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 THE g-INTEGRAL IS NOT ROTATION
 INVARIANT

 1. Introduction

 In [1] A. Novikov and W.F. Pfeffer verified that the restricted gage integral,
 (abbreviated as g* -integral)^ is invariant with respect to lipeomorphic changes
 of coordinates. W.F. Pfeffer in a letter, [3], asked the author to try to find
 an example showing that the (unrestricted) gage integrály the g-integral , is not
 invariant even with respect to rotations. This paper contains this example.

 Our result illustrates that although the definition of the g- integral is sim-
 pler, the slightly more sophisticated g*- integral has more attractive prop-
 erties. The example presented in this paper also illustrates, see Remark 2,
 that the family of <7* -integrable functions is a proper subset of the family of
 ^-integrable functions (see also the Remark after Definition 8.4 in [2]).

 2. Preliminaries

 Put N = {1, 2, ...}. By Z and R we denote the integers and the real numbers.
 Given a set A C R2 we denote by 'A' the Lebesgue measure of A . The open
 ball of radius r centered at x 6 R2 is denoted by B(x , r). (In this paper we use
 the Euclidean metric, some papers use different but equivalent metric in R2.
 The integrals defined via any of these metrics is the same.) A two-dimensional
 interval is a set of the form [ai,6i] x [02,62] where a' <61, and <12 < 6 2. The
 regularity of an interval is the number

 min{6i - <11,62 - <*2}
 max{6i - <11,62 - ao}

 If 1 > 17 > 0 then an interval is irregular if its regularity is not less than 17.
 Denote by T the rotation of R2 by +£. This rotation maps the z-axis onto
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 If 1 > T] > 0 then an interval is 77-regular if its regularity is not less than 77.
 Denote by T the rotation of R2 by -f This rotation maps the x-axis onto
 the line y = x and the y-axis onto y = - x. A T-interval is the T-image of an
 interval, that is, a closed rectangle with sides parallel to the lines y = x, or
 y =5 - x. The regularity of a T-interval A equals the regularity of the interval
 T~'A).

 A figure and a T-figure is a finite union of intervals and T-intervals re-
 spectively. The perimeter of a figure, or a T-figure C is denoted by ||C||.
 (Since the boundary of a figure consists of finitely many line segments there
 is no doubt about the definition of the perimeter of figures.) A collection
 P = {(^4,-,x,) : i = l,...,p} is a subpartition of the figure C if the intervals
 Ai C C are non-overlapping and x¿ € Ai. The subpartition P is a partition
 when LÇ-iA = C. A subpartition {(j4í,x¿) : i = l,...,p} ¡s ^-regular if all
 intervals ^4,-, are rç-regular for i = 1, ...,p.

 A set is thin if it is of (7-finite one-dimensional Hausdorff measure. A non-

 negative function 6 on a set E C M2 is called a gage on E whenever the set
 {« € E : 6(x) = 0} is thin. Given a gage function S on a figure C and a
 subpartition P = {(-/4, •,£,•) : i = l,...,p} of C we say that P is 6-fine when
 Ai C J5(xf-,6(xi)).

 For the standard definition of the gage integral we refer to Definition 6.1 of
 [2]. In this paper we do not use explicitly this definition. On the other hand
 in the next few paragraphs we summarize the properties of the (/-integral we
 need in this paper. All these results and definitions are from [2].

 Assume that C is a given figure. The function F defined on all subfigures
 of C is called an additive function in C if

 F(C) = ¿F(C,)
 » = 1

 holds for all systems {Ci : i = 1, ...,p} consisting of non-overlapping subfigures
 of C. Additive functions of intervals, T-figures and T-intervals are defined in
 the obvious way. It is also clear that any additive function of intervals can be
 extended to be an additive function (of figures). An additive function in C is
 continuous if for any e > 0 there exists an tj > 0 such that |F(B)| < e holds
 for any subfigure B C C satisfying ||jB|| < 1 /c and |B| < r).

 Recall Proposition 6.4 of [2].

 Proposition 1 If C is a figure and f is g-integrable in C, then f is g-
 integrable on each figure B C C' and the map F : B (g) fB f is an additive
 continuous function in A .

 We also need the Henstock Lemma for ^-integrable functions and the nec-
 essary condition for ^-integrability which can be obtained from its conclusion
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 (Lemma 6.5 of [2], see also the remark after Proposition 2.3 in [1]).

 Proposition 2 Let C be a figure and f a function defined on C. Then f is
 g-integrable in C if and only if there is an additive continuous function F in
 C such that for every € > 0 there exists a gage S in C for which

 ¿ /(«OMil-FMO <e
 » = 1

 holds for each 6-fine e -regular partition {(Aj.x,) : t = l,...,p} of C.

 For a while it was confusing for the author that the above Theorem is
 true for both y-integrable and ^'-integrable functions with almost the same
 wording. The basic difference is that in the case of ¿/-integrable functions
 partitions consist of subintervals, while partitions in the theory of g* -integrable
 functions consist of subfigures.

 We say that an additive function F in a figure C is derivable at x G C if
 there exists a finite limit limF(Qn)/|Qn| for each sequence {Qn} of subinter-
 vals of C containing x, satisfying limřWOo diam(Qn) = 0 and for which there
 exists an r¡ > 0 such that the regularity of all Qny s exceeds ij . When all these
 limits exist they have the same value, denoted by F'(x).

 We also state Theorem 6.6 of [2].

 Proposition 3 Let f be a g-iniegrable function in a figure C, and let F(B) =
 (y) fB f for each figure B C C. Then for almost all x 6 C the function F is
 derivable at x and F'x) = f(x). In particular , the function f is measurable.

 Recall also that the ^-integral is a generalization of the Lebesgue integral
 and a function is Lebesgue integrable if and only if both / and |/| are g-
 integrable, see Theorem 6.7 of [2].

 By fA f we denote the Lebesgue integral of / on A. For the ¿/-integral we
 shall use the symbol (</) fA f.

 3. Main Result

 Theorem 1 The g-integral is not invariant xvith respect to rotations .

 Proof. We construct a function / : R2 - ► R which is ^-integrable on
 any subinterval of R2, but there are subintervals of R2 on which / o T is not
 y- integrable.

 Before turning to the details of our construction we outline its basic ideas.
 We define / as the infinite sum of certain auxiliary functions /n. The functions
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 fn are rather simple. These functions have non-zero values only on certain
 narrow stripes which are parallel to the line y = x. We denote by H+ the
 union of those half-stripes where the function fn has a non-zero positive value
 denoted by tn. By H~ we denote the union of the other half-stripes where fn
 equals - ťn. The choice of the constants tn requires a sort of a compromise to
 make / = ]£/n, y-integrable, but / o T non-0-integrable. This goal can be
 achieved since the non-zero values of each fn almost completely cancel out on
 each interval. On the other hand a T-interval can contain long linear parts
 of a half-stripe in H+ without intersecting its neighboring other half-stripe in
 Hence it is possible that on relatively large subsets of a T-interval the

 +tn values of /„ are not canceled by some - values.
 We turn now to the details of the proof. To define the sets H+ and H~ we
 need some auxiliary sets H'n chosen so that H'n D Uj=1(/í¿" and points
 in R *'H'n are sufficiently far away from the sets //¿" U Hļ ( k = l,...,n).
 We start the definition of the sets H+, H~ , and H'n by the definition of some
 important constants.
 For n = 1,2, ... put

 dn=2¿r, hn = 23n+'24n,, and cn = 22n.

 It is easy to verify the following properties of the above constants.

 OO 00 oo

 (1) < +°°. Yldn< +°°' E hndn K +0°'
 n=l n= 1 » = 1

 and

 0° 1 oo ,

 (2) E 7~n °n 1 < +o°- E ^C" (c n=l 7~n °n 1 n=l (c ^C"

 For j € Z put

 CLn j = j ' dn - hn , bn j = j • dn + /in,

 and

 j - j ' dfi Cfihfi - j ' ^ n Cnh-n "ł" ^n + l •

 Put H[ o = u/flooia'jj-.ò'u). For n > 2 put

 + 00

 j = -oo
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 The set H'n will consist of those lines which are parallel to y = x and intersect
 the x-axis at a point belonging to #4,0» ^at is,

 H'n = {(x,y):3z<=H'ni0, y = x-z).

 Put > jdn)t Hn,0 = oo O > bn J ) ,

 Ht = {(*.î>) : 3z G Hîfi,y = x - z),

 Ht = {(*. y) : 3r € H+ o, y = x - z} ' H'n_x

 and

 H' = {(x,y) :3z Ç Hîi0,y = x - z),

 H' = {(x, y) : 3z G H~0, y = x - z) ' H'n_v

 To define /„ first let ťn = dn/hn, and then put

 (tn if i 6 H+,
 f„(x)=l-tn if içj/-,

 ^ 0 otherwise.

 Let /(«) = i /„(*). Since Uj^ff+U/Ç-) C H'n_, and H'n_xn{H+ U
 H~) = 0 the sets //+ U /f ~ are disjoint for n = 1,2, ... . Thus for any x € R2
 there exist at most one n(ar) such that fn(x)(x) ^ 0- Hence YlnLi converges
 everywhere.

 Remark 1 Using that dn/hni hnļdn+' are natural numbers , the definition of
 anJ* ^nj» an d °f $e^s ' ^fT» ^ 15 casy 5CC S^P€S of the
 form Snj = {(x,y) : 3 z € (an,¿,í>n¿), 2/ = x - -} arc cither subsets of H'n_1
 or are disjoint from

 Remark 1 implies that if ti < v and v - u is an integer multiple of dn then
 the -Kn and -tn values of fn cancel each other on any segment of the form
 {(ť,y) : u < t < v} C R2 ' that is,

 (3) í fn(t , y) dt = 0 for any y 6 R.
 J u

 Using l/n I < łn, (3), and the definition of the sets H£ , and H~ we infer that

 (4) Í fn(t,y)dt < h„t„ = dn
 J U

 holds for any u < v and y 6 R.
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 Assume that C is a figure. Put Fn(C) = fc /»dAo where A2 denotes the
 Lebesgue measure in R2. It is obvious that for any y € M the intersection of C
 with the line {(*,y) : t G M} consists of finitely many disjoint one-dimensional
 intervals. Denote the number of these intervals by n(y). It is an easy exercise
 to verify that f*™ n(y)dy < ||C||. Using (4) we obtain

 (5) |F„(C)| = |jí /„d A2| = |/+J (J*™ fn(t,y)xc(t,y)d?) dy <

 'j+°° dn.ti(y)dy'<dn.''C'',
 where Xc(tyy) = 1 when (ť,y) G C and xc(t,y) = 0 otherwise.

 Assume that 17 > 0 is given, Q is an ^-regular interval and there exists x0 G
 Qsuch that xo & H'n. It is easy to see that dist(xo, H+UH~ ) > (cn - l)ftn/>/5.
 Therefore if diam(Q) < (cn - l)hn/y/2 then 5(xo,diam(Q))fl(//+ U H~) = 0
 and hence Jq fndX 2 = 0. Thus from Jq fndXn ^ 0, and xo G Q it follows that
 (cn - l)hn/y/2 < diam(Q). Therefore the longer side of Q is of length at least
 (cn - l)An/2, and the 77-regularity of Q implies that its shorter side is at least
 77 • (cn - l)hn/2. Hence

 (6) IQI > and 'Q' > i/Cw " Z .1)fe" ^11. 4 i Z 4

 Assume that Snj is a stripe defined in Remark 1. According to Remark
 1, fn is either identically zero on Snjj or |/n| = tn on Snj fi (H+ U H~).
 In the first case fçnS . fndX 2 = 0. In the second case, most of the tn values
 of fn are canceled by some - tn values. For ease of notation we illustrate
 this by working out some simple examples. If Snj intersects the boundary of
 Q in two parallel segments then obviously the area of Q fi Snj H H+ equals
 the area of Q fi Snj fì H~ and hence again fqnSn . fndX 2 = 0. Assume that
 Q = [-(1/2), (1/2)] X [0,1] and Snj = Sn, 0 = {(*,y) : G (-/in, M, V =
 X - z}. Then Snj fi Q can be split by the line x = hn into a parallelo-
 gram, denoted by P, and a triangle, denoted by E. It is again obvious that

 Iqdp fnd^2 = 0. On the other hand the area of the triangle is small. Since
 its vertices are the points (- /in,0), (/in, 0), and (hn,2hn) its area equals 2/i2.

 Thus |/gn5n . fndXo I = ' Jqhe - 2 h*tn. If Sn¿ contains the diagonal
 of Q then the estimations are somewhat more difficult than the above ones

 but one can see that | fgnS fndXo] < 8 A2/f, holds (this estimation can be
 improved but for our purposes it is sufficient). In the general case arguments
 similar to the above ones can be used, the details are left to the reader. Finally
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 one can obtain that

 (7) Í fn^ 2 ^ 8 h^tfi.
 'jQnSn,j

 It is easy to see that when n is fixed then the number of those Snj for

 which SnjHQ ^ 0 is no greater than l + (||Q||/án). Since Fn(Q) = fç /ndA2 =

 -co f<ļnSn,j f»dx 1 by usi"g (7) we obtain

 (8) 'Fn(Q)' < 8 in- hi (l + M) = 8^ • hi (l + M) = 8MIWII + <*»)•

 Using (6) we infer

 m (9) 'F»m . 8MIWII + d») . o fMGII + . . 4dn ' m (9) 1qT< . 'q' <è{lor . o + . hn(cn-ir-hi.n)- .

 8f_MM_ + +
 {rjíí^ph.m + +

 For an interval Q C R2 put F(Q) = ££°=1 ^n(Q). Observe that (1) and
 (8) imply that the series in the definition of F converges. Since a figure is the
 finite union of intervals F(C) is well defined for any figure C.
 Next we verify that F is the indefinite ^-integral of /.
 First we show that F is continuous. Assume that e > 0 is given. By

 using (1) choose No € N such that 5Zn°=N0 '^n < 2* Since the functions fn
 are bounded and measurable there exists an r] > 0 such that if the figure C
 satisfies 'C' < r¡ then l^n^T1 ^n(C)l < 5. Therefore if C is a given figure
 with ||C|| < ļ and |C| < 77 then the above estimations and (5) imply

 00 Ņ0-1 00
 'F(C)'= = £ Fn(C)+ ¿2 Fn(0 <

 n=l n = l n=No

 5+ E ''c''dn<i+ f; ld„<e.
 n=No n=N 0

 When n > i'ii we have fi (//+ U //¿"J = 0. Thus fn(x) = 0 for
 any n > Ni , and x 6 7/^,. Therefore /(x) = £n¿i/n(z), and ^(Q) =

 Fn(Q) holds for any x £ H'Ni and interval Q C H'Nļ. The functions fn
 are bounded, Lebesgue integrable functions and H'N is open, therefore F is an
 almost everywhere different ¡able function of an interval on H'Nx and F'(x) =
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 /(x) holds for almost every x G H'Sì . This also implies that F'(x) = /(x)
 holds for almost every x 6 U%LiH'n.
 Assume that xo £ U^L iH'ni and rj € (0, 1) are given, Q is an rç-regular

 interval, and xo 6 Q . Then (9) implies

 I 1 , *n '
 ( } 'Q' U(Cn-l) + , (c„-l)2/.n.J- '
 Assume that e > 0. By using (2) choose No € N such that

 (11) y; 64 f 1 ~ ^ +7 ( - " ^ kn - ' )<(. ntlVo ™ Cn ~ ^ +7 ( Cn " ^ kn ' 11 '

 It is easy to see that xo & Hļ ^0-1 implies that there exists a neighborhood,
 U ì of xo such that for x € U we have fn{x) = 0 for n = 1, No - 1. Then

 = Yln^No ^n(G) holds for any interval Q C U. Thus (10) and (11) imply

 TO)I „ .
 IQI

 for any rç-regular interval Q C U for which xo E Q. Since 0 < rj < 1 and e > 0
 was arbitrary we obtained F'(x o) = 0 = /(x o).

 Therefore we verified that F is a continuous function of an interval and

 F'{x) = /(x) holds for every x £ R2 ' U^LlHłn and for almost every x 6

 Assume that e > 0, and the interval iC®2 are given. If F is differentiate
 at x and F'(x) = /(x) choose 6(x ) > 0 such that

 (12) f(x)'Q'-F(Q) < 2j7|IQI
 holds for any e-regular interval satisfying x € Q, and Q C S(x,6(x)).

 If xo € U£L iH'n then there exists an No € N such that xo € H'Nq ' H'No_x
 (where put H'0 = 0). Choose 6o(^o) > 0 such that B(xo,ćo(*o)) C H'Nq.
 It is easy to see that from xo £ H'n0-i ^ f°"ows that there exists ¿i(xo) €
 (0,¿o(^o)) for which /*(x) = 0 holds for k < No and x 6 fl(xo, ¿i(xo)). It is
 also clear that x € H'Nq implies /¿(x) = 0 for k > No- Thus /(x) = //v0(x)
 when x € 2?(xo,¿i(xo)).

 The functions fn are Lebesgue, and hence p-integrable. For each n € N
 using Proposition 2 with e/2n+1 we can find a gage function 6 'n such that

 (13) fn(*i)'Ai' - Fn(Ai) < 2„+1
 i=i
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 holds for each 6^-fine subpartition {(v4,-,x,) : i = 1, ...,p} of A.
 If F is not difTerentiable at xo or F'(x o) f(x o) then aro €

 Choose No such that x0 € H'N() ' H'No_l. Put ¿(*o) = min{6i(ar0)> ^Jv0(^o)}-
 Assume that {(i4¿,x¿) : i = is a ¿-fine, e-regular partition in A.

 Put

 r = {i 6 {1, •••,?} : F is difTerentiable at Xļ and F'(z,) = /(x.)}.

 Using (12) and (13) we obtain

 ¿ f(xi)'Ai'-F(At) =
 « = 1

 £ f(*i)'Ai' - F (Ai) + ¿ £ /n(x,)M,| - Fn(Ai) <
 •er

 E 2'Ā' ' |j4ť| + Ž 2^+ī - 2'Ã'^ + 2 = e'
 (when Ý = 0 then the "empty sum", , is defined to have value 0). This
 implies that / is (/-integrable.

 Finally we verify that foT is not (/-integrable. Assume for a contradiction
 that / o T is y-integrable. By Proposition 3 the indefinite y-integral of / o T,
 that is the interval function ( g ) fA foT , is almost everywhere difTerentiable and
 its derivative at almost every x equals foT(x). We show that it is impossible.

 For ease of notation instead of working with /oT, (ordinary) intervals, and
 (ordinary) figures we shall work with /, T-intervals, and T-figures respectively.
 If Q is a T-interval, then T~l(Q) is an interval. Put

 G(Q) = (g) [ foT.
 JT-HQ)

 It is clear that if / o T is ^-integrable then G is an additive function of T-
 intervals which is almost everywhere difTerentiable with respect to T-intervals.
 Next we show that this leads to a contradiction.

 Assume that n 6 N is given and Q is a T-square such that two opposite
 sides of Q are on the lines y = x - kdn , y = x - (fc-f l)dn and Q C R2'H,n_l.
 Then the sides of Q are of length dn/y/ 2 and |Q| = d2/ 2. Denote by S the
 closed stripe bounded by y = x - (k + l)dn - hn and y = x - (Jb -I- l)dn. Put
 Q* = Qn5. It is obvious that 'Q'' = dnhn/ 2. From the definition of /„ and /
 it follows that fn(x) = /(*) = tn on the interior of Q*. Thus

 G(Q') = U'Q'' = ķn ^ = f = M-
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 Put Q" = Q' Q'. Then G(Q) - G(Q") = C(Q') = |Q|. Therefore

 (14) ( } G(Q) G(Q") - ļ (14) ( } IQI 'Q'
 Next we state a proposition which is needed to complete the proof of the

 theorem. Then using the Proposition we complete the proof of the theorem.
 Although the proof of the Proposition is not too difficult, for the sake of
 completeness we finish the paper by proving the Proposition.

 Proposition 4 Ifx o is a point of density o/M2'USťL1/ř^ then one can find a
 sequence {Qj : j = 1,2, ...} of T-squares such that xq € Qj> diam(Qj) - ► 0 as
 j - ► oo, and there exists n(j) and k(j) for which two opposite sides of Qj are
 on the lines y = X - k(j)dnU), y = x - (k(j) + l)dn(j) and Qj C R2'H'nU)_v

 Since almost every point of R2'U£°=1/ř4 ÌS point of density the conclu-
 sion of the Proposition holds for almost every xq in R2 ' U

 Now we return to the proof of the theorem. One can define, as in the

 paragraph preceding the Proposition, the T-intervals Qj and Q'j.
 It is easy to see that the intervals Q'j are

 ^ d»U) - h»U) : 1
 dn(i) 2

 regular. If G is differentiate at xo E R2 then

 J-00 IQjl J-CO 'Q'!'

 Since

 lim M = lim = !
 J-OO IQ; I J-CO d-(j)

 from (15) we obtain

 lim m.m. =
 J- 00 'Qj' IQjl

 lim ' m _o
 A™ lim 'Qj' 'Q'>' ' 'Qj'

 This contradicts (14). Thus at almost every points of M2 ' U,^L ļ H'n the T-
 interval function G is non-differentiable with respect to T-intervals.
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 Since it is easy to see that R2 ' U %LiH'n is of positive Lebesgue measure
 we obtained a contradiction with the assumption that G is almost everywhere
 T-differentiable and this completes the proof of the Theorem assuming the
 Proposition.

 Finally we verify the Proposition. Assume that xq is on the line y = x - zo.
 From the construction of the sets H'n it follows that if xo is a density point of

 R2'U ^L'Hłn with respect to À2, then zq is a density point of IRVJ^Lj/Z^.o = H"
 with respect to Ai.

 For every n G N choose a jn such that zo G an¿ J = Since xq £
 H'n it is easy to see that InnH'n0 = 0. Put I'n = If
 20 G In'I'n then either z0 is in Kj.-i >*>'„, ^-î+dn+i] or in Kj.-dn+i,
 Since the other case is similar we can assume that zq G

 Observe that (&'n>in_i C C ^>0'. Using i/"n
 ffio = 0 we have Aļ([r0 - 2dn+i, ¿o] H H") < d„+j. Therefore if z0 € ln ' Ķ
 for infinitely many n's then zq cannot be a point of density of H ". Thus there
 exists an N' G N such that for n > N' we have zq G I'n.

 Assume that for an n we have zo G I'n. Denote by k' the greatest integer
 for which k' • dn+i < zo. It is easy to see that zq ^ k' • dn+i> and *o G
 (¿' • dn+i, (fc; + 1) • dn+i) C In- From /„ fi Hłn 0 = 0 it follows that we can can
 find a T-square Q' such that xq E Qł CT^2'Hłn) and two opposite sides of Q'
 are on the lines y = x - ¿'cfn+i, y = a: - (¿' + l)dn+i. The results of this and
 the preceding paragraph imply that one can find the sequence of T-squares
 required in the Proposition. This concludes the proof.

 Remark 2 The function f defined above is g-integrable but noi g* -integrable.
 Indeed , we verified that f is g-integrable. Since the rotation is a lipeomorphism ,
 the assumption that f is g *- integrable by the result of [1] would imply that
 f oT is also g* -integrable which is impossible since we showed that f oT is
 not even g-integrable.

 References

 [1] A. Novikov and W. F. Pfeffer, An Invariant Riemann Type Integral Defined
 by Figures , to appear in Proc. Amer. Math. Soc.

 [2] W. F. Pfeffer, Lectures on geometrie integration and the divergence theo-
 rem, Rend. 1st. Mat. Univ. Trieste, in press.

 [3] W. F. Pfeffer, Letter sent to the author.


	Contents
	p. 437
	p. 438
	p. 439
	p. 440
	p. 441
	p. 442
	p. 443
	p. 444
	p. 445
	p. 446
	p. 447

	Issue Table of Contents
	Real Analysis Exchange, Vol. 18, No. 2 (1992-93) pp. 292-619
	Front Matter
	EDITORIAL MESSAGES [pp. 292-292]
	CONFERENCE ANNOUNCEMENT: Symposium on Real Analysis at Xiamen [pp. 293-293]
	TOPICAL SURVEY
	AN INTRODUCTION TO SHELL POROSITY [pp. 294-320]

	RESEARCH ARTICLES
	QUASI-UNIFORM CONVERGENCE AND ℒ-SPACES [pp. 321-329]
	ON BOREL SETS WITH SMALL COVER: A PROBLEM OF M. LACZKOVICH [pp. 330-338]
	SOME REMARKS ON DENSITY TOPOLOGIES ON THE PLANE [pp. 339-342]
	NORMS AND DERIVATIVES [pp. 343-351]
	STOCHASTIC INTEGRALS OF ITÔ AND HENSTOCK [pp. 352-366]
	Density and I-density continuous homeomorphisms [pp. 367-384]
	BAIRE ONE STAR FUNCTIONS [pp. 385-399]
	FUNCTIONS WITH POINTWISE DISCONTINUOUS RESTRICTIONS [pp. 400-408]
	ABSOLUTE INTEGRATION USING VITALI COVERS [pp. 409-419]
	An absorption property for the composition of functions [pp. 420-426]
	PROPERTIES OF A GENERALIZED STIELTJES INTEGRAL DEFINED ON DENSE SUBSETS OF AN INTERVAL [pp. 427-436]
	THE g-INTEGRAL IS NOT ROTATION INVARIANT [pp. 437-447]

	INROADS
	NON-BAIRE SETS IN CATEGORY BASES [pp. 448-452]
	A NOTE ON OPEN-INTERVAL MEASURES [pp. 453-455]
	ON LEBESGUE INTEGRABILITY OF MCSHANE INTEGRABLE FUNCTIONS [pp. 456-458]
	CONVERGENCE OF EVENLY CONTINUOUS NETS IN GENERAL FUNCTION SPACES [pp. 459-464]
	STRONGLY BALANCED SELECTIONS [pp. 465-470]
	ON A PROBLEM CONCERNING UNIVERSALLY BAD DARBOUX FUNCTIONS [pp. 471-475]
	THE PACKING MEASURE AND SYMMETRIC DERIVATION BASIS MEASURE-II [pp. 476-479]
	NOTES ON NONNEGATIVE CONVERGENT SERIES [pp. 480-489]
	CHAOTIC BEHAVIOR OF NEWTON'S METHOD [pp. 490-507]
	ARCWISE ALMOST CONTINUOUS FUNCTIONS [pp. 508-521]
	ON NECESSARY CONDITIONS FOR HENSTOCK INTEGRABILITY [pp. 522-531]
	TYPICAL PROPERTIES OF CONTINUOUS FUNCTIONS VIA THE VIEROTIS TOPOLOGY [pp. 532-536]
	A NOTE ON ABSOLUTE SUMMABILITY METHODS [pp. 537-543]
	ON β-CONTINUOUS FUNCTIONS [pp. 544-548]
	A NOTE ON CLOSED GRAPH FUNCTIONS AND LOCAL w* CONTINUITY [pp. 549-552]
	ON BOREL MEASURES ON SEPARABLE METRIC SPACES [pp. 553-556]
	A GENERALIZATION OF L'HÔPITAL'S RULE VIA ABSOLUTE CONTINUITY AND BANACH MODULES [pp. 557-567]
	THE SQUEEZING THEOREM IS INDEPENDENT [pp. 568-570]
	SOME RESULTS CONCERNING HAMEL BASES [pp. 571-574]
	QUALITATIVE SYMMETRIC DIFFERENTIATION [pp. 575-584]
	ON A THEOREM OF MENKYNA [pp. 585-589]
	PRODUCTS OF DERIVATIVES OF INTERVAL FUNCTIONS WITH CONTINUOUS FUNCTIONS [pp. 590-598]
	ALGEBRA GENERATED BY NON-DEGENERATE DERIVATIVES [pp. 599-611]
	BAIRE ONE FUNCTIONS AND PERFECT SETS [pp. 612-614]
	THE RANGE OF A SYMMETRIC DERIVATIVE [pp. 615-618]
	PRODUCTS OF DARBOUX FUNCTIONS: ERRATA [pp. 619-619]

	Back Matter



