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 A Note on Absolute Nörlund Summability
 Factors

 Let ^2an be an infinite series with sequence of partial sums (sn). By 6n and
 in we denote the nth (C, 1) means of the sequences (sn) and (nan), respectively.
 The series ^2 an is said to be summable |C, 1|*, k > 1, if (see [3])

 <oo. (1)
 n= 1

 Since tn = n(6n - 5n-i) (see [4]), condition (1) can also be written as

 £ ÍTN* < (2)
 n= 1

 Let ( pn ) be a sequence of constants, real or complex, and let us write

 Pn = Po + Pi +P2 H

 The sequence-to-sequence transformation

 1 n Zn = -5-Y^Pn-VSv 1 (4)
 n v=0

 defines the sequence ( zn ) of the Nörlund means of the sequence (sn), generated
 by the sequence of coefficients (pn). The series Xļan is said to be summable
 'N, pn' if (see [5])

 OO

 ^2 kn - Zn-'' < 00, (5)
 n=l
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 and it is said to be summable 'N, pn'ki Ar > 1, if (see [2])

 oo

 nk~1'zn - zn-i|* < oo. (6)
 n=l

 In the special case when pn = 1 and Pn = n + 1, the Nörlund mean reduces to
 the (C, 1) mean and |JV, pn'k summability becomes |C, 1 |jb summability.

 Varma [6] proved the following theorem concerning the |C, 1 and 'N, pn'k
 summability methods.

 Theorem 1 Let po > 0, pn > 0 and let ( pn ) be a nonincreasing sequence. Let
 k>l. IfYlan is summable 'C,l'k, then the series anP„(n-fl)"1 is summable
 'N,pn'k.

 Quite recently the author proved the following theorem (see [1]).

 Theorem 2 Let ( pn ) be a sequence as in Theorem 1. If

 n 1
 £-|<„l 1 = 0(Xn) as n -y oo, (7)
 Ü = 1

 where (Xn) is a positive nondecreasing sequence and (/n) is a sequence such that 1

 oo

 £>X„|A2/„|<oo (8)
 n- 1

 lnXn = 0( 1) as n - y oo, (9)

 then the series 5Zan^n^n(rc+ l)""1 is summable 'N,pn'.

 The aim of this paper is to generalize Theorem 2 for 'NyPn'k summability
 with k > 1. Now, we shall prove the following theorem.

 Theorem 3 Let ( pn ) be a sequence as in Theorem 1 and let k > 1. If

 n 1
 ^ -'tv'k = 0(Xn) as n- ►oo, (10)
 V = 1

 and the sequences (X„) and (/„) are such that conditions (8), (9) of Theorem 2
 are satisfied, then the series ]T¡a„/„Pn(n + l)-1 «« summable |iV, pn'k.

 1 A 2/„ = A(A/„) and A /„ = /„ -
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 It should be noted that if we take Ar = 1 in this theorem, then we get Theorem
 2.

 We need the following lemma for the proof of our theorem.

 Lemma 4 ([1]) Under the conditions of the theorem we have

 nXnAln = 0(1) as n - ► oo (11)
 oo

 £xn|A/„|<oo. (12)
 n = l

 Proof of the Theorem. By virtue of Theorem 1, we need only deal with
 special case in which pn = 1, that is we shall prove that ]> ^anln is summable
 |C,1|*, k > 1. Let Tn be the n-th (C, 1) mean of the sequence (nan/„), that is

 1 n Tn = - 1 TY,vavĻ. (13)
 n + 1^-1 1 V = 1

 Now, applying Abel's transformation, we have something similar to

 i "-1

 Tn = - -r 1 ^2 "f 1 )tv + Intn = ?n,l + 7n,2-
 n_h 1 v = l

 To complete the proof of the theorem it is sufficient, by Minkowski's inequality,
 to show that

 00 1
 V. -Irn,.|* < OO, for i = 1,2. (14)

 A 1 U n= A 1

 First note that

 m+l - m +1 ťn - 1 'j *
 E = 0(1) Š n"fc_1 1 E «ia/„IIÍ„I ' .
 n=2 n=2 U = 1 J

 When k > 1 with ļ + p- = 1, we apply Holder's inequality to the right hand
 side. It turns into

 m+l n- 1 fn- 1 ļ */*'
 OWEn-^EWAMW^xiE1} • n= 2 v - 1 I f = l J

 which, for any k > 1, is

 m+l fn-1 ļ
 0(1) E "_*_1 ' EHA/,11^1* ' X Oí«*"1) n= 2 Lf=l J
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 through (11). Thus

 m m-fl m 1

 0(l)£>|Af„||*„|* £ = 0(1)][>|A/V|i|ť„|* 1
 v = l n=v + l v = l

 {m- £ v = l 1 |A(«|A/„|)| 2 r=l v -|íP|* i + m(A/m) J] u m = l -|ť„|* ü - J ^ {m- £ |A(«|A/„|)| 2 -|íP|* i + m(A/m) J] -|ť„|* ü ' v = l r=l u = l ü J
 m- 1

 = O(l) £ |A(t;|A/,,|)|X„ + 0(l)rnXmAlm
 V=1

 ra- 1 ra- 1

 = 0(1) «*„|Aa/„| + 0(1) J2 'Alv+l'Xv + 0(l)rnXmA/m = O(l)
 v=l v=l

 asm-+ oo, by virtue of (8), (10), (11), and (12). Since /n = 0(1/Xn) = 0(1),
 by (9), we have

 ra . ra ļ m 1

 E -M = E = E
 n=l n = l n = l

 ra ra- 1 n - m 1

 = 0(1) E l'nl-l'nl* = O(l) E |A/„| £ -|ť„|* + 0(l)/m ]T Í|ťB|* 1
 n=l n = l v = l n=l

 ra- 1

 = O(l) |A/„|A'„ + 0(l)/m A'm = O(l) as m - oo,
 n= 1

 by virtue of (9), (10), and (12). Therefore, we get that

 m j
 y: - |Tn>t|fc = 0(1) as m - ► oo, for i = 1, 2.

 ; 1 n n= 1

 This completes the proof of the theorem.

 The author offers his sincerest gratitude to the referee for his kind interest
 and valuable suggestions for the improvement of this paper.
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