) _ el (| o(9B, 4,
R TR T (1 - ) *

inf f(u)) " inf B(w)

u=s u=s

and

inf —

(r) A“(u) p(t)Bz A,
el T R T (1 - > N

inf B(u) inf f(u)

u=s ux=s

for any r and s such that r > s > S, which implies in the limit as s — oo

os) _ o o)

(36) i SuP 5) = 5P 4Bw)
and
3.7) lim inf — s ) )

minf g =l 25

Here use is made of the fact that inf f(u) > 0 as s » oco. Letting t > o0 in

uxs

(3.6) and (3.7), we conclude that

. at) . Aa(t)
lim 20 = Im 220 =

This completes the proof.

LemMmA 34. Let le N and Y < C[T, ©). Then the following statements
hold.

(i) @' is continuous in the topology of C[T — It, c0).

(i) If Y is locally equicontinuous on [T, o0) and if

(3.8) sup {|y(T)|:ye Y} < o0,

then ®'(Y) is locally equicontinuous on [T — lt, o).
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Proor. It suffices to prove the lemma for the case = 1. For simplicity
we use the notation N, = N((t — T)/7).

(i) Let {y,} be a sequence in Y converging to y e Y in C[T, o). Choose
an arbitrary compact interval J = [T — 1, o) and put N* = max {N,:te J}.
Let ¢ >0 be given. Choose v, € N so that

(3.9) IY(T) = (D) <3e  for v>v,

and
N*

(3.10) Y Iyt —it) — y(t — i) < 3¢ for v>v, and te JN[T, c0).
i=0

(3.10) follows from the uniform convergence of {y,} on JN[T, o). Using
the definition of @, (3.9) and (3.10), we have

|Py, (1) — Py(1)| = Iy(T) — ¥(T)

t—T
— " —N,
T

SIy(T)—y(T) <3¢ ifteJN[T—1T)
and

|®y,(t) — Py(0)l

N t—T
= ;0 Iyt —it) — y(t —in)] + <—T— - M) [y (T) - y(T)]‘

< NZ [yt —it) = y(t — D) + [y (T) —y(T)| <e if teJN[T, 00),
i=0

which implies that @y, - ®y in C[T —1,0). Thus @ is a continuous
mapping.

(ii) Suppose that Y is locally equicontinuous on [T, o) and satisfies (3.8).
Let J = [T — 1, o) be any compact interval and put N* =sup {N,:te J} as
before. Let M =sup {|y(T)|:ye Y}. Then, in view of the equicontinuity of
Y on JN[T, ), we see that, for any given ¢ > 0, there exists 6 > 0 such
that 0 <d <,

Ms
2

[yt — Nyt — T) — y(T)| < ¢ for all yeY
if0<t—Nt—T<6, teJN[T, ),

and
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If ly(t —it) — y(s —it)| <3e  for all ye Y

w fO0<t—s<d,s teJN[T, o).
Using these inequalities it can be shown that
(3.11) |®Dy(t) — Py(s)|<e for all yeY provided 0<t—s<d, s tel.

In fact, choose s, t € J such that 0 <t —s <. Since 6 < 1, we have either
N, =N, or N,= N;+ 1. Suppose first that N, = N,. In this case, if s < T,
then

M6
<— <, yeY,
T

[@y(0) - By(6)] = 1“75@

and if s > T, then

|By(t) — Dy(s)| = il

N,
;0 [yt —it) — y(s — i1)] + y(T)‘

T
nx Mo

SZly(t—i‘c)—y(s—ir)|+7<%s, yeY.
i=0

Suppose next that N, = N;+ 1. In this case, if s < 7, then, noting that
0<t—T<d, we have

[By(e) — By(s) = |y(0) + " y(T) y(T)’

Mo
< |y(t) — y(T)| +T<%£, yevy,
and if s > T, then, noting that 0 <t — N,t — T < 6, we have
|y (t) — Py(s)|

= ZO [y(t — it) — y(s — iD)] + y(t — N,) + “Tsy(r) — ¥(T)

z . . Mo
< ZO Iy — i) —yls — il + [y - N — (D) + — <&,  ye¥.

We have thus proved (3.11), which is nothing else but the equicontinuity of
@(Y) on J. Since J is an arbitrary compact subinterval of [T — 1, o0), @(Y)
is locally equicontinuous on [T — 7, c0) as desired. Thus finishes the proof
of Lemma 3.4.

B) ProOF OF THEOREM I (1 <j <m — 1). We introduce the abbreviation
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F(t) = F(t,a[g()))). Let ¢y = a — max |w(t)]. Take T >t, large enough so
that (2.8) holds and !

(3.12) oipmi <J s""F(s)ds) < got!, t>T—mre.
t

That (3.12) is possible is shown as follows. Because of (1.1) it follows from
Lemma 23 (l=m—j,p=n—1) that [?s" 'F(s)ds e S" /[T, «), so that

(3.13) pm=i (Iw s"-lF(s)ds) =o(l) ast—o

by Lemma 2.1. Operating &’ on (3.13) and using Lemma 3.2 (I =j,p = 0),
we have

(3.14) ¢j¥""'j<jw s"‘lF(s)ds> =o(t)) ast- o,

which implies the truth of (3.12) for a sufficiently large T.
We now define the set X x Y < C[T,, o) x C[T, o) by

= {x e C[T,, ©):|x(t)| < at),t > T,},

(3.15)
= {y e C[T, ) :|y(®)| < v(t), |y(t) — y(s)| < |v(t) — v(s)l, s, t = T},
where
(3.16) o(t) = f ’ MF(s)ds t>T
' ¢ (n=1) ’ -

Let # denote the mapping which assigns to each (x,y)e X x Y an element
(#1y, Bx) € C[T,, ©) x C[T, o0) given by
o)) + (= 1) IpIPmiy(t), t>T—mt,

Fy) = ti
1 %y(T—mT)m, T*StST—m‘t,
(3.17)

Fx(t) = (1" ‘f S f(S, x(g(s))ds, t=T.

(i) Let ye Y. By the definitions of Y and %, and (3.12) we have
|71y < 0@t + |DTP™ ()| < (lo()] + &o)t! < at’

for t>T—mt. We also have |#y(t)|<at/ for T, <t<T—mr since
|Z (T — m))(T —mry| <a. Hence % (Y)c X. It can be shown that
Z,(X) = Y exactly as in the case j = 0. It follows that # maps X x Y into
itself.
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(i) & is continuous in the topology of C[T,, ) x C[T, ). In fact,
the continuity of 4, in the C[T,, oo)-topology follows from combination of
the first statements of Lemmas 2.4 and 3.4, while that of &, in the C[T, o0)-
topology can be proved exactly as in the case j=0.

(i) F(X x Y) is realtively compact. In fact, the relative compactness
of #(Y) in C[T,, ) follows from combination of the second statements of
Lemmas 2.4 and 3.4, and that of %,(X) can be proved exactly as in the case
j=0.

Consequently, there exists an element (x,y)e X x Y such that (x,y) =
F (x, y), which satisfies

x(t) = o@O)t! + (= 1)"IDIP™iy() , t>T—mrt,

0=t [T e xtgonas, =T,
, (=1

Since A™x(t) = y(t) and D"y(t) = —f(t, x(g(t))) for t > T, we see that x(t) is a
solution of the equation (A) for t > T. From (3.14) it follows that x(f) =
w(t)t! + o(t) as t —» oo, that is, x(t) satisfies the asymptotic relation (1.2). This
completes the proof of Theorem I for the case 1 <j<m— 1.

4. Proof of Theorem II

Let us now give a proof of Theorem II. Let ke {m,m+ 1,...,m+n — 1}.
Put F(t) = F(t,a[g(t)]*). For a function ¢ € C[T, ), T > t,, and i, j € NU{0}
we introduce the notation

( (t _ Qi1
(—t(i——s)l)—'(p(s)ds for i £0,j=0,
JT A
(* o0 _t‘—l
@1) It T;0)= < %q)(s)ds for i=0,j#0,
Jit .
rt t_Sil 7 — s)J )
U,T((i'_)l)'J ( ))' o(r)drds for i#0,j#0.

The condition (1.3) implies that I,_, ,.,—i(t, T; F) is well defined for any
T >t, and

Ik—m,m+n—k(t, T, F) = O(tk—m) as t—» oo,
and so from Lemma 3.2 (I=m, p =k — m) it follows that
¢m(1k—m,m+n—k(t’ T’ F)) = O(tk) as t—> oo .

Hence one can choose T > t, so that (2.8) holds and
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(4'2) ¢m(1k—m,m+n—k(t, T’ F)) < gofk s t= T—-mt ’

where ¢, =a — |c| > 0. With this choice of T one defines the set X x Y <
C[T,, ©) x C[T, ©) and the mapping %:X x Y - C[T,, o) x C[T, ) by
the formulas:

X = {xeC[T,, o):|x(t)| < at*,t > T,},
Y ={yeC[T, 0):|y@)| < v(), |yt) — y6)| < [v(t) — v(s)],s,t = T},

where

4.3)

4.4) v(t) = L min—i(t, T3 F),
4.5) F(x,y) =(F#y, %x), (x,y)eXxY,
where

ct* + d™y(1), t>T—mrt,
k

(T — mo)*’

Fiyt) =

Fy(T — mr) T, <t<T-—mr,

(4.6)
Fox(t) = (= )" Uy minit T5 (8, x(9(0)), 2 T.

Then one verifies without difficulty that & is well defined on X x Y and
maps it continuously into a relative compact subset of X x Y. The Schauder-
Tychonoff theorem then eneures the existence of a fixed point (x,y)e X x Y
of #. Since

x(t) = ct* + d"y(t), t>T —mt,
YO = (=" it Ts [, x(g®)), 62T,
one sees that
D"A™x(t) = D"A™(ct*) + D"y(t) = —f(t, x{g())), t>T
and
x(t)=ct* +o(t*) as t— o0,

concluding that x(¢) is a solution of the neutral equation (A) having the
required asymptotic behavior (1.4). This sketches the proof of Theorem II.
The details are left to the reader.

Part 2. Existence of Solutions for the case 4 # 1
5. Statement of Existence Theorems

We now turn to the case A # 1 of (A) and prove the following existence
theorems.
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THEOREM I,. Let je{0,1,...,m — 1} and suppose that there is a constant
a >0 such that

(5.1) j M=) (¢, a[ g(e) PAIF)dt < oo
t,

0
Then, for any continuous t-periodic function w(t) such that max |w(t)| < a, the
t

equation (A) with 1 # 1 possesses a solution x(t) with the property that
(5.2) x(t) = /A" [w(t) + o(1)] as t— oo .

THEOREM II;. Let ke {0,1,...,n — 1} and suppose that there is a constant
a >0 such that

(5.3) J t"*1F(t, a[g(t)]¥)dt < o .

to
Then, for any constant c¢ such that 0 < |c| < a, the equation (A) with A # 1
possesses a solution x(t) with the property that

(5.4 x(t)=t"[c+0(1)] ast->oo.

ReMARK 5.1. The solution obtained in Theorem I, is oscillatory or non-
oscillatory according to whether the periodic function w(t) is oscillatory or
nonoscillatory. In either case the solution is unbounded if A>1 and is
decaying to zero as t > oo if 1 < 1. Since w(t) does not appear explicitly in
the condition (5.1), it guarantees the coexistence of oscillatory and nonoscilla-
tory solutions for the equation (A) with A # 1. The solution obtained in
Theorem II; is clearly nonoscillatory.

ExaMpLE 5.1. Consider the neutral equation
(5.5) D"[x(t) — 2Ax(t — 1) + 22x(t — 2)]
+4q@)|x@—3)sgnx(t—-3)=0, t>1,

where >0, #1, y>0, t,>3, and q:[T, ) > R is continuous. Since
A2x(t) = x(t) — 2Ax(t — 1) + A%x(t — 2), (5.5) is a special case of (A) (A#1)
in which m=2, t=1, g(t)=t— 3 and f(t, x) = q(t)|x|” sgn x. The function
F(t, u) in (0.3) can be taken to be F(t,u) = |q(t)|u’. The conditions (5.1) and
(5.3) for this equation reduce, respectively, to

(5.6) j OO g dt < o0, je{0,1},

V]

and
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(5.7) f IOk gt < 0, ke{0,1,...,n—1}.
t,

o

Suppose that

J t"1g(t)ldt < oo  for the case y<1,
t

o

j t AV g(2)|dt < o for the case y > 1.
t

()

Then all the integrals listed in (5.6) and (5.7) converge, and so, by Theorem
I, and II,, the equation (5.5) has solutions of type (I,)

xo(t) = A'[w(t) + o(1)], x,(t) = tA'[w(t) + o(1)] as t— o0
as well as solutions of the type (II,)
Yo®) = ¢ +o(1), y1() = tlc + o(V)], ..., pur(®) =t"[c+0(1)] as t— oo

for any nonzero constant ¢ and any continuous periodic function w(t) of
period 1.

6. Proof of Theorem I, (The case 4> 1)

A) PRELIMINARY REMARK. In view of the proofs of Theorems I and II
given in Part 1 one would be tempted to make use of appropriate “inverses”
of the difference operator A7 (1 # 1) to prove Theorem I, and II,. Such an
attempt, however, is unnecessary; in fact, the “inverses” of 4™ already em-
ployed, that is, suitable combinations of @ and ¥, are sufficient for our
purposes. To see this, we observe that

A;x(t) = AT AL x t)] (

so that

A7x(t) = A Am A7 x(1)] m=1,23 ...,
and the equation (A) with 4 # 1 can be expressed as

D"[A"A™[A™x(t)]] + f(t, x(9(¥))) =0, t>t,.

We will rewrite the above equation as
(A%) D'[ATA™X* ()] + f*(t, x*(g®) =0, t=t,,
by introducing the new functions

(6.1) x*(t) = A7"x(t), F*(t, x*) = f(t, A9Ox*) .
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Since a solution x*(t) of (A*) gives rise to a solution x(t) = A”*x*(t) of (A),
in order to prove Theorem I, it suffices to show the existence of a solution
x*(t) of (A*) such that x*(t) = t/[w(t) + o(1)] as t — oo for a given t-periodic
function w(t) provided (5.1) is satisfied. Likewise, Theorem II; is proved if
it is verified that (5.3) implies the existence of a solution x*(t) of (A*) such
that x*(t) = A™"t*[c + o(1)] as t > 0. A close look at the proofs of Theo-
rems I and II suggests us to obtain a solution x*(t) of (A*) from a pair of
functions (x*(t), y*(t)) satisfying

(B%) A™x*(t) = y*(t) and  D"(A"y*()) = —f*(t, x*(g(1)))

for all sufficiently large t. In what follows we make an effort to solve the
system (B*) by overcoming the difficulty caused by the presence of the factor
A,

B) Lemma. We need the following lemma.

LEMMA 6.1. Suppose that 2> 1. Let le N and let F € C[T, o0) be non-
negative for t > T, T>0. If [f¢'"'A""F()dt < oo, then A~ [%(t — s)’F(s)ds €
S![T, ) for any p e NU{0}.

Proor. By Lemma 2.2 we have

62) ¥ (l—t/f ft (t— s)"F(s)dS)
< >1—(r+ir)/r J’-Ht (t — s+ if)pF(S)dS
i < 1>/{ (t+it)/t i i (t —-Ss+ i‘[)pF(S)dS = 11 + Iz :

-1 J=LJt+(-1)

Il
ipMs

-~

I
ipM8

) t+(I—-1)t
)l—(t+n:)/tJ‘ (t — s + it)PF(s)ds
T

In order to estimate I,, I, we rewrite them as

t+(I-1)t 0 l . 1 .
I = L {; ( I 1>(t s+ iz)u-ﬂ-w)/f} JTF(s)ds ,

J=tJ+(-1) Ui=j

i—1 ‘
< - 1)(: —s+ ir)"l""‘“”’/'} A=rF(s)ds ,

and put

& (i+1—-1 .
L= i;) (l -;-__ : >/1'"2 and M =sup {uPA™?*:u > 0}.
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Because of A > 1, L and M are finite. Noting that se [T, t + (I — 1)t) implies
t—s+it>(i—1+)1>G0- D7,

we see that

i (;: i)(t — s+ ir)l’i—(t—s+it)/f <M S <; - i) A —s+inf2e

=1
<M i (l —I+1- 1) 476Dz — ML < MLT 51 ,

so that

t+(l—-1)t
(6.3) I, < MLTI_’J st 7Sk F(s)ds .

T
Let se[t+ (j — 1)t,t +jr]. Then,
t—s+it>@i—j)r, j—1<t(s—1),

and so we have for i >j>1

i1\ [(i—j+1-1\_= i-a (-l )
-1 -1 _q=1i—j+l—q—q=1 l—]+l—q

® (i—1 .
—(t—s+it)/2t
= ()
o (i—1\._._, j—1\&fi—j+1-1\, .
<M Aa J)/ZsM< > ( >l @i—j)/2
%(1-1) 1—1.;,- I—1

j—1
= ML (] B 1) < ML(j— 1) < MLt

® (i—1 .
Z (; >(t — s+ it)pl—(t—sﬂr)/r < M

for se[t + (j — I)1,t + jr]. Consequently, we have

0 t+jt
(6.4) I, <MLty J s (s)ds

J=UJe+(-1)

[¢o]

= MLz f s F(s)ds .
t

+(1-1)

Using (6.3) and (6.4) in (6.2), we conclude that
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t oo}
! <l"" I t— s)”F(s)ds) < ML max {T*", ¢!'7'} j s'TIATSF(s)ds ,
T T

completing the proof.

C) ProoF oF THEOREM I; (A >1). Let je{0,1,...,m —1}. Define the
function

F*(t, x*) = F(t, 299/x¥).

Then the condition (5.1) is written as

(6.5) r tm=imL ) UsEH(e a[ g()F)dt < oo .

0

For simplicity we put F*(t) = F*(t, a[g(t)}}). From (6.5) and Lemma 6.1
(l=m—j,p=n—1) we have

(6.6) P L ot, T F¥) = o(1)  as t> o0,

where 1, o(t, T; F*) is defined by (4.1), ie,

t _ nr1
L,o(t, T;F*)=f U—S)—F*(s)ds, t>T.

r (n—1)

Applying @' on both sides of (6.6) and using Lemma 3.2 (I =j, p =0), we
obtain

SYmI(QTL, o(t, T; F¥) = o(t))  as t—> o,
whence it follows that T > ¢, can be chosen so large that (2.8) holds and
SIYmIATL, o(t, T; F*) < got!,  t>T—mr,
where ¢, = a — max |w(t)| > 0.
Now we deﬁ;e the set X* x Y* < C[T,, ) x C[T, o) by

X* = {x*e C[T,, ©):|x*®)| <at)t > T,},

Y* = {y*e C[T, o0): [y*(®)] < v*(2), |y*(t) — y*(s)] < [v*(t) — v*(s)l, 5, t. > T},
where

v¥(e) = A7, o(t, T F*), t>T,

and the mapping F*: X* x Y* - C[T,, o) x C[T, ) by

FHe*, y¥) = (FFY FFEXY), (K y)eX* x Y,
1
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where

o)t + (=) idiPmTiy*), t>T—mr,
FryHo) = ti
1 Z*y*(T—mt)(T,_—mT_)j, T,<t<T-mt,

FFExMt) = — AL o, T; 2, x*(g(®)), t=>T.

Then it is verified exactly as in the proof of Theorem 1 (§3) that there exists
a fixed point (x*, y*)e X* x Y* of #* Since, in view of the definition of
F* x* and y* satisfy the equations (B*), the function x*(t) is shown to
satisfy the equation (A*) for t > T, so that x(t) = A”"x*(t) gives a solution of
the equation (A) for t > . That x(t) has the desired asymptotic behavior
(5.2) follows from the fact that x*(t) = t/[w(t) + o(1)] as t — co.

7. Proof of Theorem I, (The case 0 < A < 1)

A) Lemma. The proof of Theorem I, for the case 0 < A < 1 requires
a counterpart of Lemma 6.1 stated below.

LEMMA 7.1. Suppose that 0 <A<1. Let le N and let Fe C[T, o)
be nonnegative for t>T, T=>0. If ([fFt'"'A""F(t)dt < oo, then A7
[ (s — t)PF(s)ds € S'[ T, o) for any pe NU{0}.

Proor. Using Lemma 2.2 we have

p <wt f . t)"F(s)ds> -3 (; - i)r"*"’/’ f " (s—t— iPF()ds
t i=l - t

+it

o [i—1 o [ttt
Y (l 1>,1"‘+"’/‘ Y (s — t — it)’F(s)ds
- J

i=1 =i Je+je

Il
M8

gt (G .
{Z (1 )(s —t— ir)"/l‘s_"””’} A"FF(s)ds, t>T.
i=l

= Jeeje -1

Putting

L=Y A” and M =sup {uPi"*:u>0}

s

and noting that se [t + jr,t + (j + 1)t] implies
s—t—it>(j—i)r and j<t(s—1),

we see that



Existence theorems for a neutral functional differential equation 77
i l - 1 (S —t— l'T)pl(s_t_it)/t < M i l - 1 ll(s—t—ir)/Zt
si\U—-1 - =Z\U-1

<m(P ) $aomom < (f7!
1-1) & -1

<ML'"' <MLt (s —t)™' for se[t+jr,t+ (j+ Dr].
It follows therefore that

© © t+(j+1)t
p! (1"“J (s — t)”F(s)ds) <MLty J (s — t)}"*A7S*F(s)ds
t t

Jj=l +jt

< ML:'"! j siTIATSF(s)ds t>T.

t+lt

B) Proor oF THEOREM I; (0 < A < 1). We make use of the same nota-
tion as in the proof for the case A>1 (§6). Let je{0,1,...,m —1}. Since
(6.5) holds, by Lemma 7.1 I=m —j,p=n— 1) we have

qlm_j(i_t/rlo,n(t’ T, F*)) = 0(1) as t— oo,
where

© (S _ t)n—l
. (n—=1)

. which implies (apply Lemma 3.2 with I =j, p =0)
SIPmI(AT, (¢, T; F*) = o(t) as t— 0.

Thus T >t, can be chosen so that (2.8) holds and
SIPmI(AT, (8, T; F*)) < got? t>T—mt,

IO,n(t’ T, F*) = F*(S)ds s t>T,

where ¢, = a — max |w(t)] > 0. From this point one proceeds exactly as in
t

Subsection C of §6, except that the function v*(t) defining Y* is replaced by
v*(t) = A1, (¢, T; F*) and %5 is given by

FEx() = (=177, (8, T ¥, x*(9(),  t=>T,
to prove the existence of a fixed point of #* in X* x Y*, the first component

of which gives rise to a solution of the equation (A) satisfying (5.2). The
details may be omitted.

8. Proof of Theorem II;

A) LemMmas. We shall prove the existence of nonoscillatory solutions of
type (II,) of (A) via Schauder-Tychonoff fixed point theorem. The following
lemma is needed for this purpose.
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LEMMA 8.1. Let le N, pe NU{0} and G e C[T, o).
(i) If A>1 and G(t) = o(t?A7"") as t - oo, then

YIG(t) = o(tPA™) as t— oo .
(i) If 0<i<1 and G(t) = o(t?PA™"") as t - oo, then
D'G(t) = o(tPA™)  ast— .

The second statement of Lemma 8.1 follows from Lemma 3.3. In fact,
repeated application of Lemma 3.3 shows that

1 Lpl
tim 280 _ iy 4960 _ i, GO

- =0,
e PR L AEPATT) gy (1 — AYLPAT

since 4'(tPA7) = (1 — A)'tPA7 4 o(tPA7Y) as t — 0.
To prove the first statement of Lemma 8.1 we need another I'Hospital’s
rule for differences.

LEMMA 8.2. Let o, f e C[T — 1, ©) be functions such that

AB() #0 and lim o(f) = lim () =0.

t— o0 t—o0
Then
. Aa(t) ool
lim =ceR implies lim — = ¢
o AB(E) PHes s BO)

Suppose that 4 > 1 and G(t) = o(tPA™"*) as t - o0. Then it is clear that
G e S[T, ) and so PG(t) =o(1) as t - oo by Lemma 2.1. Applying Lemma
8.2 and noting that

A@PAT) = —(A — DtPAT 4 o(tPATHF) as t— oo,
we see that

im P60 _ o 4¥6GO L G

= lim
A I @) T e A= DA

which implies that YG(t) = o(tPA™"*) as t » co. The above argument applied
to ¥YG(t) shows that P2G(t) = o(tPA™"*) as t - 0. Thus we are led to the
desired conclusion of (i) of Lemma 8.1 in finite steps.

ProoF OF LEMMA 8.2. We may assume that A48(t) < 0 without loss of
generality. Let ¢t > T be fixed and put

a, = a(t + nt), b, = Bt + n1), n=0,1, 2, ....
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Then {b,} is strictly decreasing and lim g, = lim b, =0. From Lemma 7 of
[1] it follows that 1= PR
a4 a, — Qg a,— a_,

8.1 inf i < <su R n>2.
@1 by ~ by —bo ~ P B b,

Choose pe N so that sup (b,/by) < 1. From (8.1) and the relation

nzp
a, a,—ag b, a,
8.2 do_ 1)
®2) b, b.,—bo< bo>+bo
we have
—a_ b a
%o _ sup & a"-(l——">+—", n>p,
bo 1m bi—by \ bo) " | P

which gives in the limit as n— o

a<SUpl—al1
bo 121 b= by’

Since ay = alt), by = B(t), a,— a,_; = da(t + Ir), by— b_; = AB(t + It), this
implies

a(t) <su Aa(s)
Bt) = i Aﬁ(S)
so that
8.3) sup 29 as) _ Ad(S)

P26 = 5P 4B

On the other hand, letting n — oo in the inequality

aO al—l bn an
nf 1—-2)—1-"5, >p,
b Tt bz — b ( bo> by n=p
which follows from (8.2), we obtain
ao - 01—1
mf
bo 121 bz b,
which shows that
() Ao(s)

e = M B

From (8.3) and (8.4) it follows that

(8.4)
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20 a(t)

lim inf (t)<l < lim sup —— <1 Aa(t)

i~ AB(1) ﬁ( U P 480

which implies the truth of the first statement of Lemma 8.1.

B) ProoF oF THEOREM II; (The case 4> 1). Suppose that 4> 1.
Let ke {0,1,...,n—1}. Put F*(t) = F*(t, a[g()]*A79"), where F*(t, x*) =
F(t, A99x*), The condition (5.3) then becomes

[}
J. t"kIFX(f)dt < 0,
t,

o

and so the function A™°I, ,_.(t, T; F*) (cf. (4.1)) has the property
ATt T; F*) = o(t*A7"")  as t— 0.

From the first statement of Lemma 8.1 (I =m, p = k) we see that there is
T > t, such that (2.8) holds and

PmA L (6 T F¥) < egt“A™,  t>T —mr,

where ¢, =a — |c|.
Let us define the sets X* < C[T,, ), Y* < C[T, ) and the mappings
FXY* > C[T,, ©), #*: X* > C[T, o) as follows:

X* = {x*€ C[T,, o0):|x*(t)| < at*A™"" t > T,},
Y* = {y* € C[T, o0): [y*()] < [v*(@)], |y*(t) — y*()| < [v*(t) — v*()), s, 8, = T},
where v*(t) = A7, ,_,(t, T; F*),
ct A7 4 (= 1)MPTYE(e) t>T —mt,
FFy*e) = th A

FXyXT — mr)(T e T T,<t<T-—mr,

FHxHO) = (=D)AL e, Ts f* x*9(®), = T.

Then, proceeding as before, we are able to apply the Schauder-Tychonoff
theorem to conclude that the mapping #*: X* x Y* » C[T,, o) x C[T, o)
defined by

.g,'*(x*, y*) — (.Z*y*, .g(',z*x*) ) (x*, y*) € X* e Y* ,
possesses a fixed element (x*, y*) e X* x Y* which satisfies
x*(t) = ct* A7 + (= 1)"PTYX(D) , t>T—mr,

YO = (= )" AT L e, T fX(E x*(g9(®),  t= T,
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it follows that x*(f) and y*(¢) satisfy (B*), and so the function x(t) = A""x*(t)
is a solution of (A) for t > T. Since A"*¥™y*(t) = o(t*) as t— o by (i) of
Lemma 8.1, the solution x(t) has the asymptotic property (5.4).

C) Proor oF THEOREM II; (The case 0 < 4 < 1). Suppose that 0 <1 < 1
and let ke {0,1,...,n—1}. Let F*(t) be as in the preceding subsection and
take T > t, so that (2.8) holds and

DAL i(t, T F¥)) < got*A7", t>T—mt,

where ¢, =a —|c|. Such a choice of T is possible because of the second
statement of Lemma 8.1 (I =m, p = k).

Let X* and Y* be the sets of continuous functions defined exactly as
above. If we define the mappings %*: Y* > C[T,, ©) and %#*: X* -
C[T, ) by

ct* A7 + dmyX(r) , t>T—mt,
FEyH) = thAm
'%*y*(T - mT)(T — mt)kll—(T-mt)/r 4

T,<t<T-mrt,

FFxKO) = (= )AL e, T fX(8 x*9@)),  t> T,

then it can be shown in a routine manner that there exist functions x* € X*
and y* e Y* such that x* = #*y* and y* = #*x* and that the function x*
gives rise to a solution x(t) = A”*x*(t) of the equation (A) for t > T. From
(i) of Lemma 8.1 it follows that

x(t) = ct* + Ad"y*(t) = t*[c + o(1)) as t—> 0.

This completes the proof of Theorem II, for the case 0 < A < 1.
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