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Abstract. In this paper we describe the multiplier algebra of a perfect com-
plete locally m-convex algebra with an approximate identity and with complete
Arens-Michael normed factors.

1. Introduction and Preliminaries

Multipliers are important in various areas of mathematics where an algebra struc-
ture appears (see e.g [1]; for (non-normed) topological algebras cf. e.g. [4]).

The algebras considered throughout are taken over the field of complexes C.
Denote by L(E) the algebra of all linear operators on an algebra E.

Definition 1.1. A mapping T : E → E is called a left (right) multiplier on E if
T (xy) = T (x)y (resp. T (xy) = xT (y)) for all x, y ∈ E ; it is called a two-sided
multiplier on E if it is both a left and a right multiplier.

It is known that if E is a proper algebra, namely xE = {0} implies x = 0
or Ex = {0} implies x = 0, where 0 denotes the zero element of E, then any
two-sided multiplier on E is automatically a linear mapping [6, p. 20].

In the sequel, a two-sided multiplier will be called in short, a multiplier. We
denote by Ml(E) the set of all left multipliers on E, by Mr(E) the set of all
right multipliers on E and by M(E) that of all multipliers on E. Note that, by
definition, M(E) = Ml(E) ∩Mr(E).
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Obviously M(E) is a subalgebra of L(E) in case the algebra is proper. The
same holds for Mr(E) and Ml(E). Now, for x ∈ E, the operator lx on E given by
lx(y) = xy , y ∈ E, is, due to the associativity of E, a left multiplier. Similarly,
we can also define the right multiplier with respect to x ∈ E, say rx.

It is known that if E is a proper algebra, then the mapping

L : E →Ml(E) given by x 7→ lx

defines an algebra monomorphism which identifies E with a subalgebra of Ml(E).
Moreover, E is a left ideal of the algebra Ml(E). A similar result is also valid for
right multipliers. For multipliers, the algebra E can be identified with a two-sided
ideal in M(E) ([3, p. 1933, Proposition 2.2 and p. 1934, Corollary 2.3]).

Definition 1.2. An approximate identity in a topological algebra E is a net
(eδ)δ∈∆ such that for each x ∈ E we have

(x− xeδ)→
δ

0 and (x− eδx)→
δ

0 for all x ∈ E.

Note that an algebra with an approximate identity is proper. In this paper we
describe the multiplier algebra M(E) in the case where E is a certain complete
locally m-convex algebra with an approximate identity.

For the sake of completeness, we recall what we mean by the “Arens-Michael
decomposition” ([7, p. 88, Theorem 3.1]).

Let (E, (pα)α∈Λ) be a complete locally m-convex algebra and

ρα : E → E/ ker(pα) ≡ Eα defined by ρα(x) = x + ker(pα) ≡ xα, α ∈ Λ

the respective quotient maps. Then ṗα(xα) := pα(x), x ∈ E, α ∈ Λ defines on Eα

an algebra norm, so that Eα is a normed algebra and the morphisms ρα, α ∈ Λ
are continuous. Ẽα, α ∈ Λ denotes the completion of Eα (with respect to ṗα). Λ
is endowed with a partial order by putting α ≤ β if and only if pα(x) ≤ pβ(x) for
every x ∈ E. Thus, ker(pβ) ⊆ ker(pα) and hence the continuous (onto) morphism
fαβ : Eβ → Eα : xβ 7→ fαβ(xβ) = xα, α ≤ β is defined. Moreover, fαβ is extended

to a continuous morphism f̄αβ : Ẽβ → Ẽα, α ≤ β. Thus, (Eα, fαβ), (Ẽα, f̄αβ),
α, β ∈ Λ with α ≤ β are projective systems of normed (resp. Banach) algebras,
so that E ∼= lim←−Eα

∼= lim←− Ẽα (Arens-Michael decomposition) within topological
algebra isomorphisms.

In [3, p. 1934, Theorem 3.1], it is shown that, in a special case, the algebra
M(E) is a subalgebra of L(E), the algebra of all continuous linear operators on
E; for completeness, we refer it here.

Theorem 1.3. Let (E, (pα)α∈Λ) be a complete locally m-convex algebra with an
approximate identity (eδ)δ∈∆. Suppose that each factor Eα = E/ ker pα in the
Arens-Michael decomposition of E is complete. Then each multiplier T of E is
continuous, viz. M(E) is a subalgebra of L(E).

2. Perfectness and Multipliers in locally m-convex Algebras

To proceed, we use the notion of a perfect projective system as it appeared in
[2, p. 199, Definition 2.7]. To fix notation, we repeat it.
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Definition 2.1. A projective system {(Eα, fαβ)}α∈Λ of topological algebras is
called perfect , if the restrictions to the projective limit algebra

E = lim←−Eα = {(xα) ∈
∏
α∈Λ

Eα : fαβ(xβ) = xα, if α ≤ β ∈ Λ}

of the canonical projections πα :
∏

α∈Λ Eα → Eα, α ∈ Λ, namely, the (continuous
algebra) morphisms

fα = πα |E=lim←−Eα : E → Eα, α ∈ Λ,

are onto maps. The resulting projective limit algebra E = lim←−Eα is then called
a perfect (topological) algebra.

Definition 2.2. In the sequel, by the term perfect locally m-convex algebra we
mean a locally m-convex algebra (E, (pα)α∈Λ) for which the respective Arens-
Michael projective system {(Eα, fαβ)}α∈Λ is perfect.

Every Fréchet locally m-convex algebra (E, (pn)n∈N) gives a perfect projective
system of normed algebras, and thus it is a perfect algebra (see [2], and [5]).

Example 2.3. Let E be a non-complete normed algebra. Take E = Eα for each
α ∈ Λ and, for α ≤ β, let fαβ : Eβ → Eα be the identity map. Then ∆ =
lim←−Eα, the diagonal algebra, is a perfect locally m-convex algebra, but ∆ is not
complete.

Let E = (E, (pα)α∈Λ) be a perfect complete locally m-convex algebra with an
approximate identity and such that each factor Eα of its Arens-Michael decom-
position is complete.

Remark 2.4. If φ is the isomorphism E −→ lim←−Eα given by φ(x) = (xα)α∈Λ, then,

for each α ∈ Λ, ρα = fα ◦ φ. Therefore, ker pα = ker ρα = ker(fα ◦ φ).

Remark 2.5. By the hypothesis of perfectness, each fβ is surjective, so each time
we have an element xβ ∈ Eβ, we can choose an element ω ∈ E such that ωβ = xβ,
and consequently ωα = fαβ(xβ) = xα, whenever α ≤ β.

For each α ≤ β, we define the map hαβ : M(Eβ)→M(Eα) given by

[hαβ(Tβ)](xα) = fαβ(Tβ(xβ))

which is well defined, according to the following lemma.

Lemma 2.6. Let (E, (pα)α∈Λ) be a perfect complete locally m-convex algebra with
an approximate identity (eδ)δ∈∆ and such that each factor Eα of its Arens-Michael
decomposition is complete. Then ker fαβ is Tβ-invariant for each Tβ ∈ M(Eβ),
that is, Tβ(ker fαβ) ⊆ ker fαβ, if α ≤ β, and the map hαβ is a well-defined con-
tinuous multiplicative linear mapping.

Proof. Take xβ ∈ ker fαβ. Since E has an approximate identity (eδ)δ∈∆ and
multipliers over Banach algebras are continuous (see [6, p. 20, Theorem 1.1.1]),
then

fαβ(Tβ(xβ)) = fαβ(Tβ(lim
δ

xβeδ)) = fαβ(lim
δ

Tβ(xβeδ)) = lim
δ

fαβ(Tβ(xβeδ)) =
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= lim
δ

fαβ(xβTβ(eδ)) = lim
δ

[fαβ(xβ)fαβ(Tβ(eδ))] = 0.

We claim that hαβ(Tβ) is well-defined. For that, let α ≤ β, x ∈ E be such that
xα = x′α and Tβ ∈ M(Eβ); then 0 = xα − x′α = ρα(x) − ρα(x′) = ρα(x − x′)
and hence 0 = (fα ◦ φ)(x − x′) = (fαβ ◦ fβ ◦ φ)(x − x′), which implies that
(fβ◦φ)(x−x′) ∈ ker fαβ. Since ker fαβ is Tβ -invariant, Tβ((fβ◦φ)(x−x′)) ∈ ker fαβ

too, and therefore

0 = fαβ(Tβ((fβ ◦ φ)(x− x′)) = fαβ(Tβ(ρβ(x− x′))) = fαβ(Tβ(xβ − x′β)) =

= fαβ(Tβ(xβ))− fαβ(Tβ(x′β)),

that is, fαβ(Tβ(xβ)) = fαβ(Tβ(x′β)). This proves the claim.
Moreover, hαβ(Tβ) is actually a multiplier on Eα. For, let xα and yα be two

elements in Eα. Then

[hαβ(Tβ)] (xαyα) = fαβ(Tβ(xβyβ)) = fαβ(xβTβ(yβ)) = fαβ(xβ)fαβ(Tβ(yβ)) =

xα(fαβ(Tβ(yβ)) = xα [haβ(Tβ)] (yα) and so, hαβ(Tβ) is a right multiplier. In a
similar way, one can prove that hαβ(Tβ) is a left multiplier.

It is easily seen that hαβ is a linear mapping. Moreover, hαβ is multiplicative.
For that, take Tβ, Sβ ∈M(Eβ). We have

[hαβ(Tβ ◦ Sβ)](xα) = fαβ((Tβ ◦ Sβ)(xβ)) = fαβ(Tβ(Sβ(xβ))). (2.1)

On the other hand, since the system is perfect, we can choose ω ∈ E (equivalently
(ωα)α∈Λ ∈ lim←−Eα) such that fαβ(Sβ(xβ)) = ωα; note that fαβ(ωβ) = ωα too. Then

Sβ(xβ) − ωβ ∈ ker fαβ. But, since ker fαβ is Tβ-invariant, we have Tβ(Sβ(xβ) −
ωβ) ∈ ker fαβ, and thus fαβ(Tβ(Sβ(xβ))) = fαβ(Tβ(ωβ)). Besides,

fαβ(Tβ(Sβ(xβ))) = fαβ(Tβ(ωβ)) = hαβ(Tβ)(ωα) = hαβ(Tβ)(fαβ(Sβ(xβ))) =

= hαβ(Tβ)((hαβ(Sβ))(xα)) = (hαβ(Tβ) ◦ haβ(Sβ))(xα).

The last, in connection with (2.1) gives the multiplicativity of hαβ.
Next, we prove that hαβ is continuous. Since fαβ : Eβ → Eα is a continuous

mapping between normed algebras, there exists a constant K > 0 such that
ṗα(fαβ(yβ)) ≤ K ṗβ(yβ) for each yβ ∈ Eβ. In particular,

ṗα(fαβ(Tβ(xβ))) ≤ K ṗβ(Tβ(xβ)) for each xβ ∈ Eβ. (2.2)

Taking the supremum on the right hand of (2.2) and since M(Eβ) is a Banach
algebra (see [6, p. 20, Theorem 1.1.1]), we get

ṗα(fαβ(Tβ(xβ))) ≤ K ṗβ(Tβ(xβ)) ≤ K sup
ṗβ(xβ)≤1

{ṗβ(Tβ(xβ))} ≤ K ‖Tβ‖β (2.3)

for every xβ ∈ Eβ with ṗβ(xβ) ≤ 1, and where ‖·‖β is the norm in the multiplier

algebra M(Eβ). Since fαβ(Tβ(xβ)) = [hαβ(Tβ)](xα) whenever α ≤ β (hence
ṗα(xα) ≤ ṗβ(xβ)), then ṗα([hαβ(Tβ)](xα)) ≤ K ‖Tβ‖β for every xα ∈ Eα with

ṗα(xα) ≤ 1 by (2.3). Taking now the supremum in this latter relation, we have
sup

ṗα(xα)≤1

ṗα([hαβ(Tβ)](xα)) ≤ K ‖Tβ‖β. Thus ‖hαβ(Tβ)‖α ≤ K ‖Tβ‖β, namely,

each hαβ is continuous. �
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So far, we have the family of topological algebras M(Eα) and the family of
multiplicative continuous linear mappings hαβ : M(Eβ) → M(Eα), α ≤ β in Λ.
Actually, they form a projective system. In fact, if α ≤ β ≤ γ, then fαβ ◦ fβγ =
fαγ, and therefore

[hαγ(Tγ)] (xα) = fαγ(Tγ(xγ)) = (fαβ ◦ fβγ)(Tγ(xγ)) = fαβ(fβγ(Tγ(xγ)) =

= fαβ ([hβγ(Tγ)] (xβ)) = [hαβ(hβγ(Tγ))] (xα) = [(hαβ ◦ hβγ)(Tγ)] (xα)

for each xα ∈ Eα. That is, hαγ(Tγ) = (hαβ ◦hβγ)(Tγ) for each Tγ ∈M(Eγ), which
implies that hαγ = hαβ ◦ hβγ; it is clear that hαα = IdM(Eα).

Thus, we have the projective system of Banach algebras {(M(Eα), hαβ)}α∈Λ

and we can take its inverse limit, lim←−M(Eα).

Now, we prove a lemma that will be useful in the sequel.

Lemma 2.7. Let (E, (pα)α∈Λ) be a locally m-convex algebra with an approximate
identity (eδ)δ∈∆ and let T ∈M(E). Then, for each α ∈ Λ, ker pα is T -invariant;
that is, T (ker pα) ⊆ ker pα.

Proof. Take x ∈ ker pa. Since the seminorms are continuous, for ε > 0, there
exists an index δ0 ∈ ∆ such that pα(T (x) − T (x)eδ) < ε whenever δ ≥ δ0. We
have

pα(T (x)) = pα(T (x− xeδ0 + xeδ0)) = pα(T (x)− T (xeδ0) + T (xeδ0))

≤ pα(T (x)− T (xeδ0)) + pα(T (xeδ0)) = pα(T (x)− T (x)eδ0) + pα(xT (eδ0))

≤ pα(T (x)− T (x)eδ0) + pa(x)pα(T (eδ0)) < ε.

Since this is true for an arbitrary ε > 0, we conclude that pα(T (x)) = 0, that is,
T (x) ∈ ker pα. �

Now we state our main Theorem.

Theorem 2.8. Let (E, (pα)α∈Λ) be a complete locally m-convex algebra with an
approximate identity (eδ)δ∈∆, such that the respective projective system is perfect
and each factor Eα = E/ ker pa in its Arens-Michael decomposition is complete.
Then M(E) ∼= lim←− M(Eα) within a topological algebra isomorphism.

Proof. Take T ∈M(E). Due to Lemma 2.7, T induces a well-defined map
Tα : Eα → Eα such that Tα ◦ ρα = ρα ◦ T for each α ∈ Λ, that is, Tα(xα) =
Tα(ρα(x)) = ρα(T (x)) = T (x)α for each x ∈ E. Since for xα, yα ∈ Eα,

Tα(xαyα) = ρa(T (xy)) = ρα(xT (y)) = xαT (y)α = xαTα(yα),

Tα is a right multiplier. In a similar way it can be shown that it is a left multiplier,
as well.

Note also that (Tα)α∈Λ is an element of lim←− M(Eα). Indeed, for α ≤ β and

ρα(x) = xα ∈ Eα, we have

[hαβ(Tβ)](ρα(x)) = [hαβ(Tβ)](xα) = fαβ(Tβ((xβ)) = fαβ(Tβ(ρβ(x)) =

= fαβ(ρβ(T (x)) = fαβ((fβ ◦ φ)(T (x))) = ((fαβ ◦ fβ) ◦ φ)(T (x)) =

= (fα ◦ φ)(T (x)) = ρα(T (x)) = Tα(ρα(x)).

Therefore hαβ(Tβ) = Tα if α ≤ β.
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Now we define the map

Φ : M(E) −→ lim←− M(Eα) by Φ(T ) = (Tα)α∈Λ,

which obviously is linear. Moreover, for T, S ∈M(E) and xα ∈ Eα, we have

ρα(Φ(T ◦ S))(xα) = (T ◦ S)α(xα) = ((T ◦ S)(x))α = (T (S(x))α = Tα(S(x)α) =

= Tα(Sα(xα)) = (Tα ◦ Sα)(xα),

which implies that (T ◦ S)α = Tα ◦ Sα, and therefore Φ(T ◦ S) = Φ(T ) ◦ Φ(S),
namely, Φ is multiplicative.

Next, we show that Φ is one to one. For that, take T, S ∈ M(E) such that
(Tα)α∈Λ = Φ(T ) = Φ(S) = (Sα)α∈Λ; then Tα = Sα for each x ∈ E and for each
α ∈ Λ. Therefore ρα ◦ T = ρα ◦ S for each α ∈ Λ; then T = S. Moreover, Φ is an
onto map. Indeed, for (Wα)α∈Λ ∈ lim←− M(Eα) define the map

W : E → E by W (x) = φ−1((Wα(xα))α∈Λ),

which obviously is linear. Also

W (xy) = φ−1((Wα(xy)α)α∈Λ) = φ−1(Wα(xαyα))α∈Λ) = φ−1((xαWα(yα))α∈Λ) =

= φ−1((xα)α∈Λ)φ−1((Wα(yα))α∈Λ) = xW (y)

and similarly on the other side, so W is a multiplier on E. Finally, it is clear that
Φ(W ) = (Wα)α∈Λ.

We claim that Φ is continuous. By [3, p. 1934, Theorem 3.1], M(E) is a
subalgebra of L(E), the algebra of all continuous linear operators on E, so that
the topology on M(E) is the operator topology. We denote by

gα : M(E)→M(Eα)

the map gα(T ) = Tα, which, by Lemma 2.7, is well defined and obviously linear.
Let us denote by hα : lim←− M(Eα) →M(Eα) the canonical continuous homomor-

phism from the inverse limit to one of its factors. Note that hα ◦φ = gα holds for
each α ∈ Λ.

Since Φ is continuous if and only if, for each α ∈ Λ, fα ◦ Φ is continuous (see
[7, p. 89, the proof of Theorem 3.1]), we have to prove that gα is continuous
(for each α ∈ Λ). We recall that the topology of M(E) can be given by the
set of seminorms (pα)α∈Λ defined as pα(T ) = sup

pα(x)≤1

pα(T (x)) for each T ∈M(E).

Further, the topology of M(Eα) can be given by the norm ‖·‖α defined as ‖S‖α =
sup

ṗα(x)≤1

ṗα(S(x)) for each S ∈ M(Eα), where, as usual, ṗα is the induced norm in

Eα given by ṗα(xα) = ṗα(x+ker pα) = pα(x). The topology of lim←− M(Eα) can be

defined by the local base consisting of neighborhoods V =
⋂n

i=1 h−1
αi

(Vαi
), where

Vαi
is a basic neighborhood in M(Eαi

).
Let εi > 0 be given and let

Vαi
= {S ∈M(Eαi

) : ‖S‖αi
< εi} and Uαi

= {T ∈M(E) : pαi
(T ) < εi}.

We claim that

T ∈ Uαi
⇐⇒ Tαi

∈ Vαi
. (2.4)
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Indeed,
T ∈ Uαi

⇐⇒ pαi
(T ) < εi ⇐⇒ sup

pαi (x)≤1

pαi
(T (x)) < εi

⇐⇒ sup
ṗαi (xαi )≤1

ṗαi
((T (x))αi

) < εi ⇐⇒ sup
ṗαi (xαi )≤1

ṗαi
(Tαi

(xαi
)) < εi

⇐⇒ ‖Tαi
‖αi

< εi ⇐⇒ Tαi
∈ Vαi

.

Now, let Vα be a basic neighborhood of 0 in M(Eα), say

Vα = {S ∈M(Aα) : ‖S‖α < ε}.
Put Uα = g−1

α (Vα). Then Uα = {T ∈ M(E) : pα(T ) < ε}. This implies the
continuity of gα for each α ∈ Λ. Hence Φ is continuous.

Finally, we show that Φ is an open map. Let V =
⋂n

i=1 h−1
αi

(Vαi
) be a basic

neighborhood of 0 in M(E). Take T ∈ V ; then T ∈ h−1
αi

(Vαi
) for all i = 1, . . . , n.

Therefore hαi
(T ) ∈ Vαi

and, due to (2.4), Tαi
∈ Uαi

. Then Φ(T ) ∈ U = (Uα),
where Uα = Uαi

for α = α1, α2, . . . , αn and Uα = M(Eα) otherwise. This proves
that Φ is an open map, and the proof is complete. �
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