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 Packing Measures in Different Bases and
 Probability Theory

 Patrick Billingsley [1] defines the HausdorfF measure in bases other than base
 two. These "Hausdorff measures" are equivalent to the standard HausdorfF mea-
 sure in that both are zero, finite, or infinite on the same set. The "probability"
 in the author's paper was omitted from the author's talk.

 The author attempted to define the packing measure in different bases so that
 the definition would be the same as Tricot and Taylor's work with semi-dyadic
 numbers and so the packing measure in different bases would be equivalent to
 the standard packing measure.

 The definition of the Base Measures is as follows:

 Definition 1 (Base Measures) Let E be any set in Rm and let t be any natural
 number such that t > 2. Let /, and k{, i = 1 . . .,m be any integers such that
 t 2 > hi- li > 3 and ki-l' = k^-h = . . . = km-lm. Let n be any natural number
 and let <$(#) be any positive real function defined on Mm. Let h : [0,oo) - ► [0,oo)

 such that h( 0) = 0 and limsupr_0 = h* < oo. Let I = YiT=i [<i"> C

 with the diameter of I, 'I', satisfying 2^21 < |/| < Also , a point x G
 £H{nr=i [^,*^]} andICB{x,6{x)). Then H t(E) = sup Ä(|/,|) ; U
 is any non-overlapping sequence of intervals in Mm defined as above for a given
 positive ¿(x)}. The base measure is ht(E) = inf {Ht(E) : 6(x) is any positive
 real function}.

 The following observation shows that if you take a specific packing by balls,
 that a cube, defined in the Definition can be placed inside the ball. This is
 needed for Theorem 1.

 Observation 1 Let B(x, r) be any ball in Mm and let t be any natural number
 such that t > 2. Then , there exists a natural number n such that - <2 r <

 There exists a natural number u such that | and the interval I =
 nr=i [tn+'i-i-i , f-fc-t-i] has the following properties

 (i) I C B(x,r)
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 M*en?=i [ïÂ-7^]

 (m) jšMr < m < ķā
 In the theorem that follows, hp(E) is the standard packing measure.

 Theorem 1 Let t be any natural number and let E be any set in Mm. Let q(t)

 be a natural number such that < 2^*). Then , hp(E ) < [l + (A* )*(')] ht(E).

 From the definition of the base measures, it is clear that a ball can be placed
 inside a cube. Therefore, Theorem 2 follows:

 Theorem 2 Let t be a natural number and let E be any set in Mm. Let q(t) be

 any natural number such that Ç < 2q^' Then , ht(E) < [l 4- (A*)^*)] hp(E).

 If w(E, n ) is defined to be the number of t~n intervals that intersect E , the
 author was attempting to show that a = inf {/? : W(E) n)(t~n)P converges}
 was the packing measure dimension of E . However, it turns out to be the
 dimension of the packing premeasure.

 Theorem 3 Let E C [0, 1], and let

 log w(E,n)
 7 = limsup - :

 n-oo log tn

 and
 oo

 a = inf{/? : w(E , n)(ź~n)^ converges}.
 n = 1

 Then y - a.
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