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On Some Questions of R. Gordon Related to
Approximate and Dyadic Henstock Integrals

In [1] Russell A. Gordon gave new descriptive characterizations of the approx-
imate Henstock integral and of the dyadic Henstock integral using ACG, and
ACG functions and posed three questions related to these classes of functions.

Here we give answers to these questions and make some other related re-
marks.

For the definitions and notation the reader is referred to [1].

1. “Is every Denjoy-Khintchine integrable function S-Henstock integrable?
This amounts to asking whether or not an ACG function is ACG,.”

The answer is “No!” l.e., there exists an ACG function which is not ACG,.

To prove this we can use an example constructed by Tolstov [2].

Let pf = (a?,b7), k=1,2,...,2""!, n=1,2,..., be contiguous intervals of
the Cantor ternary set C, |pi| = 3=". Let ¢}, d} be such that a} < ¢ < df < b7
and ¢ — af = b — d} = 0(|b} — a|) as n — oo. Put

n-1 for z € (c},d}),
F(z)=<0 forz € C,
is linear for z € [a}, c}] U [df, b7].

Obviously F(z) is an ACG function.

It is proved in [2] that F is not an indefinite approximate Perron integral.
But the AP-integral is equivalent to the S-Henstock type integral (See [3], where
Th.1.6.1 relates to a general Henstock type integral, where the S-integral is a
special case of it). According to [1] ACG, is a descriptive characterization of
the S-Henstock integral. So, F is not an ACG, function.

2. “Is there a continuous function that has a dyadic derivative at each point,
but is not differentiable on an uncountable set?”

The positive answer is given here by constructing an example of a function
with the required properties.
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On the unit interval define a Cantor type set P by deleting a sequence of
open intervals. Let E} be the open middle half of the unit interval [0, 1]; i.e.,
E} = [(52). Let Ef and E} be the open middle halves of the two closed
intervals of [0, 1)\E}; i.e., E} = (%, &), E} = (13, 13). Delete these and let
E3,E3, E3, E3 be the open middle halves of the remaining four closed intervals,
etc. The perfect set is defined as

P =0, 1\ JE}

n,k

Notice that each interval E} is the union of two dyadic intervals of order 2n.
Put

F(z) = {}Tsin221rz'_: for z € E} = (a,b)

forz € P.

F(z) is continuous on [0, 1], differentiable on each E} and at the end points
of E} from inside but is not differentiable on P. (For each z € P there exists a
sequence {z;,}, £, — z, such that

F(z3)

r_
zh -z

22n
> =)

Let D represent the set of dyadic rational numbers in [0, 1].

Fj(z) = 0 at each z € P\D because for such z and for all n, F(z, +2"") -
F(z,) = 0, (We are using the notation from [1].) and Fj(r) = 0 at eachr € PUD
because such r is an end point of some E? and

F(r+2™™)—F(r)=F(r-2"")-F(r)=0

for all n and for all points r 4+ 27", » — 27" outside of E}; the derivative from
inside of E? being equal to 0.

Remark 1. In fact a stronger result holds. There exists a continuous func-
tion that has a dyadic derivative everywhere, but is not differentiable on a set
of positive measure. At the same time the following theorem was proved in [4.
Lemma 4 and Theorem 2]: If F is dyadicly differentiable on a measurable set E,
then F approximately differentiable almost everywhere on E and

Fgp(z) = Fi(z) a.e.

3. Does an ACG4 function have a dyadic derivative almost everywhere?
To get the positive answer we need the following theorem: Fj(z) ezists at
almost every point of a set where either

Fy(z) < +oo or Fj(z) > —co.
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(This is a special case of the theorem from Saks [5, Ch. V1. p 1921.)
Having this, repeat the arguments of Theorem 21 of [1] to get the required
result.

Remark 2. We note in conclusion that in contrast to the case of an ACG,
function (and in particular of ACGy function [6]), ACG4 functions can fail to
satisfy Lusin’s condition (N). (See [7].)
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