Real Analysis Exchange

Vol. 18(1), 1992/93, pp. 82-86
Hüseyin Bor, Department of Mathematics, Erciyes University, Kayseri 38039, Turkey, Mailing Address: P.K. 213, Kayseri 38002, Turkey

A Note on Absolute Nörlund Summability Factors

Let $\sum a_{n}$ be an infinite series with sequence of partial sums $\left(s_{n}\right)$. By δ_{n} and t_{n} we denote the nth $(C, 1)$ means of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\delta_{n}-\delta_{n-1}\right|^{k}<\infty . \tag{1}
\end{equation*}
$$

Since $t_{n}=n\left(\delta_{n}-\delta_{n-1}\right)$ (see [4]), condition (1) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{2}
\end{equation*}
$$

Let (p_{n}) be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n} \neq 0, \quad(n \geq 0) \tag{3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
z_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{4}
\end{equation*}
$$

defines the sequence $\left(z_{n}\right)$ of the Nörlund means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$ if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|z_{n}-z_{n-1}\right|<\infty, \tag{5}
\end{equation*}
$$

Key Words: Absolute summability, strong summability, summability factors, Nörlund methods.

Mathematical Reviews subject classification: 40D15, 40F05, 40G05
Received by the editors September 4, 1991
and it is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|z_{n}-z_{n-1}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

In the special case when $p_{n}=1$ and $P_{n}=n+1$, the Nörlund mean reduces to the ($C, 1$) mean and $\left|N, p_{n}\right|_{k}$ summability becomes $|C, 1|_{k}$ summability.

Varma [6] proved the following theorem concerning the $|C, 1|_{k}$ and $\left|N, p_{n}\right|_{k}$ summability methods.

Theorem 1 Let $p_{0}>0, p_{n} \geq 0$ and let $\left(p_{n}\right)$ be a nonincreasing sequence. Let $k \geq 1$. If $\sum a_{n}$ is summable $|\bar{C}, 1|_{k}$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}$.

Quite recently the author proved the following theorem (see [1]).
Theorem 2 Let $\left(p_{n}\right)$ be a sequence as in Theorem 1. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{7}
\end{equation*}
$$

where $\left(X_{n}\right)$ is a positive nondecreasing sequence and $\left(l_{n}\right)$ is a sequence such that ${ }^{1}$

$$
\begin{gather*}
\sum_{n=1}^{\infty} n X_{n}\left|\Delta^{2} l_{n}\right|<\infty \tag{8}\\
l_{n} X_{n}=O(1) \text { as } n \rightarrow \infty, \tag{9}
\end{gather*}
$$

then the series $\sum a_{n} l_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, \rho_{n}\right|$.
The aim of this paper is to generalize Theorem 2 for $\left|N, p_{n}\right|_{k}$ summability with $k \geq 1$. Now, we shall prove the following theorem.

Theorem 3 Let $\left(p_{n}\right)$ be a sequence as in Theorem 1 and let $k \geq 1$. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|^{k}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

and the sequences $\left(X_{n}\right)$ and $\left(l_{n}\right)$ are such that conditions (8), (9) of Theorem 2 are satisfied, then the series $\sum a_{n} l_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}$.

[^0]It should be noted that if we take $k=1$ in this theorem, then we get Theorem 2.

We need the following lemma for the proof of our theorem.
Lemma 4 ([1]) Under the conditions of the theorem we have

$$
\begin{gather*}
n X_{n} \Delta l_{n}=O(1) \text { as } n \rightarrow \infty \tag{11}\\
\sum_{n=1}^{\infty} X_{n}\left|\Delta l_{n}\right|<\infty \tag{12}
\end{gather*}
$$

Proof of the Theorem. By virtue of Theorem 1, we need only deal with special case in which $p_{n} \equiv 1$, that is we shall prove that $\sum a_{n} l_{n}$ is summable $|C, 1|_{k}, k \geq 1$. Let T_{n} be the n-th $(C, 1)$ mean of the sequence $\left(n a_{n} l_{n}\right)$, that is

$$
\begin{equation*}
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} l_{v} \tag{13}
\end{equation*}
$$

Now, applying Abel's transformation, we have something similar to

$$
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta l_{v}(v+1) t_{v}+l_{n} t_{n}=T_{n, 1}+T_{n, 2}
$$

To complete the proof of the theorem it is sufficient, by Minkowski's inequality, to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, i}\right|^{k}<\infty, \text { for } i=1,2 \tag{14}
\end{equation*}
$$

First note that

$$
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}\right|^{k}=O(1) \sum_{n=2}^{m+1} n^{-k-1}\left\{\sum_{v=1}^{n-1} v\left|\Delta l_{v}\right|\left|t_{v}\right|\right\}^{k}
$$

When $k>1$ with $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we apply IIölder's inequality to the right hand side. It turns into

$$
O(1) \sum_{n=2}^{m+1} n^{-k-1} \sum_{v=1}^{n-1}\left(v\left|\Delta l_{v} \| t_{v}\right|\right)^{k} \times\left\{\sum_{v=1}^{n-1} 1\right\}^{k / k^{\prime}}
$$

which, for any $k>1$, is

$$
O(1) \sum_{n=2}^{m+1} n^{-k-1}\left\{\sum_{v=1}^{n-1} v\left|\Delta l_{v} \| t_{v}\right|^{k}\right\} \times O\left(n^{k-1}\right)
$$

through (11). Thus

$$
\begin{aligned}
O(1) & \sum_{v=1}^{m} v\left|\Delta l_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}=O(1) \sum_{v=1}^{m} v\left|\Delta l_{v}\right| \frac{1}{v}\left|t_{v}\right|^{k} \\
& =O(1)\left\{\sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta l_{v}\right|\right)\right| \sum_{r=1}^{v} \frac{1}{r}\left|t_{r}\right|^{k}+m\left(\Delta l_{m}\right) \sum_{v=1}^{m} \frac{1}{v}\left|t_{v}\right|^{k}\right\} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta l_{v}\right|\right)\right| X_{v}+O(1) m X_{m} \Delta l_{m} \\
& =O(1) \sum_{v=1}^{m-1} v X_{v}\left|\Delta^{2} l_{v}\right|+O(1) \sum_{v=1}^{m-1}\left|\Delta l_{v+1}\right| X_{v}+O(1) m X_{m} \Delta l_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of (8), (10), (11), and (12). Since $l_{n}=O\left(1 / X_{n}\right)=O(1)$, by (9), we have

$$
\begin{aligned}
& \sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}\right|^{k}=\sum_{n=1}^{m} \frac{1}{n}\left|l_{n} t_{n}\right|^{k}=\sum_{n=1}^{m}\left|l_{n}\right|^{k-1}\left|l_{n}\right| \frac{1}{n}\left|t_{n}\right|^{k} \\
& \quad=O(1) \sum_{n=1}^{m}\left|l_{n}\right| \frac{1}{n}\left|t_{n}\right|^{k}=O(1) \sum_{n=1}^{m-1}\left|\Delta l_{n}\right| \sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|^{k}+O(1) l_{m} \sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k} \\
& \quad=O(1) \sum_{n=1}^{m-1}\left|\Delta l_{n}\right| X_{n}+O(1) l_{m} X_{m}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of (9), (10), and (12). Therefore, we get that

$$
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, i}\right|^{k}=O(1) \text { as } m \rightarrow \infty, \text { for } i=1,2
$$

This completes the proof of the theorem.
The author offers his sincerest gratitude to the referee for his kind interest and valuable suggestions for the improvement of this paper.

References

[1] II. Bor, Absolute Nörlund summability factors, Utilitas Math., (in press).
[2] D. Borwein and F.P. Cass, Strong Nörlund summability, Math Z., 103 (1968), 94-111.
[3] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[4] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. (2), 49 (1925), 234-256.
[5] F.M. Mears, Some multiplication theorems for the Nörlund mean, Bull. Amer. Math. Soc., 41 (1935), 875-880.
[6] S.M. Varma, On the absolute Nörlund summability factors, Riv. Mat. Univ. Parma (4), 3 (1977), 27-33.

[^0]: ${ }^{1} \Delta^{2} l_{n}=\Delta\left(\Delta l_{n}\right)$ and $\Delta l_{n}=l_{n}-l_{n+1}$.

