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Abstract. We derive explicit upper bounds for various counting
functions for primes in arithmetic progressions. By way of exam-
ple, if q and a are integers with gcd(a, q) = 1 and 3 ≤ q ≤ 105,

and θ(x; q, a) denotes the sum of the logarithms of the primes

p≡ a (mod q) with p≤ x, we show that∣∣θ(x; q, a)− x/ϕ(q)
∣∣< 1

160

x

logx

for all x ≥ 8 · 109, with significantly sharper constants obtained
for individual moduli q. We establish inequalities of the same

shape for the other standard prime-counting functions π(x; q, a)

and ψ(x; q, a), as well as inequalities for the nth prime congruent

to a (mod q) when q ≤ 1200. For moduli q > 105, we find even

stronger explicit inequalities, but only for much larger values of x.

Along the way, we also derive an improved explicit lower bound

for L(1, χ) for quadratic characters χ, and an improved explicit
upper bound for exceptional zeros.
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1. Introduction and statement of results

The Prime Number theorem, proved independently by Hadamard [11] and
de la Vallée Poussin [4] in 1896, states that

(1.1) π(x) =
∑
p≤x

p prime

1∼ x

logx
,

or, equivalently, that

(1.2) θ(x) =
∑
p≤x

p prime

logp∼ x and ψ(x) =
∑
pn≤x
p prime

log p∼ x,

where by f(x)∼ g(x) we mean that limx→∞ f(x)/g(x) = 1. Quantifying these
statements by deriving explicit bounds upon the error terms

(1.3)
∣∣π(x)− Li(x)

∣∣, ∣∣θ(x)− x
∣∣ and

∣∣ψ(x)− x
∣∣

is a central problem in multiplicative number theory (see, for example, In-
gham [13] for classical work along these lines). Here, by Li(x) we mean the
function defined by

(1.4) Li(x) =

∫ x

2

dt

log t
∼ x

logx
.

Our interest in this paper is the consideration of similar questions for primes
in arithmetic progressions. Let us define, given relatively prime positive inte-
gers a and q,

(1.5) θ(x; q, a) =
∑
p≤x

p≡a (mod q)

log p and ψ(x; q, a) =
∑
pn≤x

pn≡a (mod q)

log p,

where the sums are over primes p and prime powers pn, respectively. We
further let

(1.6) π(x; q, a) =
∑
p≤x

p≡a (mod q)

1
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denote the number of primes up to x that are congruent to a modulo q. We
are interested in upper bounds, with explicit constants, for the analogues to
equation (1.3), namely the error terms

(1.7)

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣,
∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ and

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣.
Such explicit error bounds can take two shapes. The first, which we will term
bounds of Chebyshev-type, are upper bounds upon the error terms that are
small multiples of the main term in size, for example inequalities of the form

(1.8)

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣< δq,a
x

ϕ(q)
,

for (small) positive δq,a and all suitably large values of x. The second, which
we call bounds of de la Vallée Poussin-type, have the feature that the up-
per bounds upon the error are of genuinely smaller order than the size of
the main term (and hence, in particular, imply the Prime Number theorem
for the corresponding arithmetic progression, something that is not true of
inequality (1.8)).

Currently, there are a number of explicit inequalities of Chebyshev-type in
the literature. In McCurley [17], we find such bounds for “non-exceptional”
moduli q (which is to say, those q for which the associated Dirichlet L-
functions have no real zeros near s= 1), valid for large values of x. McCurley
[18] contains analogous bounds in the case q = 3. Ramaré and Rumely [29]
refined these arguments to obtain reasonably sharp bounds of Chebyshev-
type for all q ≤ 72 and various larger composite q ≤ 486; the first author [2]
subsequently extended these results to primes 73 ≤ q ≤ 347. Very recently,
these results have been sharpened further for all moduli q ≤ 105 by Kadiri
and Lumley [16].

Bounds of de la Vallée Poussin-type are rather less common, however, other
than the classical case where one considers all primes (that is, when q = 1 or 2),
where such inequalities may be found in famous and oft-cited work of Rosser
and Schoenfeld [31] (see also [32], [34] for subsequent refinements). When
q ≥ 3, however, the only such result currently in the literature in explicit form
may be found in a 2002 paper of Dusart [5], which treats the case q = 3. Our
goal in the paper at hand is to deduce explicit error bounds of de la Vallée
Poussin-type for all moduli q ≥ 3, for each of the corresponding functions
ψ(x; q, a), θ(x; q, a), and π(x; q, a). In each case with 3≤ q ≤ 105, exact values
of the constants cψ(q), cθ(q), cπ(q), xψ(q), xθ(q), and xπ(q) defined in our
theorems can be found in data files accessible at:

http://www.nt.math.ubc.ca/BeMaObRe/

We prove the following results.

http://www.nt.math.ubc.ca/BeMaObRe/
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Theorem 1.1. Let q ≥ 3 be an integer and let a be an integer that is
coprime to q. There exist explicit positive constants cψ(q) and xψ(q) such that

(1.9)

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣< cψ(q)
x

logx
for all x≥ xψ(q).

Moreover, cψ(q) and xψ(q) satisfy cψ(q)≤ c0(q) and xψ(q)≤ x0(q), where

(1.10) c0(q) =

{
1

840 , if 3≤ q ≤ 104,
1

160 , if q > 104,

and

(1.11) x0(q) =

{
8 · 109, if 3≤ q ≤ 105,

exp(0.03
√
q log3 q), if q > 105.

Similarly, for θ(x; q, a) and π(x; q, a) we have the following theorem.

Theorem 1.2. Let q ≥ 3 be an integer and let a be an integer that is
coprime to q. There exist explicit positive constants cθ(q) and xθ(q) such that

(1.12)

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣< cθ(q)
x

logx
for all x≥ xθ(q).

Moreover, cθ(q)≤ c0(q) and xθ(q)≤ x0(q), where c0(q) and x0(q) are as de-
fined in equations (1.10) and (1.11), respectively.

Theorem 1.3. Let q ≥ 3 be an integer and let a be an integer that is
coprime to q. There exist explicit positive constants cπ(q) and xπ(q) such that

(1.13)

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣< cπ(q)
x

(logx)2
for all x≥ xπ(q).

Moreover, cπ(q)≤ c0(q) and xπ(q)≤ x0(q), where c0(q) and x0(q) are as de-
fined in equations (1.10) and (1.11), respectively.

See Appendices A.4 and A.6 for more details on these various constants.
We note here that many of our results, including those stated here, required
considerable computations; the relevant computational details are available
at

http://www.nt.math.ubc.ca/BeMaObRe/

and are discussed in Appendix A.
The upper bounds c0(q) and x0(q) are, typically, quite far from the actual

values of, say, cθ(q) and xθ(q). By way of example, for 3≤ q ≤ 10, we have the
data provided in Table 1. For instance, in case q = 3 and a ∈ {1,2}, Theorem
1.2, using the true values of cθ(3) and xθ(3), rather than their upper bounds
c0(3) and x0(3), yields the inequality

(1.14)

∣∣∣∣θ(x; 3, a)− x

2

∣∣∣∣< 4.015 · 10−4 x

logx
for all x≥ 7,932,309,757.

http://www.nt.math.ubc.ca/BeMaObRe/
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Table 1. Values of constants for 3≤ q ≤ 10

q cψ(q) cθ(q) cπ(q) xψ(q) xθ(q) xπ(q)

3 0.0003964 0.0004015 0.0004187 576,470,759 7,932,309,757 7,940,618,683
4 0.0004770 0.0004822 0.0005028 952,930,663 4,800,162,889 5,438,260,589
5 0.0003665 0.0003716 0.0003876 1,333,804,249 3,374,890,111 3,375,517,771
6 0.0003964 0.0004015 0.0004187 576,470,831 7,932,309,757 7,940,618,683
7 0.0004584 0.0004657 0.0004857 686,060,664 1,765,650,541 1,765,715,753
8 0.0005742 0.0005840 0.0006091 603,874,695 2,261,078,657 2,265,738,169
9 0.0005048 0.0005122 0.0005342 415,839,496 929,636,413 929,852,953

10 0.0003665 0.0003716 0.0003876 1,333,804,249 3,374,890,111 3,375,517,771

Here the constant 4.015 · 10−4 sharpens the corresponding value 0.262 in
Dusart [5] by a factor of roughly 650. We remark that x ≥ 7,932,309,757 is
the best-possible range of validity for the error bound (1.14); indeed this is
true for each xψ(q), xθ(q), and xπ(q), for 3≤ q ≤ 105.

For 3≤ q ≤ 105, we observe that (as a consequence of our proofs), we have

cψ(q)≤ cθ(q)≤ cπ(q)≤ c0(q).

For larger moduli q > 105, the inequalities

cψ(q)≤ c0(q), cθ(q)≤ c0(q), and cπ(q)≤ c0(q)

are actual equalities by our definitions of the left-hand sides, and similarly

xψ(q) = xθ(q) = xπ(q) = x0(q) = exp
(
0.03

√
q log3 q

)
,

for these large moduli. We note that one can obtain a significantly smaller
value for x0(q) if one assumes that Dirichlet L-functions modulo q have no
exceptional zeros (see Proposition 6.18, which sharpens the results of McCur-
ley [17] mentioned above). Theorems 1.1 and 1.2, even if one appeals only
to the inequalities cψ(q)≤ c0(q) and cθ(q)≤ c0(q), sharpen Theorem 1 of Ra-
maré and Rumely [29] for q ≥ 3 and every other choice of parameter considered
therein.

An almost immediate consequence of Theorem 1.3, just from applying the
result for q = 3 and performing some routine computations (see Appendix A.8
for details), is that

(1.15)
∣∣π(x)− Li(x)

∣∣< 0.0008375
x

log2 x
for all x≥ 1,474,279,333.

While, asymptotically, this result is inferior to the state of the art for this
problem, it does provide some modest improvements on results in the recent
literature for certain ranges of x. By way of example, it provides a stronger
error bound than Theorem 2 of Trudgian [40] for all 1,474,279,333≤ x < 10621

(and sharpens corresponding results in [3] and [6] in much smaller ranges).
Exploiting the fact that Li(x) is predictably close to x/ logx, we can read-

ily deduce from Theorem 1.3 the following two results, which are proved in
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Section 5.2. We define pn(q, a) to be the nth smallest prime that is congruent
to a modulo q.

Theorem 1.4. Let q ≥ 3 be an integer, and let a be an integer that is
coprime to q. Suppose that cπ(q)ϕ(q)< 1. Then for x > xπ(q),

(1.16)
x

ϕ(q) logx
< π(x; q, a)<

x

ϕ(q) logx

(
1 +

5

2 logx

)
.

We remark that Dusart [5] proved the lower bound in Theorem 1.4 in the
case q = 3.

Theorem 1.5. Let q ≥ 3 be an integer, and let a be an integer that is
coprime to q. Suppose that cπ(q)ϕ(q)< 1. Then either pn(q, a)≤ xπ(q) or

(1.17) nϕ(q) log
(
nϕ(q)

)
< pn(q, a)< nϕ(q)

(
log
(
nϕ(q)

)
+

4

3
log log

(
nϕ(q)

))
.

Thanks to our computations of the constants cπ(q), we can produce a very
explicit version of the above two results for certain moduli q (see Appendix A.7
for details).

Corollary 1.6. Let 1 ≤ q ≤ 1200 be an integer, and let a be an integer
that is coprime to q.

• For all x≥ 50q2, we have

x

ϕ(q) logx
< π(x; q, a)<

x

ϕ(q) logx

(
1 +

5

2 logx

)
.

• For all positive integers n such that pn(q, a)≥ 22q2, we have

nϕ(q) log
(
nϕ(q)

)
< pn(q, a)< nϕ(q)

(
log
(
nϕ(q)

)
+

4

3
log log

(
nϕ(q)

))
.

The lower bounds 50q2 and 22q2 present here have no especially deep mean-
ing; they simply arise from fitting envelope functions to the results of routine
computations for x < xπ(q) and 1≤ q ≤ 1200.

Bounds like those provided by Theorems 1.1, 1.2, and 1.3 are of a reasonable
size for most purposes, when combined with tractable auxiliary computations
for the range up to x0(q). We may, however, weaken the error bounds to pro-
duce analogous results that are easier still to use, in that they apply for smaller
values of x (see Section A.8 for the details of the computations involved).

Corollary 1.7. Let a and q be integers with 1≤ q ≤ 105 and gcd(a, q) = 1.
If x≥ 103, then ∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣< 0.19
x

logx∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣< 0.40
x

logx
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ϕ(q)

∣∣∣∣< 0.53
x

log2 x
.

Moreover, if x≥ 106, then∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣< 0.011
x

logx∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣< 0.024
x

logx∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣< 0.027
x

log2 x
.

In another direction, if we want somewhat sharper uniform bounds and
are willing to permit the parameter x to be very large, we have the following
corollary (see Appendix A.9 for details of the computation). We remark that
for q ≥ 58 we can weaken the restriction on x to x≥ exp(0.03

√
q log3 q).

Corollary 1.8. Let a and q be integers with q ≥ 3 and gcd(a, q) = 1.
Suppose that x≥ exp(8

√
q log3 q). Then

max

{∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣,
∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣
}
<

1

160

x

logx

and ∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣< 1

160

x

log2 x
.

Finally, to complement our main theorems, we should mention one last
result, summarizing our computations for “small” values of the parameter x
(and extending and generalizing Theorem 2 of Ramaré and Rumely [29]):

Theorem 1.9. Let q and a be integers with 1≤ q ≤ 105 and gcd(a, q) = 1,
and suppose that x≤ x2(q), where

(1.18) x2(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1012, if q = 1,

x2(q/2), if q ≡ 2 (mod 4),

4 · 1013, if q ∈ {3,4,5},
1013, if 5< q ≤ 100, q �≡ 2 (mod 4),

1012, if 100< q ≤ 104, q �≡ 2 (mod 4),

1011, if 104 < q ≤ 105, q �≡ 2 (mod 4).

We have

max
1≤y≤x

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣≤ 1.745
√
x,

max
1≤y≤x

∣∣∣∣θ(y; q, a)− y

ϕ(q)

∣∣∣∣≤ 2.072
√
x
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and

max
1≤y≤x

∣∣∣∣π(y; q, a)− Li(y)

ϕ(q)

∣∣∣∣≤ 2.734

√
x

logx
.

It is worth observing that the bounds here may be sharpened for (most)
individual moduli q (the extremal cases for each function correspond to q = 2).
We provide such bounds and links to related data for moduli 3≤ q ≤ 105 in
Appendix A.3.

The outline of the paper is as follows. In Sections 2 and 3, we derive an
explicit upper bound for |ψ(x; q, a) − x/ϕ(q)|, valid for the “small” moduli
3 ≤ q ≤ 105. In Section 4, this bound is carefully refined into a form which
is suitable for explicit calculation; we establish Theorem 1.1 for these small
moduli at the end of Section 4.4. In Section 5, we move from bounds for
approximating ψ(x; q, a) to analogous bounds for θ(x; q, a) and π(x; q, a). In
particular, we establish Theorem 1.2 for these moduli at the end of Section 5.1,
and Theorems 1.3–1.5 for small moduli (as well as Corollary 1.6) in Section 5.2.

Section 6 contains upper bounds for |ψ(x; q, a) − x/ϕ(q)|, |θ(x; q, a) −
x/ϕ(q)|, and |π(x; q, a)− Li(x)/ϕ(q)| for larger moduli q > 105. We establish
Theorems 1.1 and 1.2 for these large moduli in Section 6.3 (see the remark be-
fore Corollary 6.17), and Theorem 1.3 for these moduli in Section 6.4. Indeed,
in those sections, we also deduce a number of explicit results with stronger
error terms (saving greater powers of logx), as well as analogous results for
an improved range of x that hold under the assumption that there are no ex-
ceptional zeros for the relevant Dirichlet L-functions. Finally, in Appendix A,
we provide details for our explicit computations, with links to files containing
all our data. We provide a summary of the notation defined throughout the
paper in Appendix B.

Before we proceed, a few remarks on our methods are in order. The error
terms (1.3) depend fundamentally upon the distribution of the zeros of the
Riemann zeta function, as evidenced by von Mangoldt’s formula:

lim
ε→0

ψ(x− ε) + ψ(x+ ε)

2
= x−

∑
ρ

xρ

ρ
− log 2π+

1

2
log

(
1− 1

x2

)
,

where the sum is over the zeros ρ of the Riemann zeta function in the crit-
ical strip, in order of increasing |Im ρ|. Deriving good approximations for
ψ(x; q, a), θ(x; q, a), and π(x; q, a) depends in a similar fashion upon under-
standing the distribution of the zeros of Dirichlet L-functions. Note that, as
is traditional in this subject, our approach takes as a starting point von Man-
goldt’s formula, and hence we are led to initially derive bounds for ψ(x; q, a),
from which our estimates for θ(x; q, a) and π(x; q, a) follow. The fundamental
arguments providing the connection between zeros of Dirichlet L-functions
and explicit bounds for error terms in prime counting functions derive from
classic work of Rosser and Schoenfeld [31], as extended by McCurley [17], and
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subsequently by Ramaré and Rumely [29] and Dusart [5]. The main ingre-
dients involved include explicit zero-free regions for Dirichlet L-functions by
Kadiri [15] and McCurley [19], explicit estimates for the zero-counting func-
tion for Dirichlet L-functions by Trudgian [39], and the results of large-scale
computations of Platt [26], all of which we cite from the literature. Other
necessary results include lower bounds for L(1, χ) for quadratic characters χ,
upper bounds for exceptional zeros of L-functions with associated character χ,
and explicit inequalities for b(χ), the constant term in the Laurent expansion

of L′

L (s,χ) at s= 0 (see Definition 6.6 below). In each of these cases, our re-
sults sharpen existing explicit inequalities and thus might be of independent
interest.

Proposition 1.10. If χ is a primitive quadratic character with conductor

q > 6677, then L(1, χ)> 12√
q .

Proposition 1.11. Let q ≥ 3 be an integer, and let χ be a quadratic char-
acter modulo q. If β > 0 is a real number for which L(β,χ) = 0, then

β ≤ 1− 40
√
q log2 q

.

Proposition 1.12. Let q ≥ 105 be an integer, and let χ be a Dirichlet
character (mod q). Then |b(χ)| ≤ 0.2515q log q.

Proposition 1.10 is established in Section A.10. For larger values of q, we
can improve on Proposition 1.10 by a little more than a factor of 10; see
Lemma 6.3 for a more precise statement. Propositions 1.11 and 1.12 are es-
tablished in Sections 6.1 and 6.2, respectively. We also remark that under the
assumption that L(s,χ) has no exceptional zero, our proof would yield a sub-
stantially stronger explicit bound of the shape |b(χ)| ≤ C

√
q log q; however,

such an improvement is immaterial to our eventual applications. Notice that
the conclusion of Proposition 1.12 holds for both primitive and imprimitive
characters χ.

Throughout our work, we have made every effort to avoid specifying many
of our “free” parameters, such as a constant R that defines the size of a zero-
free region for Dirichlet L-functions (even though, at the end of the day, we
do make specific choices of these parameters). The reason for this is to make
it easy to sharpen our bounds in the future when one has available stronger
zero-free regions (and more computational power). The constants present in,
for example, Theorem 1.1, decrease roughly as a linear function in R. We have
chosen to split our “small q” and “large q” results at the modulus q = 105 (even
though Platt’s calculations extend through the modulus 4 · 105) partially due
to limitations of computational time and partially because it is a convenient
round number.
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2. Preparation of the upper bound for |ψ(x; q, a)− x/ϕ(q)|, for
q ≤ 105

In this section, we will derive our initial upper bound upon |ψ(x; q, a) −
x/ϕ(q)| for “small” moduli q, that is, for q ≤ 105. This bound (given as Propo-
sition 2.20) will turn out to be independent of x except for a single complicated
function Fχ,m,R(x;H2), defined in Definition 3.2, multiplied by various pow-
ers of logx. Our starting point is an existing version of the classical explicit
formula for ψ(x; q, a) in terms of zeros of Dirichlet L-functions; by the end of
this section, all dependence on the real parts of these zeros will be removed,
and the dependence on their imaginary parts will be confined to the single
function Fχ,m,R(x;H2). In this (and, indeed, in subsequent) sections, our op-
erating paradigm is that any function that can be easily programmed, and
whose values can be calculated to arbitrary precision in a negligible amount
of time, is suitable for our purposes, even when there remains a layer of no-
tational complexity that we would find difficult to work with analytically. Of
course, our choices when we do eventually optimize these various functions
are guided by our heuristics (and hindsight) about which pieces of our upper
bounds are most significant in the end.

Along the way, we will use as input existing explicit bounds for the number
of zeros of L(s,χ) (see Proposition 2.5 below), and we will derive an explicit

upper bound for the sum of 1/
√
β2 + γ2 over all zeros β + iγ of a given

Dirichlet L-function (see Lemma 2.11). We mention also that the explicit
formula we use contains a parameter δ that can be chosen to be constant to
obtain bounds of Chebyshev-type. However, we must choose δ to be a function
of x that decreases to 0 in order to obtain our bounds of de la Vallée Poussin-
type; we make that choice of δ in equation (2.19) (and motivate our choice in
the remarks following that equation).

We pause to clarify some terminology and notation. Throughout this paper,
q will be a positive integer (we will usually assume that q ≥ 3), and a will
be a positive integer that is relatively prime to q. There are ϕ(q) Dirichlet
characters with modulus q; when we use “modulus” or “(mod q)” in this
way, we always allow both primitive and imprimitive characters. On the other
hand, the conductor of a character is the modulus of the primitive character
that induces it, so that the same character can simultaneously have modulus
q and conductor d < q. For a Dirichlet character χ (mod q), the symbol q∗

always denotes the conductor of χ, and χ∗ denotes the primitive character
(mod q∗) that induces χ.

For any Dirichlet character χ (mod q), the Dirichlet L-function is defined
as usual by

(2.1) L(s,χ) =
∞∑

n=1

χ(n)

ns
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when 	s > 1, and by analytic continuation for other complex numbers s. We
adopt the usual convention of letting ρ= β + iγ denote a zero of L(s,χ), so
that β =	ρ and γ =
ρ by definition; and we define

(2.2) Z(χ) =
{
ρ ∈C : 0< β < 1, L(ρ,χ) = 0

}
to be the set of zeros of L(s,χ) inside the critical strip (technically a multiset,
since multiple zeros, if any, are included according to their multiplicity). Notice
in particular that the set Z(χ) does not include any zeros on the imaginary
axis, even when χ is an imprimitive character; consequently, if χ is induced
by another character χ∗, then Z(χ) =Z(χ∗).

We recall, by symmetry and the functional equation for Dirichlet L-
functions, that if ρ = β + iγ ∈ Z(χ) then also 1 − ρ̄ = 1 − β + iγ ∈ Z(χ).
Finally, we say such an L-function satisfies GRH(H), the generalized Rie-
mann hypothesis up to height H , if

β + iγ ∈ Z(χ) and |γ| ≤H =⇒ β =
1

2
.

2.1. Previous work based on the explicit formula. We quote the fol-
lowing proposition from Ramaré–Rumely [29, Theorem 4.3.1, p. 415]. The
proposition, which also appears in Dusart’s work [5, Theorem 2, pp. 1139–40],
is a modification of McCurley’s arguments [17, Theorem 3.6] that themselves
hearken back to Rosser [30].

Proposition 2.1. Let q be a positive integer, and let a be an integer that
is coprime to q. Let x > 2 and H ≥ 1 be real numbers, let m be a positive
integer, and let δ be a real number satisfying 0< δ < x−2

mx . Suppose that every
Dirichlet L-function with modulus q satisfies GRH(1). Then

(2.3)
ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣<Uq,m(x; δ,H) +
mδ

2
+ Vq,m(x; δ,H) +Wq(x),

where we define

Am(δ) =
1

δm

m∑
j=0

(
m

j

)
(1 + jδ)m+1,(2.4)

Uq,m(x; δ,H) =Am(δ)
∑

χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1) · · · (ρ+m)| ,(2.5)

Vq,m(x; δ,H) =

(
1 +

mδ

2

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

xβ−1

|ρ| ,(2.6)

Wq(x) =
ϕ(q)

x

((
1

2
+
∑
p|q

1

p− 1

)
logx+ 4 log q+ 13.4

)
.(2.7)
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To offer some context, the genesis of this upper bound is the classical
explicit formula for ψ(x; q, a), smoothed by m-fold integration over an inter-
val near x of length δx. The term Uq,m(x; δ,H) bounds the contribution of
the large zeros to this smoothed explicit formula (in which the factor Am(δ)
arises from some combinatorics of the multiple integration), while the term
Vq,m(x; δ,H) bounds the contribution of the small zeros. The term mδ

2 arises
when recovering the original difference ψ(x; q, a)− x/ϕ(q) from its smoothed
version. Finally, Ramaré–Rumely work only with primitive characters, in con-
trast to McCurley, to avoid the zeros of L(s,χ) on the imaginary axis (see
[29, p. 399], although their remark on [29, p. 414] is easy to misconstrue).
This choice, which we follow (as evidenced by the definition of Z(χ) in equa-
tion (2.2)), simplifies the analytic arguments but results in a mild error on
the prime-counting side, which is bounded by Wq(x). In practice, we will be

choosing δ so that the first term Uq,m(x; δ,H) is almost exactly δ
2 ; for most

moduli q, that term together with the quantity mδ
2 will provide the dominant

contribution to our eventual upper bound. For very small moduli q, however,
it is the term Vq,m(x; δ,H) that provides the dominant contribution.

We remark that the aforementioned work of Kadiri and Lumley [16] incor-
porates a different smoothing mechanism that is inherently more flexible than
simple repeated integration; such an approach would be a promising avenue
for possible sharpening of our results.

In this upper bound, which is a function of x for any given modulus q, the
parameters m, δ, and H are at our disposal to choose. We will, in each case,
choose H ≤ 108/q, so that every Dirichlet L-function with modulus q satisfies
GRH(H) by Platt’s computations [26]; this choice allows for a strong bound
for Vq,m(x; δ,H). Without some choice of δ that tended to 0 as x tends to
infinity, it would be impossible to achieve a de la Vallée Poussin-type bound,
because of the term mδ

2 in the upper bound; our choice, as it turns out, will
be a specific function of x and the other parameters which decays roughly like
exp(−c

√
logx) for large x. Finally, after the bulk of the work done to estimate

the above upper bound, we will compute the resulting expression for various
integer values of m and select the minimal such value. It will turn out that
we always choose m ∈ {6,7,8,9}, for q ≤ 105, although we have no theoretical
explanation for how we could have predicted these choices to be optimal in
practice.

2.2. Some useful facts about the zeros of L-functions. The quanti-
ties defined in equations (2.5) and (2.6) are both sums over zeros of Dirichlet
L-functions, and we will require some knowledge of the distribution of those
zeros. That information is essentially all classical, except that of course we
require explicit constants in every estimate, and we can also take advantage
of much more extensive modern computations. Specifically, we draw infor-
mation from three sources: Trudgian’s work on the zeros of the Riemann
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ζ-function and Dirichlet L-functions with explicit constants, Platt’s compu-
tations of many zeros of Dirichlet L-functions, and direct computation using
Rubinstein’s lcalc program [33].

Definition 2.2. We write N(T,χ) for the standard counting function for
zeros of L(s,χ) with 0< β < 1 and |γ| ≤ T . In other words,

N(T,χ) =#
{
ρ ∈ Z(χ) : |γ| ≤ T

}
,

counted with multiplicity if there are any multiple zeros.

We turn now to explicit bounds for the zero-counting functions N(T,χ),
beginning with a bound when χ is the principal character.

Proposition 2.3. Let χ0 be the principal character for any modulus q. If
T > e, then

(2.8)

∣∣∣∣N(T,χ0)−
(
T

π
log

T

2πe
+

7

4

)∣∣∣∣< 0.34 logT + 3.996 +
25

24πT
.

Proof. We adopt the standard notation N(T ) for the number of zeros of
ζ(s) in the critical strip whose imaginary part lies between 0 and T , as well
as S(T ) = 1

π arg ζ( 12 + iT ) for the normalized argument of the zeta-function
on the critical line. Trudgian [37, Theorem 1] gives the explicit estimate

(2.9)
∣∣S(T )∣∣≤ 0.17 logT + 1.998,

valid for T > e. It is well known that the error term in the asymptotic for-
mula for N(T ) is essentially controlled by S(T ); for an explicit version of this
relationship, Trudgian [38, equation (2.5)] gives∣∣∣∣N(T )−

(
T

2π
log

T

2πe
+

7

8

)∣∣∣∣
≤ 1

4π
arctan

1

2T
+

T

4π
log

(
1 +

1

4T 2

)
+

1

3πT
+
∣∣S(T )∣∣

for T ≥ 1. In our notation, N(T,χ0) is exactly equal to 2N(T ) (since the
former counts zeros lying both above and below the imaginary axis). Using
the inequalities arctany ≤ y and log(1 + y) ≤ y which are valid for y ≥ 0, it
follows from (2.9) that the quantity on the left-hand side of inequality (2.8)
is bounded above by twice the quantity

1

4π
arctan

1

2T
+

T

4π
log

(
1 +

1

4T 2

)
+

1

3πT
+ 0.17 logT + 1.998

and hence ∣∣∣∣N(T,χ0)−
(
T

π
log

T

2πe
+

7

4

)∣∣∣∣
≤ 2

(
1

4π

1

2T
+

T

4π

1

4T 2
+

1

3πT
+ 0.17 logT + 1.998

)
,
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which is equivalent to the asserted bound. �

Definition 2.4. Set C1 = 0.399 and C2 = 5.338.

Proposition 2.5. Let χ be a character with conductor q∗. If T ≥ 1, then

(2.10)

∣∣∣∣N(T,χ)− T

π
log

q∗T

2πe

∣∣∣∣<C1 log
(
q∗T
)
+C2.

Proof. If χ is nonprincipal, this follows immediately from Trudgian [39,
Theorem 1] (which sharpens McCurley [17, Theorem 2.1]). For χ principal, we
have q∗ = 1 and the desired inequality is implied by Proposition 2.3, provided
T ≥ 1014. For 1 ≤ T ≤ 1014, we may verify the bound computationally (see
Appendix A.1), completing the proof. �

It is worth mentioning that the main result of [39] contains a number of
inequalities like equation (2.10), with various values for C1 and C2. The one
we have quoted here is the best for small values of q∗T , but could be improved
for larger q∗T ; the end result of such a modification to our proof is negligible.

Definition 2.6. We define

h3(d) =

{
30,610,046,000, if d= 1,

108/d, if 1< d≤ 105.

Platt [26] has verified computationally that every Dirichlet L-function
with conductor q∗ ≤ 4 · 105 satisfies GRH(108/q∗) (see [25] for more de-
tails of these computations). Platt [27] has also checked that ζ(s) satisfies
GRH(30,610,046,000), confirming unpublished work of Gourdon [10]. There-
fore,

Proposition 2.7 (Platt). Let χ be a character with conductor d≤ 105. If
ρ= β + iγ is a zero of L(s,χ) and |γ| ≤ h3(d), then β = 1/2.

2.3. Upper bounds for Vq,m(x; δ,H), exploiting verification of GRH
up to bounded height. We begin by a standard partial summation argu-
ment relating the inner sum in Vq,m(x; δ,H) to the zero-counting function
N(T,χ); we state our result in a form that has some flexibility built in.

Definition 2.8. Let d and t be positive real numbers. We set

Θ(d, t) =
1

2π
log2
(

dt

2πe

)
− C1 log(edt) +C2

t
,

which is a convenient antiderivative of a weighted version of the upper bound
implicit in Proposition 2.5:

∂

∂t
Θ(d, t) =

1

t2

(
t

π
log

dt

2πe
+C1 log dt+C2

)
.
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Definition 2.9. Let ϕ∗(d) denote the number of primitive characters with
modulus d. Thus,

∑
d|q ϕ

∗(d) = ϕ(q), and we have the exact formula (see [14,

page 46])

ϕ∗(d) = d
∏
p‖d

(
1− 2

p

)∏
p2|d

(
1− 1

p

)2

.

Definition 2.10. Suppose that χ is a character with conductor q∗. For
H0 ≥ 1, we define

ν1(χ,H0) =−Θ
(
q∗,H0

)
− N(H0, χ)

H0
+
∑

ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

,

while for 0≤H0 < 1 we define

ν1(χ,H0) = −Θ
(
q∗,1
)
+
∑

ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

+

(
1√

H2
0 + 1/4

− 1

)⌊
1

π
log

q∗

2πe
+C1 log q

∗ +C2

⌋

− N(H0, χ)√
H2

0 + 1/4
.

We further define, for each positive integer q and each function H0 from the set
of Dirichlet characters (mod q) to the nonnegative real numbers, the functions

ν2(q,H0) =
∑

χ (mod q)

ν1
(
χ,H0(χ)

)
,

ν3(q,H) =−ϕ(q)

(
1

2π
+

C1

H

)
+

1

2π

∑
d|q

ϕ∗(d) log2
(
dH

2π

)

and set

ν(q,H0,H) = ν2(q,H0) + ν3(q,H).

We will limit the abuse of notation by using the function H0 involved in ν2 and
ν only to fill in the H0-arguments of the function ν1 in sums over characters.

Lemma 2.11. Let χ be a character with conductor q∗, and let H and
H0 be real numbers satisfying H ≥ 1 and 0 ≤ H0 ≤ H . If χ satisfies
GRH(max{H0,1}), then∑

ρ∈Z(χ)
|γ|≤H

1

|ρ| < ν1(χ,H0) +
1

2π
log2
(
q∗H

2π

)
− 1

2π
− C1

H
.
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Proof. Let χ∗ be the character that induces χ, so that Z(χ) =Z(χ∗). First,

we assume that 1≤H0 ≤H . If |γ| ≤H0 then |ρ|=
√
γ2 + (1/2)2 by our as-

sumption of GRH(H0); on the other hand, if |γ|>H0, then we have the trivial
bound |ρ|> |γ|. As a result,

∑
ρ∈Z(χ)
|γ|≤H

1

|ρ| ≤
∑

ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

+
∑

ρ∈Z(χ∗)
H0<|γ|≤H

1

|γ| .

Using partial summation,

∑
ρ∈Z(χ∗)

H0<|γ|≤H

1

|γ| =
∫ H

H0

dN(T,χ∗)

T

=
N(T,χ∗)

T

∣∣∣∣
H

H0

−
∫ H

H0

N
(
T,χ∗)d( 1

T

)

=
N(H,χ∗)

H
− N(H0, χ

∗)

H0
+

∫ H

H0

N(T,χ∗)

T 2
dT.

We now use Proposition 2.5 and Definition 2.8:∫ H

H0

N(T,χ∗)

T 2
dT <

∫ H

H0

1

T 2

(
T

π
log

q∗T

2πe
+C1 log q

∗T +C2

)
dT

=Θ
(
q∗,H

)
−Θ
(
q∗,H0

)
.

Proposition 2.5 also gives us

N(H,χ∗)

H
<

1

π
log

q∗H

2πe
+

C1 log q
∗H +C2

H
,

from which it follows, with Definition 2.8, that

N(H,χ∗)

H
+Θ
(
q∗,H

)
<

1

2π
log2
(
q∗H

2π

)
− 1

2π
− C1

H
.

Combining these gives us

∑
ρ∈Z(χ∗)

H0<|γ|≤H

1

|γ| < −N(H0, χ
∗)

H0
−Θ
(
q∗,H0

)
(2.11)

+
1

2π
log2
(
q∗H

2π

)
− 1

2π
− C1

H
,

which, by the definition of ν1(χ,H0) for H0 ≥ 1, concludes this case.
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We now consider 0≤H0 < 1. We need to bound a sum over zeros ρ= β+ iγ
with |γ| ≤H , which we break into three pieces∑

ρ∈Z(χ∗)
|γ|≤H

1

|ρ| =
∑

ρ∈Z(χ∗)
|γ|≤H0

1

|ρ| +
∑

ρ∈Z(χ∗)
H0<|γ|≤1

1

|ρ| +
∑

ρ∈Z(χ∗)
1<|γ|≤H

1

|ρ| .

The second sum on the right-hand side has N(1, χ)−N(H0, χ) terms, each of
which is bounded by

1

|ρ| ≤
1

|γ| ≤
1√

H2
0 + 1/4

thanks to GRH(1). The first and third sums on the right-hand side have
already been treated in the argument above; in particular, by equation (2.11),

∑
ρ∈Z(χ∗)
1<|γ|≤H

1

|ρ| ≤ −N(1, χ)−Θ
(
q∗,1
)
+

1

2π
log2
(
q∗H

2π

)
− 1

2π
− C1

H
.

Therefore∑
ρ∈Z(χ∗)
|γ|≤H

1

|ρ| ≤
∑

ρ∈Z(χ∗)
|γ|≤H0

1√
γ2 + 1/4

+
N(1, χ)−N(H0, χ)√

H2
0 + 1/4

−N(1, χ)−Θ
(
q∗,1
)

+
1

2π
log2
(
q∗H

2π

)
− 1

2π
− C1

H
.

Now by Proposition 2.5,

N(1, χ)−N(H0, χ)√
H2

0 + 1/4
−N(1, χ)

=

(
1√

H2
0 + 1/4

− 1

)
N(1, χ)− N(H0, χ)√

H2
0 + 1/4

≤
(

1√
H2

0 + 1/4
− 1

)⌊
1

π
log

q∗

2πe
+C1 log q

∗ +C2

⌋
− N(H0, χ)√

H2
0 + 1/4

,

and the proof is complete. �

Lemma 2.12. Let q and let m be positive integers, and x, δ,H be real num-
bers satisfying x > 2 and 0< δ < x−2

mx . Let H0 be a function on the characters
modulo q satisfying 0≤H0(χ)≤H . If every Dirichlet L-function with modu-
lus q satisfies GRH(H), then

Vq,m(x; δ,H)<

(
1 +

mδ

2

)
ν(q,H0,H)√

x
.
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Proof. By our assumption of GRH(H), we have xβ−1 = x−1/2, and there-
fore by Lemma 2.11,

Vq,m(x; δ,H) =

(
1 +

mδ

2

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

xβ−1

|ρ|

=
1+mδ/2√

x

∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

1

|ρ|

<
1 +mδ/2√

x

×
∑

χ (mod q)

(
ν1
(
χ,H0(χ)

)
+

1

2π
log2
(
q∗H

2π

)
− 1

2π
− C1

H

)
.

By Definition 2.10, ∑
χ (mod q)

ν1
(
χ,H0(χ)

)
= ν2(q,H0)

and ∑
χ (mod q)

(
1

2π
log2
(
q∗H

2π

)
− 1

2π
− C1

H

)
= ν3(q,H),

concluding this proof, as ν(q,H0,H) = ν2(q,H0) + ν3(q,H). �

2.4. Further estimates related to vertical distribution of zeros of
Dirichlet L-functions. We continue by defining certain elementary func-
tions, which we shall use when our analysis calls for upper bounds on the
zero-counting functions N(T,χ) from the previous sections, and establishing
some simple inequalities for them.

Definition 2.13. Let d,u, � be positive real numbers satisfying 1≤ �≤ u.
Define

Md(�, u) =
u

π
log

(
du

2πe

)
− �

π
log

(
d�

2πe

)
+C1 log

(
d2�u

)
+ 2C2,

so that

(2.12)
∂

∂u
Md(�, u) =

1

π
log

(
du

2π

)
+

C1

u
.

Note that for fixed d and �, we have Md(�, u)� u logu.

Clearly, N(u,χ)−N(�,χ) counts the number of zeros of χ with height be-
tween � and u. The following lemma is the reason we have introduced Md(�, u).

Lemma 2.14. Let χ be a character with conductor d, and let � and u be
real numbers satisfying 1≤ �≤ u. Then N(u,χ)−N(�,χ)<Md(�, u).
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Proof. The assertion follows immediately from subtracting the two inequal-
ities

N(u,χ)<
u

π
log

du

2πe
+C1 log du+C2

N(�,χ)>
�

π
log

d�

2πe
−C1 logd�−C2,

each of which is implied by Proposition 2.5. �
Lemma 2.15. Let d,u and � be real numbers satisfying d≥ 1 and 15≤ �≤ u.

Then Md(�, u)<
u
π log du.

Proof. Set

ε= π

(
u

π
log(du)−Md(�, u)

)

= u log(2πe)− 2C2π−C1π log
(
d2�u

)
+ � log

(
�d

2πe

)
,

so that we need to prove that ε > 0. First, we have

∂ε

∂u
= log(2πe)− C1π

u
,

∂ε

∂d
=

�

d
− 2C1π

d
,

which are positive for u > C1π/ log(2πe)≈ 0.44 and � > 2C1π ≈ 2.51, while by
hypothesis u≥ �≥ 15. Thus, we may assume that u= � and d= 1. We then
have

ε= (�− 2C1π) log �− 2C2π,

which is clearly an increasing function of � and is already positive at �= 15. �
2.5. Preliminary statement of the upper bound for |ψ(x; q, a) −
x/ϕ(q)|. Our remaining goal for this section is to establish Proposition 2.20,
which is an upper bound for |ψ(x; q, a)− x/ϕ(q)| in which the dependence on
x has been confined to functions of a single type (to be defined momentarily).
Building upon the work of the previous two sections, we invoke certain hy-
potheses on the horizontal distribution of the zeros of Dirichlet L-functions to
estimate many of the terms in the upper bound of Proposition 2.1. We have
left these hypotheses in parametric form for much of this paper, in order to
facilitate the incorporation of future improvements; for our present purposes,
we shall be citing work of Platt and Kadiri (see Proposition 4.34) to confirm
the hypotheses for certain values of the parameters.

Definition 2.16. Let q be a positive integer, and let m, r, x, and H be
positive real numbers satisfying x≥ 1 and H ≥ 1. Define

Υq,m(x;H) =
∑

χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1

Ψq,m,r(x;H) =Hm+1Υq,m(x;H)(logx)r.
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Table 2. Values of H1(m)

m 3 4 5 6 7 8 9 ≥10
H1(m) 1011 391 231 168 137 120 109 102

Definition 2.17. For integers m with 3 ≤ m ≤ 25, define real numbers
H1(m) according to Table 2.

For the values of m we will actually choose, later in this paper, we note
that the product mH1(m) is roughly constant (and somewhat less than 1000).

Lemma 2.18. Let q and m be integers satisfying 3≤ q ≤ 105 and 3≤m≤
25, and let x and H be real numbers satisfying x ≥ 1000 and H ≥ H1(m).
Then

Υq,m(x;H)<

(
x− 2

2mx

)m+1

.

Proof. Since β < 1 for every ρ= β+ iγ ∈ Z(χ), we have by partial summa-
tion ∑

ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
<
∑

ρ∈Z(χ)
|γ|>H

1

|γ|m+1

=

∫ ∞

H

d(N(u,χ)−N(H,χ))

um+1
du

=
N(u,χ)−N(H,χ)

um+1

∣∣∣∣
∞

H

+ (m+ 1)

∫ ∞

H

N(u,χ)−N(H,χ)

um+2
du

= (m+ 1)

∫ ∞

H

N(u,χ)−N(H,χ)

um+2
du,

since N(u,χ)−N(H,χ)≤N(u,χ)� u logu. From the assumption that H ≥
100> 15, Lemmas 2.14 and 2.15 thus imply the inequalities

N(u,χ)−N(H,χ)<
u

π
log
(
q∗u
)
≤ u

π
log(qu)

(where q∗ is the conductor of χ), whereby

Υq,m(x;H)<
∑

χ (mod q)

m+ 1

π

∫ ∞

H

u log(qu)

um+2
du(2.13)

=
ϕ(q)

Hm

m+ 1

π

m log qH + 1

m2
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≤ 105

Hm

m+ 1

π

m log(102H) + 1

m2

<
105

100m
m+ 1

π

m log(107) + 1

m2

by monotonicity in H and q. On the other hand, monotonicity also implies
that (

x− 2

2mx

)m+1

≥
(

499

1000m

)m+1

for x≥ 1000. It therefore suffices to check that

105

400m
m+ 1

π

m log(107) + 1

m2
<

(
499

1000m

)m+1

for 11≤m≤ 25, which is a simple exercise.
For each m between 3 and 10, we argue similarly, only appealing to the

bound H ≥H1(m). �

At this point, we rewrite Proposition 2.1, with a particular choice for δ and
some other manipulations that, with foresight, are helpful.

Definition 2.19. Let m be a positive integer and δ a positive real number.
We set αm,0 = 2m and, for 1≤ k ≤m+ 1,

αm,k =

(
m+ 1

k

) m∑
j=0

(
m

j

)
jk.

We note that

Am(δ) =

m+1∑
k=0

αm,kδ
k−m.

Proposition 2.20. Let q and m be integers satisfying 3 ≤ q ≤ 105 and
3≤m≤ 25, and let a be an integer that is coprime to q. Let x, x2, and H be
real numbers with x≥ x2 ≥ 1000 and H ≥H1(m). Let H0 be a function on the
characters modulo q with 0 ≤H0(χ) ≤H for every such character. If every
Dirichlet L-function with modulus q satisfies GRH(H), then

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ logx
<Wq(x2) logx2 + ν(q,H0,H)

logx2√
x2

(2.14)

+
m

H
Ψq,m,m+1(x;H)

1
m+1

(
1 +

ν(q,H0,H)√
x2

) m
m+1

(2.15)

+
m∑

k=0

αm,k

2m−kHk+1
Ψq,m,m+1

k+1
(x;H)

k+1
m+1

(
1 +

ν(q,H0,H)√
x2

)m−k
m+1

(2.16)
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+
2αm,m+1

Hm+2
Ψq,m,m+1

m+2
(x;H)

m+2
m+1 .(2.17)

We note in passing that since αm,0 = 2m, the term on line (2.15) is identical
to the k = 0 term on line (2.16) except for the factor of m on the former line.
We will combine these terms together in the analogous Definition 4.32 below.

Proof. Our starting point is Proposition 2.1: for any real number 0< δ <
x−2
mx ,

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣<Uq,m(x; δ,H) +
mδ

2
+ Vq,m(x; δ,H) +Wq(x),

where the notation is defined in equations (2.4)–(2.7). Since trivially∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1) · · · (ρ+m)| <
∑

ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
,

a comparison of equation (2.5) and Definition 2.16 shows that

Uq,m(x; δ,H)<Am(δ)Υq,m(x;H).

Using Lemma 2.12 to bound Vq,m(x; δ,H), we therefore have

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ logx
<Am(δ)Υq,m(x;H) logx+

mδ

2
logx

+

(
1 +

mδ

2

)
ν(q,H0,H)√

x
logx+Wq(x) logx,

which we rewrite as

ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ logx(2.18)

<Wq(x) logx+ ν(q,H0,H)
logx√

x

+m

(
1 +

ν(q,H0,H)√
x

)
δ logx

2
+Am(δ)Υq,m(x;H) logx.

It is easily seen from its definition (2.7) that Wq(x) logx, much like the
function (logx)2/x, is decreasing for x≥ 1000> e2, and the same is true for
(logx)/

√
x. Therefore

Wq(x) logx+ ν(q,H0,H) logx/
√
x≤Wq(x2) logx2 + ν(q,H0,H)(logx2)/

√
x2,

which yields the terms on line (2.14).
We now set

(2.19) δ = 2

(
Υq,m(x;H)

1 + ν(q,H0,H)/
√
x

) 1
m+1

.
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Our motivation for this choice is as follows. To achieve a de la Vallée Poussin-
type bound, we must choose δ tending to 0 as x increases. Since Am(δ) ∼
(2/δ)m when δ→ 0, we choose the value of δ that minimizes

m

(
1 +

ν(q,H0,H)√
x

)
δ logx

2
+

(
2

δ

)m

Υq,m(x;H) logx,

which is easily checked to be the right-hand side of equation (2.19). This value
of δ is clearly positive, and Lemma 2.18 implies that δ < x−2

mx ; hence this δ is
a valid choice. We now have

m

(
1 +

ν(q,H0,H)√
x

)
δ logx

2

=m

(
1 +

ν(q,H0,H)√
x

)(
Υq,m(x;H)

1 + ν(q,H0,H)/
√
x

) 1
m+1

logx

=
m

H

(
Hm+1Υq,m(x;H) logm+1 x

) 1
m+1

(
1 +

ν(q,H0,H)√
x

) m
m+1

=
m

H
Ψq,m,r(x;H)

1
m+1

(
1 +

ν(q,H0,H)√
x

) m
m+1

by Definition 2.16. Certainly

1 + ν(q,H0,H)/
√
x≤ 1 + ν(q,H0,H)/

√
x2

for x≥ x2, and therefore the first term on line (2.18) can be bounded above
by the term on line (2.15).

Lastly, from Definition 2.19,

Am(δ)Υq,m(x;H) logx

=

(
m+1∑
k=0

αm,kδ
k−m

)
Υq,m(x;H) logx

=

(
m+1∑
k=0

αm,k

(
2

(
Υq,m(x;H)

1 + ν(q,H0,H)/
√
x

) 1
m+1
)k−m

)
Υq,m(x;H) logx

=

m+1∑
k=0

αm,k

2m−k

(
Υq,m(x;H)(logx)

m+1
k+1
) k+1

m+1

(
1 +

ν(q,H0,H)√
x

)m−k
m+1

=

m+1∑
k=0

αm,k

2m−kHk+1
Ψq,m,m+1

k+1
(x;H)

k+1
m+1

(
1 +

ν(q,H0,H)√
x

)m−k
m+1

by Definition 2.16. For 0≤ k ≤m, the factor (1+ ν(q,H0,H)/
√
x)

m−k
m+1 is non-

increasing, hence is bounded by (1+ν(q,H0,H)/
√
x2)

m−k
m+1 , which accounts for

the terms on line (2.16). Finally, when k =m+1, this factor is increasing but
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is bounded by 1, which accounts for the term on line (2.17), thus completing
the proof. �

Of note in Proposition 2.20 is that the bound is independent of x except in
the form of the terms Ψq,m,r(x;H) for various values 4

5 ≤ r ≤m+1. The next
two sections are devoted to bounding functions of this form; those bounds will
be inserted into the conclusion of Proposition 2.20 at the end of Section 4, at
which point we will be able to prove Theorem 1.1 for moduli q up to 105.

3. Elimination of explicit dependence on zeros of Dirichlet
L-functions

From the work of the preceding section, it remains to establish an up-
per bound for the function Ψq,m,r(x;H) that does not depend upon specific
knowledge of the zeros of a given Dirichlet L-function. To achieve this, we
will appeal to a zero-free region for such functions, together with estimates
for N(T,χ).

3.1. Estimates using a zero-free region for L(s,χ).

Definition 3.1. Given positive real numbers H2 and R, we say that a
character χ with conductor q∗ satisfies Hypothesis Z(H2,R) if every nontrivial
zero β + iγ of L(s,χ) satisfies either

|γ| ≤H2 and β =
1

2
, or |γ|>H2 and β ≤ 1− 1

R log(q∗|γ|) .

In other words, zeros with small imaginary part (less than H2 in absolute
value) lie on the critical line, while zeros with large imaginary part lie outside
an explicit zero-free region.

We say that a modulus q satisfies Hypothesis Z1(R) if every nontrivial zero
β + iγ of every Dirichlet L-function modulo q satisfies

β ≤ 1− 1

R log(qmax{1, |γ|}) ,

except possibly for a single “exceptional” zero (which, as usual, will necessarily
be a real zero of an L-function corresponding to a quadratic character—see [21,
Sections 11.1–11.2]).

Definition 3.2. Let m and d be positive integers, and let R,H,H2, x and
u be positive real numbers satisfying 1≤H ≤H2. Let χ be a character with
conductor q∗. Define the functions

g
(1)
d,m(H,H2) =

H

πm2

((
1 +m log

dH

2π

)
−
(

H

H2

)m(
1 +m log

dH2

2π

))

+

(
2 log(dH) +

1

m+ 1

(
1−
(

H

H2

)m+1))
C1 + 2C2,
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g
(2)
d,m(H,H2) =

(
H

H2

)m
H

2πm2

(
1 +m log

dH2

2π

)

+

(
H

H2

)m+1(
1

2(m+ 1)
+ logdH2

)
C1 +

(
H

H2

)m+1

C2,

g
(3)
d,m,R(x;H,H2) = g

(1)
d,m(H,H2) ·

1

x1/2
+ g

(2)
d,m(H,H2) ·

x1/(R log dH2)

x
.

Further define

Yd,m,R(x,u) = u−(m+1)x−1/(R log du) =
1

um+1
exp

(
− logx

R log du

)

and

Fχ,m,R(x;H2) =
∑

ρ∈Z(χ)
|γ|>H2

Yq∗,m,R(x, |γ|) .

Note that all of these functions are strictly positive.

Definition 3.3. Let q and m be positive integers, let R,H,x and u be
positive real numbers with H ≥ 1, and let H2 be a function on the divisors of
q satisfying 1≤H ≤H2(d) for d | q. Define

Fd,m,R(x;H2) =Hm+1
∑

χ (mod q)
q∗=d

Fχ,m,R(x;H2(d))

and

Gq,m,R(x;H,H2)

=
∑

χ (mod q)

(
g
(3)
q∗,m,R

(
x;H,H2

(
q∗
))

+
Hm+1

2
Fχ,m,R(x;H2(q

∗))

)

=
∑
d|q

(
ϕ∗(d)g

(3)
d,m,R

(
x;H,H2(d)

)
+

1

2
Fd,m,R(x;H2(d))

)
.

As before, we will use the function H2 involved in Fd,m,R and Gq,m,R only to
fill in the H2-arguments of the functions defined earlier in this section.

Lemma 3.4. Let q and m be positive integers. Let x, H , and R be real
numbers satisfying x > 1 and H ≥ 1, and let H2 be a function on the divisors of
q satisfying H ≤H2(d) for d | q. Suppose that every character χ with modulus
q satisfies Hypothesis Z(H2(q

∗),R), where q∗ is the conductor of χ. Then

Hm+1Υq,m(x;H)<Gq,m,R(x;H,H2) .
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Proof. Note that it suffices, for a fixed character χ with conductor d, to
establish the upper bound

(3.1)
∑

ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
<

g
(3)
d,m,R(x;H,H2(d))

Hm+1
+

1

2
Fχ,m,R(x;H2(d)) ,

since multiplying by Hm+1 and summing this bound over all characters mod-
ulo q yields the statement of the proposition, by comparison to Definition 3.3.
We begin by using Hypothesis Z(H2(d),R) to write

(3.2)
∑

ρ∈Z(χ)
|γ|>H

xβ−1

|γ|m+1
=

1√
x

∑
ρ∈Z(χ)

H<|γ|≤H2(d)

1

|γ|m+1
+

1

x

∑
ρ∈Z(χ)

|γ|>H2(d)

xβ

|γ|m+1
.

By partial summation, integration by parts, and Lemma 2.14, we find that∑
ρ∈Z(χ)

H<|γ|≤H2(d)

1

|γ|m+1
(3.3)

=

∫ H2(d)

H

d(N(t,χ)−N(H,χ))

tm+1

=
N(H2(d), χ)−N(H,χ)

H2(d)m+1
+ (m+ 1)

∫ H2(d)

H

N(t,χ)−N(H,χ)

tm+2
dt

<
Md(H,H2(d))

H2(d)m+1
+ (m+ 1)

∫ H2(d)

H

Md(H, t)

tm+2
dt

=
g
(1)
d,m(H,H2(d))

Hm+1
,

where the last equality follows from Definitions 2.13 and 3.2 and tedious but
straightforward calculus.

We now turn to the zeros with height above H2(d), making use of the fact
that β + iγ is a nontrivial zero of L(s,χ) if and only if 1− β + iγ is such a
zero, by the functional equation. Consequently,∑

ρ∈Z(χ)
|γ|>H2(d)

xβ

|γ|m+1
=

1

2

( ∑
ρ∈Z(χ)

|γ|>H2(d)

xβ

|γ|m+1
+

∑
ρ∈Z(χ)

|γ|>H2(d)

x1−β

|γ|m+1

)

=
1

2

∑
ρ∈Z(χ)

|γ|>H2(d)

xβ + x1−β

|γ|m+1
,

since the two sums inside the parentheses are equal to each other. For a fixed
x > 1, the function xβ + x1−β increases as β moves away from 1

2 in either
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direction; and by Hypothesis Z(H2(d),R),

1

R logd|γ| ≤min{β,1− β} ≤max{β,1− β} ≤ 1− 1

R logd|γ| .

Therefore,

1

2

∑
ρ∈Z(χ)

|γ|>H2(d)

xβ + x1−β

|γ|m+1

≤ 1

2

∑
ρ∈Z(χ)

|γ|>H2(d)

x1/(R log d|γ|) + x1−1/(R log d|γ|)

|γ|m+1

=
x1/(R log dH2(d))

2

∑
ρ∈Z(χ)

|γ|>H2(d)

1

|γ|m+1
+

x

2
Fχ,m,R(x;H2(d)) .

Again by partial summation and some tedious calculus,

1

2

∑
ρ∈Z(χ)

|γ|>H2(d)

1

|γ|m+1
<

m+ 1

2

∫ ∞

H2(d)

Md(H2(d), t)

tm+2
dt=

g
(2)
d,m(H,H2(d))

Hm+1
,

from which we conclude that

1

x

∑
ρ∈Z(χ)

|γ|>H2(d)

xβ

|γ|m+1
<

x1/(R log dH2(d))

x

g
(2)
d,m(H,H2(d))

Hm+1
+

1

2
Fχ,m,R(x;H2(d)) .

Combining this upper bound with equation (3.2) and inequality (3.3) estab-
lishes inequality (3.1), thanks to Definition 3.2, and thus completes the proof
of the lemma. �

To turn Proposition 2.20 into something amenable to computation, in light
of Lemma 3.4, we are left with the problem of deriving an absolute upper
bound for the quantity

Ψq,m,r(x;H) =Hm+1Υq,m(x;H)(logx)r

for various positive r; we will eventually obtain this in Proposition 4.31. As

g
(3)
d,m,R

(
x;H,H2(d)

)
=O(1/

√
x),

it is an easy matter to majorize g(3)(logx)r for any r. The problem that
remains, therefore, is to deduce a bound upon

Fχ,m,R(x;H2) (logx)
r,

for various r. Our bounds for this function consist of several pieces, each of
which can be optimized using calculus; we simply add the individual maxima
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together to deduce a uniform upper bound for Fχ,m,R(x;H2)(logx)
r. That

optimization, however, can only take place once we have provided bounds of
a simpler form for these pieces.

3.2. Conversion to integrals involving bounds for N(T,χ). As we
see in Definition 3.2, the function Fχ,m,R(x;H2) still depends on the vertical
distribution of zeros of Dirichlet L-functions (mod q). A standard partial
summation argument, combined with the bounds on N(T,χ) we established
in Section 2.4, allows us to remove that dependence on zeros of L-functions
in favor of more elementary functions.

Definition 3.5. Let d and m be positive integers, and suppose that R> 0,
x≥ 1 and H2 ≥ 1 are real numbers. Define

H
(1)
d,m,R(x) =

1

d
exp

(√
logx

R(m+ 1)

)

and

H
(2)
d,m,R(x;H2) =max{H2,H

(1)
d,m,R(x)}

=

{
H2, if 1≤ x≤ exp(R(m+ 1) log2(dH2)),

H
(1)
d,m,R(x) , if x≥ exp(R(m+ 1) log2(dH2)).

Straightforward calculus demonstrates that the function Yd,m,R(x,u) from

Definition 3.2 is, as a function of u, increasing for 1/q < u < H
(1)
d,m,R(x) and

decreasing for u >H
(1)
d,m,R(x).

Proposition 3.6. Let m and d be positive integers, let H , H2, and R be
positive real numbers satisfying 1 ≤ H ≤ H2, and let χ be a character with
conductor d satisfying Hypothesis Z(H2,R). Then

Fχ,m,R(x;H2)≤Md(H2,H
(2)
d,m,R(x;H2))Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
(3.4)

+

∫ ∞

H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x,u) du,

where Fχ,m,R(x;H2) and Yd,m,R(x,u) are as in Definition 3.2 and Md(�, u) is
as in Definition 2.13.

Proof. For this proof, write Y (u) for Yd,m,R(x,u) and H(2) for

H
(2)
d,m,R(x;H2). Then, from Definition 3.2 and integration by parts,

Fχ,m,R(x;H2) =

∫ ∞

H2

Y (u)d
(
N(u,χ)−N(H2, χ)

)
= lim

u→∞

(
N(u,χ)−N(H2, χ)

)
Y (u)

−
(
N(H2, χ)−N(H2, χ)

)
Y (H2)
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−
∫ ∞

H2

(
N(u,χ)−N(H2, χ)

)
Y ′(u)du

=

∫ ∞

H2

(
N(u,χ)−N(H2, χ)

)(
−Y ′(u)

)
du,

where the limit equals 0 because

N(u,χ)−N(H2, χ)<Md(H2, u)� u logu,

by Lemmas 2.14 and 2.15, while Y (u) < u−m−1 ≤ u−2. By the remarks in

Definition 3.5, the −Y ′(u) factor is negative when u <H
(1)
d,m,R(x) and positive

when u >H
(1)
d,m,R(x). Therefore, by Lemma 2.14,

Fχ,m,R(x;H2)<

∫ ∞

H(2)

(
N(u,χ)−N(H,χ)

)(
−Y ′(u)

)
du

<

∫ ∞

H(2)

Md(H2, u)
(
−Y ′(u)

)
du.

Via integration by parts, this last quantity is equal to

− lim
u→∞

Md(H2, u)Y (u) +Md

(
H2,H

(2)
)
Y
(
H(2)

)
+

∫ ∞

H(2)

(
∂

∂u
Md(H2, u)

)
Y (u)du.

The limit here again equals 0, yielding

Fχ,m,R(x;H2)≤Md

(
H2,H

(2)
)
Y
(
H(2)

)
+

∫ ∞

H(2)

(
∂

∂u
Md(H2, u)

)
Y (u)du.

Since this last integrand is positive, we may extend the lower limit of integra-
tion from H(2) down to H2 and still have a valid upper bound. �

The remainder of this section is devoted to finding an upper bound for the
boundary term in equation (3.4). Other than dealing with two cases depending
on the size of x relative to H , this optimization is simply a matter of calculus
and notation.

Definition 3.7. Let d and m be positive integers, and let x, r,H,H2 and
R be real numbers satisfying x > 1, 1

4 < r ≤m+ 1, and x > 1. We define the
functions

B
(1)
d,m,R(x; r,H2) =Md(H2,H2) · Yd,m,R(x,H2) (logx)

r

= 2
(
C1 log(dH2) +C2

)
· 1

Hm+1
2

exp

(
− logx

R log(dH2)

)
(logx)r,

B
(2)
d,m,R(x; r) =

dm

π

(
logr+1/2 x√
R(m+ 1)

)
exp

(
− 2m+ 1√

R(m+ 1)

√
logx

)
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and

Bd,m,R(r,H,H2) =

(
H

H2

)m+1

Rr(log dH2)
r

×max

{
Md(H2,H2)

(
r

e

)r

,
(m+ 1)r logr+1(dH2)

πdm+1Hm
2

}
.

Proposition 3.8. Let d and m be positive integers, and let x, r, H and
H2 be real numbers satisfying 15≤H ≤H2 and 1

4 < r ≤m+ 1. If

0< logx≤R(m+ 1) log2(dH2),

then

Md

(
H,H

(2)
d,m,R(x;H2)

)
Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
(logx)r(3.5)

=B
(1)
d,m,R(x; r,H2) ,

while if logx >R(m+ 1) log2(dH2), then

Md

(
H,H

(2)
d,m,R(x;H2)

)
Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
(logx)r(3.6)

<B
(2)
d,m,R(x; r) .

Proof. When 0< logx≤R(m+1) log2(dH2), we have H
(2)
d,m,R(x;H2) =H2

and so equation (3.5) follows.
On the other hand, when logx≥R(m+ 1) log2(dH2), we have

H
(2)
d,m,R(x;H2) =H

(1)
d,m,R(x)≥H2 ≥ 15,

and so by Lemma 2.15,

Md

(
H,H

(2)
d,m,R(x;H2)

)
<

H
(1)
d,m,R(x)

π
log
(
dH

(1)
d,m,R(x)

)
=

1

πd

√
logx

R(m+ 1)
· exp

(√
logx

R(m+ 1)

)

and

Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
=

1

(H
(1)
d,m,R(x))

m+1
· exp

(
− logx

R log(dH
(1)
d,m,R(x))

)

= dm+1 exp

(
−
√

(m+ 1) logx

R

)
· exp

(
−
√

(m+ 1) logx

R

)

= dm+1 exp

(
−2

√
(m+ 1) logx

R

)
.
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Therefore, as 2
√

m+1
R −

√
1

R(m+1) =
2m+1√
R(m+1)

, we have

Md

(
H,H

(2)
d,m,R(x;H2)

)
Yd,m,R

(
x,H

(2)
d,m,R(x;H2)

)
(logx)r

<
dm

π

(√
logx

R(m+ 1)

)
exp

(
− 2m+ 1√

R(m+ 1)

√
logx

)
(logx)r

=B
(2)
d,m,R(x; r) . �

Lemma 3.9. Let c1, c2, λ, and μ be positive real numbers, and define

Φ(u; c1, c2, λ,μ) = c1 exp
(
−c2 log

λ u
)
logμ u.

Then Φ(u; c1, c2, λ,μ), as a function of u, is increasing for 1 < u < u0 and
decreasing for u > u0, where

u0 = exp

((
μ

λc2

)1/λ)
.

In particular, Φ(u; c1, c2, λ,μ)≤Φ(u0; c1, c2, λ,μ) = c1(
μ

eλc2
)μ/λ for all u≥ 1.

Proof. This is a straightforward calculus exercise. �

Lemma 3.10. Let d and m be positive integers, and let u, μ, H , H2, and R
be positive real numbers satisfying u > 1, μ≤m+ 1, and 15≤H ≤H2. Then
with B(1), B(2), and B as in Definition 3.7, we have the following inequalities:

(i) Hm+1B
(1)
d,m,R(u;μ,H2)≤Bd,m,R(μ,H,H2);

(ii) If logu≥R(m+ 1) log2(dH2), then

Hm+1B
(2)
d,m,R(u;μ)≤Bd,m,R(μ,H,H2) .

Proof. Using the notation and final conclusion of Lemma 3.9, we find that

Hm+1B
(1)
d,m,R(u;μ,H2) = Φ

(
u;Hm+1 · Md(H2,H2)

Hm+1
2

,
1

R log(dH2)
,1, μ

)

≤Hm+1 · Md(H2,H2)

Hm+1
2

(
μR log(dH2)

e

)μ

=

(
H

H2

)m+1

Rμ(log dH2)
μ ·Md(H2,H2)

(
μ

e

)μ

≤Bd,m,R(μ,H,H2) ,

which establishes claim (i).
Next, observe that

(3.7) Hm+1B
(2)
d,m,R(u;μ) = Φ

(
u;

Hm+1dm

π
√

R(m+ 1)
,

2m+ 1√
R(m+ 1)

,
1

2
, μ+

1

2

)
,
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which by Lemma 3.9 is decreasing for

u > exp

((
μ+ 1/2

1
2 · 2m+1√

R(m+1)

)1/(1/2))
= exp

(
R(m+ 1)

(
2μ+ 1

2m+ 1

)2)
.

As log(dH2) ≥ log 15 > 5
3 ≥ 2μ+1

2m+1 under the hypotheses of this lemma, we

know by the hypothesis of claim (ii) that logu >R(m+1)( 2μ+1
2m+1 )

2. It follows

that the right-hand side of equation (3.7) is indeed decreasing. Therefore,

Hm+1B
(2)
d,m,R(u;μ)

≤Φ

(
exp
(
R(m+ 1) log2(dH2)

)
;

Hm+1dm

π
√

R(m+ 1)
,

2m+ 1√
R(m+ 1)

,
1

2
, μ+

1

2

)

=
Hm+1

πdm+1H2m+1
2

Rμ(m+ 1)μ log2μ+1(dH2)

=

(
H

H2

)m+1

Rμ(log dH2)
μ · (m+ 1)μ logμ+1(dH2)

πdm+1Hm
2

≤Bd,m,R(μ,H,H2) ,

as claimed. �

We have thus bounded the first term on the right-hand side of equa-
tion (3.4); it remains to treat the second term

(3.8)

∫ ∞

H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x,u) du,

which is the subject of Section 4.

4. Optimization of the upper bound for |ψ(x; q, a)− x/ϕ(q)|, for
q ≤ 105

4.1. Estimation of integrals using incomplete modified Bessel func-
tions. We follow the strategy of previous work on explicit error bounds for
prime counting functions, going back to Rosser and Schoenfeld [32], of bound-
ing integrals with the form given in equation (3.8). After some well-chosen
changes of variables, we use two Taylor approximations of algebraic functions
to construct a bounding integral whose antiderivative we can write down ex-
plicitly.

Definition 4.1. Given positive real numbers n,m,α,β, �, define an incom-
plete modified Bessel function of the first kind as

In,m(α,β; �) =

∫ ∞

�

(logβu)n−1

um+1
exp

(
− α

logβu

)
du.
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Proposition 4.2. Let d and m be positive integers, and let x,H2,R be
positive real numbers. Then∫ ∞

H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x,u) du

≤ 1

π
I2,m

(
logx

R
, q;H2

)
+

(
1

π
log

1

2π
+

C1

H2

)
I1,m

(
logx

R
, q;H2

)
.

Proof. For this proof, write Y (u) for Yd,m,R(x,u). If we put α= (logx)/R
and β = d, we see from Definition 3.2 that

Y (u) =
1

um+1
exp

(
− α

logβu

)
.

Using equation (2.12), and writing log du
2π = logβu+ log 1

2π ,∫ ∞

H2

(
∂

∂u
Md(H2, u)

)
Y (u)du

=

∫ ∞

H2

(
1

π
log

du

2π
+

C1

u

)
1

um+1
exp

(
− α

logβu

)
du

≤ 1

π

∫ ∞

H2

logβu

um+1
exp

(
− α

logβu

)
du

+

(
1

π
log

1

2π
+

C1

H2

)∫ ∞

H2

1

um+1
exp

(
− α

logβu

)
du,

since u≥H2, as required. �

Definition 4.3. Given positive constants n, z, and y, define the incomplete
modified Bessel function of the second kind (see, for example, [1, page 376,
equation 9.6.24])

Kn(z;y) =
1

2

∫ ∞

y

un−1 exp

(
−z

2

(
u+

1

u

))
du.

Lemma 4.4. Given positive constants n, m, α, β, and �,

In,m(α,β; �) = 2βm

(
α

m

)n/2

Kn

(
2
√
αm;

√
m

α
log(β�)

)
.

In particular, if n, m, x, R, d, and H2 are positive real numbers with x > 1,
then

In,m

(
logx

R
,d;H2

)
= 2dm

(
logx

mR

)n/2

Kn

(
2

√
m logx

R
;

√
mR

logx
log(dH2)

)
.

Proof. The first identity follows easily from the change of variables u =√
m
α logβt in Definition 4.1 of In,m(α,β; �); the second identity is immediate

upon substitution. �
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Definition 4.5. For any real number u, define the complementary error
function

erfc(u) =
2√
π

∫ ∞

u

e−t2 dt.

Definition 4.6. For positive real numbers y and z, define

J1a(z;y) =
3
√
y+ 8

16zez(y+1/y)/2
,

J1b(z;y) =
√
π erfc

(√
z

2

(
√
y− 1

√
y

))
8z + 3

16
√
2z3/2ez

,

J2a(z;y) =
(35y3/2 + 128y+ 135y1/2 + 128y−1)z + 105y1/2 + 256

256z2ez(y+1/y)/2
,

J2b(z;y) =
√
π erfc

(√
z

2

(
√
y− 1

√
y

))
128z2 + 240z + 105

256
√
2z5/2ez

.

The next proposition is essentially [32, equations (2.30) and (2.31)].

Proposition 4.7. For z, y > 0, we have K1(z;y)≤ J1a(z;y)+J1b(z;y) and
K2(z;y)≤ J2a(z;y) + J2b(z;y).

Proof. In Definition 4.3, make the change of variables

u= 1+w2 +w
√
w2 + 2, du= 2

(
w+

w2 + 1√
w2 + 2

)
dw,

so that w = 1√
2
(
√
u− 1√

u
) and hence w2 = 1

2 (u+ 1
u )− 1. We obtain

Kn(z;y) = e−z

∫ ∞

v

(
1 +w2 +w

√
w2 + 2

)n−1
(
w+

w2 + 1√
w2 + 2

)
e−zw2

dw,

where v = 1√
2
(
√
y− 1√

y ). In particular,

K1(z;y) = e−z

∫ ∞

v

(
w+

w2 + 1√
w2 + 2

)
e−zw2

dw

K2(z;y) = e−z

∫ ∞

v

(
2w3 + 2w+

2w4 + 4w2 + 1√
w2 + 2

)
e−zw2

dw.

The inequalities

w2 + 1√
w2 + 2

≤ 3w2

4
√
2
+

1√
2

2w4 + 4w2 + 1√
w2 + 2

≤ 35w4

32
√
2
+

15w2

4
√
2
+

1√
2
,

(which are identical to [32, equations (2.27) and (2.28)]) can be verified by
squaring both sides; consequently,

K1(z;y)≤ e−z

∫ ∞

v

(
w+

3w2

4
√
2
+

1√
2

)
e−zw2

dw,
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K2(z;y)≤ e−z

∫ ∞

v

(
2w3 + 2w+

35w4

32
√
2
+

15w2

4
√
2
+

1√
2

)
e−zw2

dw.

Routine integration of the right-hand sides now gives

K1(z;y)≤ e−z

(
3
√
2v+ 8

16zev2z
+
√
π erfc(v

√
z)

8z + 3

16
√
2z3/2

)

and, similarly, ezK2(z;y) is bounded above by

70
√
2v3z + 256v2z + 15

√
2v(16z + 7) + 256(z + 1)

256z2ev2z

+
√
π erfc(v

√
z)

128z2 + 240z + 105

256
√
2z5/2

.

Substituting in v = 1√
2
(
√
y− 1√

y ), so that v2 + 1= (y+ 1/y)/2, yields

K1(z;y)≤
3y+ 8

√
y− 3

16zez(y+1/y)/2√y
+
√
π erfc

(√
z

2

(
√
y− 1

√
y

))
8z + 3

16
√
2z3/2ez

,

while K2(z;y) is bounded above by

(35y3 + 128y5/2 + 135y2 − 135y+ 128
√
y− 35)z + 105y2 + 256y3/2 − 105y

256z2ez(y+1/y)/2y3/2

+
√
π erfc

(√
z

2

(
√
y− 1

√
y

))
128z2 + 240z + 105

256
√
2z5/2ez

.

The lemma now follows upon simply omitting the negative terms from the
numerators in these upper bounds (and comparing with Definition 4.6). �

4.2. Elementary estimation of the complementary error function
erfc(u). Some of the bounding functions in the previous section contain fac-
tors of the complementary error function erfc(u) evaluated at complicated
arguments involving fractional powers of logx. In this section, we establish
simpler and reasonably tight upper bounds for factors of this type. Our first
task, which culminates in Lemma 4.11, is to provide a general structure for
the type of argument we will need. (We caution the reader that the tempo-
rary parameters y and z do not fill the same role that they did in the previous
section.) Then in the rest of the section, leading up to Proposition 4.14, we
implement that argument with some specific numerical choices motivated by
our ultimate invocation of the proposition.

Lemma 4.8. Let v, w, y, z, μ, and τ be positive constants with v > τ and
yz > w. Let f(u) be a positive, differentiable function, and define

g(u) = f

(
v− u

y

)
u2μe−zu.



EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 463

Suppose that

(4.1) −f ′(u)

f(u)
≤w for u≤ τ.

Then g(u) is a decreasing function of u for

u≥max

{
y(v− τ),

2μ

z −w/y

}
.

Proof. It suffices to show that log g(u) is decreasing. We have

d

du

(
log g(u)

)
=

d

du

(
log f

(
v− u

y

)
+ 2μ logu− zu

)

=− f ′(v− u/y)

yf(v − u/y)
+

2μ

u
− z.

Since u≥ y(v− τ), we have v− u/y ≤ τ , and so by the assumption (4.1),

d

du

(
log g(u)

)
≤ w

y
+

2μ

u
− z ≤ 0

since u≥ 2μ/(z − w
y ). �

Lemma 4.9. Given τ ≥ 0, if we have u≤ τ , then

−erfc′(u)

erfc(u)
≤ τ +

√
τ2 + 2.

Proof. Note that

(4.2) −erfc′(u)

erfc(u)
=

2√
π

1

eu2 erfc(u)
.

When u≤ 0, since erfc(u)≥ 1 we have

−erfc′(u)

erfc(u)
≤ 2√

π
<
√
2≤ τ +

√
τ2 + 2

for all τ ≥ 0. On the other hand, when u≥ 0, we have [24, equation 7.8.2]

(4.3)
1

u+
√
u2 + 2

< eu
2

√
π

2
erfc(u)≤ 1

u+
√

u2 + 4/π
.

In light of the identity (4.2), the first inequality is equivalent to

−erfc′(u)

erfc(u)
≤ u+

√
u2 + 2,

which establishes the lemma as this function is increasing in u. �
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Definition 4.10. Given an integer m≥ 2 and positive constants λ, μ, and
R, define for x > 1 the function

Ξm,λ,μ,R(x) =
√
π erfc

(√
mλ−

√
logx

Rλ

)
exp

(
−2

√
m logx

R

)
logμ x,

where erfc is as given in Definition 4.5.

Lemma 4.11. Let m, λ, μ and R be positive constants. Choose τ ≥ 0 and
set w = τ +

√
τ2 + 2. Suppose that mλ>w2/4 and

√
Rλ(

√
mλ− τ)≥ 2μ

2
√
m/R−w/

√
Rλ

,

or equivalently that

μ≤ (
√
mλ−w/2)(

√
mλ− τ).

Then the function Ξm,λ,μ,R(x) in Definition 4.10 is a decreasing function of

x for x≥ exp(Rλ(
√
mλ− τ)2).

Proof. In Lemma 4.8, we let f(u) =
√
π erfc(u), and we set v =

√
mλ, y =√

Rλ, and z = 2
√
m/R, so that − f ′(u)

f(u) ≤ w for u ≤ τ by Lemma 4.9. As

mλ> τ2, we have v > τ and yz > w. By Lemma 4.9, condition (4.1) is satisfied.
Then g(

√
logx) = Ξm,λ,μ,R(x), and Lemma 4.8 guarantees that Ξm,λ,μ,R(x) is

decreasing provided that√
logx≥max

{√
Rλ(

√
mλ− τ),

2μ

2
√

m/R−w/
√
Rλ

}
=
√
Rλ(

√
mλ− τ),

where the last equality is a hypothesis of this lemma. �
We now choose some specific values of the parameters that correspond to

the range of exponents μ, depending on m, for which we want to apply the
previous lemma.

Definition 4.12. For integers m≥ 2, define real numbers τm according to
Table 3. Then, for any m≥ 2, define ωm = 2

τm+
√

τ2
m+4/π

.

Lemma 4.13. For a given m≥ 2:

(a) m + 7
4 ≤ (

√
mλ − τm)(

√
mλ − (τm +

√
τ2m + 2)/2) holds for all λ ≥

log(108);

Table 3. Values of τm

m 2 3 4 5 6 7
τm 4.0726 5.2067 6.1454 6.9631 7.6967 8.3675

m 8 9 10 11 12 ≥13
τm 8.9891 9.5709 10.1197 10.6405 11.1371 11.6126
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(b)
√
π erfc(u)≤ ωme−u2

when u≥ τm.

Proof. For part (a), since the right-hand side of the inequality is a convex
function of λ, it suffices to check that for any given m, the right-hand side
minus the left-hand side is positive and increasing at λ = log(108). Part (b)
then follows from the upper bound in equation (4.3) in the form

√
π erfc(u)≤ e−u2 2

u+
√
u2 + 4/π

≤ e−u2 2

τm +
√

τ2m + 4/π
= e−u2

ωm. �

Proposition 4.14. Let m ≥ 2 be given, let μ ≤m+ 7
4 and λ ≥ log(108),

let R be positive, and let Ξm,λ,μ,R(x) be as in Definition 4.10. Then

(a) Ξm,λ,μ,R(x) is a decreasing function of x for x≥ exp(Rλ(
√
mλ− τm)2).

(b) For 1≤ x≤ exp(Rλ(
√
mλ− τm)2), we have

Ξm,λ,μ,R(x)≤ ωme−mλ exp

(
− logx

Rλ

)
logμ x.

Proof. By Lemma 4.13(a), the hypotheses of Lemma 4.11 are satisfied with
τ = τm, which immediately establishes the proposition’s first claim. We apply
Lemma 4.13(b) with u=

√
mλ−

√
(logx)/Rλ, which is at least τm when

x≤ exp
(
Rλ(

√
mλ− τm)2

)
;

the result is

Ξm,λ,μ,R(x)

≤ ωm exp

(
−
(√

mλ−
√

logx

Rλ

)2)
exp

(
−2

√
m logx

R

)
logμ x

= ωm exp

(
−mλ+ 2

√
m logx

R
− logx

Rλ

)
exp

(
−2

√
m logx

R

)
logμ x,

which establishes the second claim. �

4.3. Identification of maximum values of bounding functions via
calculus. As we move towards our upper bound for |ψ(x; q, a)− x/ϕ(q)|, we
will need to find the maximum values of various decreasing functions (of the
type addressed in the previous two sections) multiplied by powers of logx.
Each individual such product can be bounded by elementary calculus that is
straightforward—especially given our existing bounds on functions related to
erfc(x) from Section 4.2—but notationally extremely unwieldy. We therefore
encourage the reader to regard this section only as a necessary evil.

We can, however, make one possibly insightful remark before getting un-
derway. The upper bound currently being derived for |ψ(x; q, a)−x/ϕ(q)|/(x/
logx) has several pieces, some of which we have already seen decay like a power
of x. The remaining pieces of the upper bound will be bounded by the func-
tions in Definition 4.15 below; and the sharp-eyed reader will notice that these
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functions too decay like exp(− logx
Rλ ), which is to say, like a power of x. (Of

course, the functions do start off increasing for small values of x, so that there
is a maximum value which we seek to identify.) This rate of decay seems too
good to be true, since it would correspond to a zero-free strip of constant
width (that is, a quasi-GRH). This apparent paradox can be resolved by not-
ing that the functions in Definition 4.15 are involved in the upper bound for
the function Uq,m(x; δ,H) (see Definition 2.5), which is a sum over only the
zeros of the L(s,χ) with large imaginary part. It seems that such a function
actually does decay like a power of x initially, before slowing down to decay
only like exp(−c

√
logx) as is consistent with the classical zero-free region;

but, as it happens, the maxima of these functions occur for moderately sized
x, for which the functions’ envelopes are still decaying like a power of x. (One
can contrast this observation with Lemma 6.12, in which we see (for large
moduli q) the expected rate of decay in the error term.)

Definition 4.15. Given an integer m≥ 2 and positive constants r, x, λ,
H2, and R, define

P1a(x;m,r,λ,H2,R) =
1

Hm
2

(
3R1/4λ1/2 logr−1/4 x

16m3/4
+

(logx)r

2m

)
exp

(
− logx

Rλ

)
,

P1b(x;m,r,λ,H2,R) =
ωm

Hm
2

(
logr+1/4 x

2m3/4R1/4
+

3R1/4 logr−1/4 x

32m5/4

)
exp

(
− logx

Rλ

)
,

P1(x;m,r,λ,H2,R) = P1a(x;m,r,λ,H2,R) + P1b(x;m,r,λ,H2,R);

P2a(x;m,r,λ,H2,R) =
1

Hm
2

exp

(
− logx

Rλ

)(
logr+1 x

2λm2R
+

135λ1/2 logr+1/4 x

256m5/4R1/4

+
(mλ+ 1)(logx)r

2m2

+
35(2mλ+ 3)λ1/2R1/4 logr−1/4 x

512m7/4

)
,

P2b(x;m,r,λ,H2,R) =
ωm

Hm
2

(
logr+3/4 x

2m5/4R3/4
+

15 logr+1/4 x

32m7/4R1/4

+
105R1/4 logr−1/4 x

1024m9/4

)
exp

(
− logx

Rλ

)
,

P2(x;m,r,λ,H2,R) = P2a(x;m,r,λ,H2,R) + P2b(x;m,r,λ,H2,R).

Definition 4.16. Given an integer m≥ 2 and positive constants r, λ, H2,
and R, define

Q1a(m,r,λ,H2,R) =
Rr

erHm
2

(
3e1/4(r− 1/4)r−1/4λr+1/4

16m3/4
+

rrλr

2m

)
,
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Q1b(m,r,λ,H2,R) =
ωmRr

erHm
2

(
(r+ 1/4)r+1/4λr+1/4

2e1/4m3/4

+
3e1/4(r− 1/4)r−1/4λr−1/4

32m5/4

)
,

Q1(m,r,λ,H2,R) = Q1a(m,r,λ,H2,R) +Q1b(m,r,λ,H2,R);

Q2a(m,r,λ,H2,R) =
Rr

erHm
2

(
(r+ 1)r+1λr

2em2
+

135(r+ 1/4)r+1/4λr+3/4

256e1/4m5/4

+
(mλ+ 1)rrλr

2m2

+
35e1/4(2mλ+ 3)(r− 1/4)r−1/4λr+1/4

512m7/4

)
,

Q2b(m,r,λ,H2,R) =
ωmRr

erHm
2

(
(r+ 3/4)r+3/4λr+3/4

2e3/4m5/4
+

15(r+ 1/4)r+1/4λr+1/4

32e1/4m7/4

+
105e1/4(r− 1/4)r−1/4λr−1/4

1024m9/4

)
,

Q2(m,r,λ,H2,R) = Q2a(m,r,λ,H2,R) +Q2b(m,r,λ,H2,R).

Definition 4.17. Let d and m be positive integers with m ≥ 2, and let
H2, R, and x be positive real numbers with x > 1. Define

zm,R(x) = 2

√
m logx

R
and yd,m,R(x;H2) =

√
mR

logx
log(dH2).

Lemma 4.18. Let m, R, x, d, and H2 be positive real numbers with x > 1.
Then

exp

(
−zm,R(x)

2

(
yd,m,R(x;H2) +

1

yd,m,R(x;H2)

))
(4.4)

=

(
1

dH2

)m

exp

(
− logx

R log(dH2)

)

and √
zm,R(x)

2

(√
yd,m,R(x;H2)−

1√
yd,m,R(x;H2)

)
(4.5)

=
√

m log(dH2)−
√

logx

R log(dH2)
.

Proof. Both identities follow quickly from e−m log(dH2) = (dH2)
−m and the

evaluations
zm,R(x)

2
· yd,m,R(x;H2) =m log(dH2)
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and
zm,R(x)

2
· 1

yd,m,R(x;H2)
=

logx

R log(dH2)
. �

Lemma 4.19. Let r, m, R, x, d, and H2 be positive real numbers with x > 1.
Then

(logx)r · 2dm
(
logx

mR

)1/2

J1a
(
zm,R(x);yd,m,R(x;H2)

)
= P1a

(
x;m,r, log(dH2),H2,R

)
.

Proof. In this proof, for concision, we write y for yd,m,R(x;H2) and z for
zm,R(x). Using Definition 4.6 and the identity (4.4):

(logx)r · 2dm
(
logx

mR

)1/2

J1a(z;y)

= (logx)r · 2dm
(
logx

mR

)1/2 3y+ 8
√
y

16zez(y+1/y)/2√y

= (logx)r · 2dm
(
logx

mR

)1/2 3y+ 8
√
y

16z
√
y

(
1

dH2

)m

exp

(
− logx

R log(dH2)

)

=
logr+1/2 x

Hm
2

1

8
√
mR

(3
√
y+ 8)z−1 exp

(
− logx

R log(dH2)

)

=
logr+1/2 x

Hm
2

1

8
√
mR

(
3m1/4R1/4

√
log(dH2)

log1/4 x
+ 8

)

×
√
R

2
√
m logx

exp

(
− logx

R log(dH2)

)

=
1

Hm
2

(
3R1/4

√
log(dH2) log

r−1/4 x

16m3/4
+

(logx)r

2m

)
exp

(
− logx

R log(dH2)

)
,

which establishes the lemma thanks to Definition 4.15. �
Lemma 4.20. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1

and r > 1
4 . Then

P1a(x;m,r,λ,H2,R)≤Q1a(m,r,λ,H2,R).

Proof. By Lemma 3.9, the two summands in Definition 4.15 for P1a are
maximized at logx= (r− 1

4 )Rλ and logx= rRλ, respectively. Inserting these
respective values of x into the two summands yields the upper bound

P1a(x;m,r,λ,H2,R)≤ 1

Hm
2

(
3R1/4

√
λ

16m3/4

(
(r− 1/4)Rλ

e

)r−1/4

+
1

2m

(
rRλ

e

)r)

=
Rr

erHm
2

(
3e1/4(r− 1/4)r−1/4λr+1/4

16m3/4
+

rrλr

2m

)
,

which establishes the lemma thanks to Definition 4.16. �
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Lemma 4.21. Let r, m, R, x, d, and H2 be positive real numbers with x > 1.
Then

(logx)r · 2dm logx

mR
J2a
(
zm,R(x);yd,m,R(x;H2)

)
= P2a

(
x;m,r, log(dH2),H2,R

)
.

Proof. For this proof, write y = yd,m,R(x;H2) and z = zm,R(x). Using Def-
inition 4.6 and the identity (4.4):

(logx)r · 2dm logx

mR
J2a(z, y)

= (logx)r

· 2dm logx

mR

(35y3 + 128y5/2 + 135y2 + 128
√
y)z + 105y2 + 256y3/2

256z2ez(y+1/y)/2y3/2

=
logr+1 x

128mRHm
2

(
35y3/2 + 128y+ 135y1/2 + 128y−1

z
+

105y1/2 + 256

z2

)

× exp

(
− logx

R log(dH2)

)

=
logr+1 x

128mRHm
2

exp

(
− logx

R log(dH2)

)

×
{

R1/2

2m1/2 log1/2 x

(
35m3/4R3/4 log3/2(dH2)

log3/4 x
+

128m1/2R1/2 log(dH2)

log1/2 x

+
135m1/4R1/4 log1/2(dH2)

log1/4 x
+

128 log1/2 x

m1/2R1/2 log(dH2)

)

+
R

4m logx

(
105m1/4R1/4 log1/2(dH2)

log1/4 x
+ 256

)}
,

which can be written as

1

Hm
2

exp

(
− logx

R log(dH2)

)

×
{(

35R1/4 log3/2(dH2) log
r−1/4 x

256m3/4
+

log(dH2)(logx)
r

2m

+
135 log1/2(dH2) log

r+1/4 x

256m5/4R1/4
+

logr+1 x

2m2R log(dH2)

)

+

(
105R1/4 log1/2(dH2) log

r−1/4 x

512m7/4
+

(logx)r

2m2

)}

=
1

Hm
2

exp

(
− logx

R log(dH2)

)(
logr+1 x

2 log(dH2)m2R
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+
135 log1/2(dH2) log

r+1/4 x

256m5/4R1/4
+

(m log(dH2) + 1)(logx)r

2m2

+
35(2m log(dH2) + 3) log1/2(dH2)R

1/4 logr−1/4 x

512m7/4

)
. �

Lemma 4.22. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1
and r > 1

4 . Then

P2a(x;m,r,λ,H2,R)≤Q2a(m,r,λ,H2,R).

Proof. By Lemma 3.9, the four summands in Definition 4.15 for P2a are
maximized at logx= (r+ε)Rλ for ε ∈ {1, 14 ,0,−

1
4}. Inserting these respective

values of x into the two summands yields the upper bound

P2a(x;m,r,λ,H2,R)

≤ 1

Hm
2

(
((r+ 1)Rλ)r+1

2er+1λm2R
+

135λ1/2((r+ 1/4)Rλ)r+1/4

256er+1/4m5/4R1/4

+
(mλ+ 1)(rRλ)r

2erm2
+

35(2mλ+ 3)λ1/2R1/4((r− 1/4)Rλ)r−1/4

512er−1/4m7/4

)

=
Rr

erHm
2

(
(r+ 1)r+1λr

2em2
+

135(r+ 1/4)r+1/4λr+3/4

256e1/4m5/4

+
(mλ+ 1)rrλr

2m2
+

35e1/4(2mλ+ 3)(r− 1/4)r−1/4λr+1/4

512m7/4

)
,

which establishes the lemma thanks to Definition 4.16. �
Definition 4.23. Given integers m≥ 2 and d≥ 3 and positive constants

H2 and R, if τm is as given in Definition 4.12, define

x3(m,d,H2,R) = exp
(
R log(dH2)

(√
m log(dH2)− τm

)2)
.

Lemma 4.24. Let m≥ 2 be an integer, and let r, R, x, d, and H2 be positive
real numbers with x > 1, r ≤m+ 1, and dH2 ≥ 108. Then

(logx)r · 2dm
(
logx

mR

)1/2

J1b
(
zm,R(x);yd,m,R(x;H2)

)
≤max

{
P1b

(
x;m,r, log(dH2),H2,R

)
,

P1b

(
x3(m,d,H2,R);m,r, log(dH2),H2,R

)}
.

Proof. In this proof, we write y = yd,m,R(x;H2) and z = zm,R(x). We start
with Definition 4.6:

(logx)r · 2dm
(
logx

mR

)1/2

J1b(z;y)

= (logx)r · 2dm
(
logx

mR

)1/2√
π erfc

(√
z

2

(
√
y− 1

√
y

))
8z + 3

16
√
2z3/2ez
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= (logx)r · 2dm
(
logx

mR

)1/2√
π erfc

(√
m log(dH2)−

√
logx

R log(dH2)

)

× 8z + 3

16
√
2z3/2ez

by the identity (4.5). Since e−z = exp(−2
√
(m logx)/R), we can express the

right-hand side in terms of the function Ξm,λ,μ,R(x) defined in Definition 4.10,
with μ= r+ 1

2 and λ= log(dH2):

(logx)r · 2dm
(
logx

mR

)1/2

J1b
(
zm,R(x);yd,m,R(x;H2)

)
(4.6)

=
2dm√
mR

8z + 3

16
√
2z3/2

Ξm,λ,μ,R(x).

Suppose first that we have

x≤ x3 = exp
(
R log(dH2)

(√
m log(dH2)− τm

)2)
.

Then by Proposition 4.14(b),

2dm
1√
mR

8z + 3

16
√
2z3/2

Ξm,λ,μ,R(x)

≤ 2dm
1√
mR

8z + 3

16
√
2z3/2

ωme−mλ exp

(
− logx

R log(dH2)

)
logr+1/2 x

=
ωm

8
√
2

logr+1/2 x

Hm
2

√
mR

(
8z−1/2 + 3z−3/2

)
exp

(
− logx

R log(dH2)

)

=
ωm

8
√
2

logr+1/2 x

Hm
2

√
mR

(
8R1/4

√
2(m logx)1/4

+
3R3/4

2
√
2(m logx)3/4

)

× exp

(
− logx

R log(dH2)

)

=
ωm

Hm
2

(
logr+1/4 x

2m3/4R1/4
+

3R1/4 logr−1/4 x

32m5/4

)
exp

(
− logx

R log(dH2)

)
(4.7)

= P1b

(
x;m,r, log(dH2),H2,R

)
(4.8)

by Definition 4.15. Combining the last two equations establishes the lemma
in this range of x.

Now suppose that x≥ x3. By Proposition 4.14(a), the function Ξm,λ,μ,R(x)

is a decreasing function of x in this range, while the function (8z+3)/16
√
2z3/2

is also a decreasing function of x. Therefore

2dm√
mR

8z + 3

16
√
2z3/2

Ξm,λ,μ,R(x)≤
2dm√
mR

8z(x3) + 3

16
√
2z(x3)3/2

Ξm,λ,μ,R(x3);
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and then the calculation leading to (4.8) shows that P1b(x3;m,r, log(dH2),
H2,R) is an upper bound for the latter quantity, which establishes the lemma
for this complementary range of x thanks to equation (4.6). �

Lemma 4.25. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1
and r > 1

4 . Then

P1b(x;m,r,λ,H2,R)≤Q1b(m,r,λ,H2,R).

Proof. By Lemma 3.9, the two summands in Definition 4.15 for P1b are
maximized at logx= (r+ 1

4 )Rλ and logx= (r− 1
4 )Rλ, respectively. Inserting

these respective values of x into the two summands yields the following upper
bound for P1b(x;m,r, d,H2,R) :

ωm

Hm
2

(
1

2m3/4R1/4

(
(r+ 1/4)Rλ

e

)r+1/4

+
3R1/4

32m5/4

(
(r− 1/4)Rλ

e

)r−1/4)

=
ωmRr

erHm
2

(
(r+ 1/4)r+1/4λr+1/4

2e1/4m3/4
+

3e1/4(r− 1/4)r−1/4λr−1/4

32m5/4

)
,

which establishes the lemma, upon appealing to Definition 4.16. �

Lemma 4.26. Let m≥ 2 be an integer, and let r, R, x, d, and H2 be positive
real numbers with x > 1, r ≤m+ 1, and dH2 ≥ 108. Then

(logx)r · 2dm logx

mR
J2b
(
zm,R(x), yd,m,R(x;H2)

)
≤max

{
P2b

(
x;m,r, log(dH2),H2,R

)
,

P2b

(
x3(m,d,H2,R);m,r, log(dH2),H2,R

)}
.

Proof. In this proof, we write y = yd,m,R(x;H2) and z = zm,R(x). We start
with Definition 4.6:

(logx)r · 2dm logx

mR
J2b
(
zm,R(x);yd,m,R(x;H2)

)
= (logx)r · 2dm logx

mR

√
π erfc

(√
z

2

(
√
y− 1

√
y

))
128z2 + 240z + 105

256
√
2z5/2ez

= (logx)r · 2dm logx

mR

√
π erfc

(√
m log(dH2)−

√
logx

R log(dH2)

)

× 128z2 + 240z + 105

256
√
2z5/2ez

,

by identity (4.5). Since e−z = exp(−2
√
(m logx)/R), we can write the last

quantity here in terms of the function Ξm,λ,μ,R(x) defined in Definition 4.10,
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with μ= r+ 1 and λ= log(dH2):

(logx)r · 2dm logx

mR
J2b
(
zm,R(x);yd,m,R(x;H2)

)
=

2dm

mR

128z2 + 240z + 105

256
√
2z5/2

Ξm,λ,μ,R(x).

(4.9)

Suppose first that x ≤ x3 = exp(R log(dH2)(
√

m log(dH2) − τm)2). Then
by Proposition 4.14(b),

2dm
1

mR

128z2 + 240z + 105

256
√
2z5/2

Ξm,λ,μ,R(x)(4.10)

≤ 2dm

mR

128z2 + 240z + 105

256
√
2z5/2

ωme−mλ exp

(
− logx

R log(dH2)

)
logr+1 x

=
ωm

128
√
2

logr+1 x

Hm
2 mR

(
128z−1/2 + 240z−3/2 + 105z−5/2

)
× exp

(
− logx

R log(dH2)

)

=
ωm

128
√
2

logr+1 x

Hm
2 mR

(
128R1/4

√
2(m logx)1/4

+
240R3/4

2
√
2(m logx)3/4

+
105R5/4

4
√
2(m logx)5/4

)
exp

(
− logx

R log(dH2)

)

=
ωm

Hm
2

(
logr+3/4 x

2m5/4R3/4
+

15 logr+1/4 x

32m7/4R1/4
+

105R1/4 logr−1/4 x

1024m9/4

)

× exp

(
− logx

R log(dH2)

)
= P2b

(
x;m,r, log(dH2),H2,R

)
by Definition 4.15. Combining the last two equations establishes the lemma
in this range of x.

Now suppose that x≥ x3. By Proposition 4.14(a), the function Ξm,λ,μ,R(x)

is decreasing in this range, while the function (128z2+240z+105)/256
√
2z5/2

is also a decreasing function of x. Therefore,

2dm√
mR

128z2 + 240z + 105

256
√
2z5/2

Ξm,λ,μ,R(x)

≤ 2dm√
mR

128z(x3)
2 + 240z(x3) + 105

256
√
2z(x3)5/2

Ξm,λ,μ,R(x3);

and then the calculation (4.10) shows that P2b(x3;m,r, log(dH2),H2,R) is
an upper bound for the latter quantity, which establishes the lemma for this
complementary range of x, via equation (4.9). �
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Lemma 4.27. Let r, m, R, x, λ, and H2 be positive real numbers with x > 1
and r > 1

4 . Then

P2b(x;m,r,λ,H2,R)≤Q2b(m,r,λ,H2,R).

Proof. By Lemma 3.9, the three summands in Definition 4.15 for P2b are
maximized at logx= (r+ ε)R log(dH2) for ε ∈ {3

4 ,
1
4 ,−

1
4}. We therefore have

the upper bound

P2b(x;m,r,λ,H2,R)

≤ ωm

Hm
2

(
1

2m5/4R3/4

(
(r+ 3/4)R log(dH2)

e

)r+3/4

+
15

32m7/4R1/4

(
(r+ 1/4)R log(dH2)

e

)r+1/4

+
105R1/4

1024m9/4

(
(r− 1/4)R log(dH2)

e

)r−1/4)

=
ωmRr

erHm
2

(
(r+ 3/4)r+3/4 logr+3/4(dH2)

2e3/4m5/4

+
15(r+ 1/4)r+1/4 logr+1/4(dH2)

32e1/4m7/4

+
105e1/4(r− 1/4)r−1/4 logr−1/4(dH2)

1024m9/4

)
,

which establishes the lemma thanks to Definition 4.16. �
4.4. Assembly of the final upper bound for |ψ(x; q, a)− x/ϕ(q)|. Fi-
nally, after the work of the preceding four sections, we have all of the tools
necessary to assemble an explicit upper bound for Fχ,m,R(x;H2)(logx)

r. This
goal, in turn, was the last step required to convert Proposition 2.20 into an
explicit upper bound for |ψ(x; q, a)− x/ϕ(q)| (see Theorem 4.33 below). The
upper bound is rather complicated, but again our paradigm is that any func-
tion that can be easily programmed and computed essentially instantly is
sufficient for our purposes. At the end of this section, we describe how we
derive Theorem 1.1 from the resulting upper bound.

Definition 4.28. Let d and m be positive integers with m ≥ 2, and let
r,H2,R be positive real numbers. Define

Sd,m,R(r,H,H2) = Bd,m,R(r,H,H2) +
1

π
Q2

(
m,r, log(dH2),H2,R

)
Hm+1

+

(
1

π
log

1

2π
+

C1

H2

)
Q1

(
m,r, log(dH2),H2,R

)
Hm+1,

where Bd,m,R(r,H,H2) is as in Definition 3.7 and the Qj(m,r,λ,H2,R) are
as in Definition 4.16.
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Proposition 4.29. Let d and m be positive integers with m ≥ 2, let
r,R,H,H2 be positive real numbers such that 1

4 < r ≤ m + 1, 15 ≤ H ≤ H2,

and dH2 ≥ 108, and let χ be a character satisfying Hypothesis Z(H2,R). Then
for all x > 1, we have

Hm+1Fχ,m,R(x;H2) (logx)
r ≤ Sd,m,R(r,H,H2).

Proof. We proceed first under the assumption that logx ≤ R(m + 1) ×
log2(dH2). Starting from Proposition 3.6, we apply Proposition 3.8 to conclude
that necessarily Fχ,m,R(x;H2)(logx)

r is bounded above by

(4.11) B
(1)
d,m,R(x; r,H2) + (logx)r

∫ ∞

H2

(
∂

∂u
Md(H2, u)

)
Yd,m,R(x,u) du.

We then apply Proposition 4.2, Lemma 4.4, and Proposition 4.7 to get

(4.12) Fχ,m,R(x;H2) (logx)
r

≤B
(1)
d,m,R(x; r,H2) + (logx)r · 1

π
2dm

logx

mR

×
(
J2a

(
2

√
m logx

R
;

√
mR

logx
log(dH2)

)

+ J2b

(
2

√
m logx

R
;

√
mR

logx
log(dH2)

))

+ (logx)r
(
1

π
log

1

2π
+

C1

H2

)
2dm
(
logx

mR

)1/2

×
(
J1a

(
2

√
m logx

R
;

√
mR

logx
log(dH2)

)

+ J1b

(
2

√
m logx

R
;

√
mR

logx
log(dH2)

))
.

Now Lemmas 4.19, 4.21, 4.24, and 4.26 yield

(4.13) Fχ,m,R(x;H2) (logx)
r

≤B
(1)
d,m,R(x; r,H2) +

1

π

(
P2a

(
x;m,r, log(dH2),H2,R

)
+M2

)
+

(
1

π
log

1

2π
+

C1

H2

)(
P1a

(
x;m,r, log(dH2),H2,R

)
+M1

)
,

where

M1 = max
{
P1b

(
x;m,r, log(dH2),H2,R

)
,

P1b

(
x3(m,d,H2,R);m,r, log(dH2),H2,R

)}
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M2 = max
{
P2b

(
x;m,r, log(dH2),H2,R

)
,

P2b

(
x3(m,d,H2,R);m,r, log(dH2),H2,R

)}
.

Finally, Lemmas 3.10, 4.20, 4.22, 4.25, and 4.27 give

Hm+1Fχ,m,R(x;H2) (logx)
r

≤Bd,m,R(r,H,H2)

+
1

π

(
Q2a

(
m,r, log(dH2),H2,R

)
+Q2b

(
m,r, log(dH2),H2,R

))
Hm+1

+

(
1

π
log

1

2π
+

C1

H2

)(
Q1a

(
m,r, log(dH2),H2,R

)
+Q1b

(
m,r, log(dH2),H2,R

))
Hm+1,

(4.14)

which establishes the proposition under the assumption logx ≤ R(m + 1)×
log2(dH2).

If, instead, logx > R(m + 1) log2(dH2), then the application of Proposi-

tion 3.8 requires us to replace B
(1)
d,m,R(x; r,H2) by B

(2)
d,m,R(x; r) in the ex-

pressions (4.11), (4.12), and (4.13), but then Lemma 3.10 allows us to re-

place B
(2)
d,m,R(x; r) by the term Bd,m,R(r,H,H2) in the transition from equa-

tion (4.13) to equation (4.14), and so the end result is the same. �

Definition 4.30. Let q and m be positive integers with m ≥ 2, and let
x2, r,H be positive real numbers satisfying x2 > 1 and H ≥ 1. Let H2 be a
function on the divisors of q satisfying H ≤H2(d) for d | q. We define

Gq,m,R(x2, r;H,H2)

=
∑
d|q

ϕ∗(d)

(
g
(3)
d,m,R

(
x2;H,H2(d)

)
(logx2)

r +
1

2
Sd,m,R

(
r,H,H2(d)

))
,

where g
(3)
d,m,R is as in Definition 3.2 and Sd,m,R is as in Definition 4.28.

Proposition 4.31. Let q and m be positive integers with 3 ≤ m ≤ 25,
and let x, x2, r, R, and H be positive real numbers with x ≥ x2 ≥ e2m+2

and 1
4 < r ≤m+ 1 and R ≥ 0.435 and H ≥H1(m). Let H2 be a function on

the divisors of q with H2(d) ≥ max{H,108/d} for all d | q, such that every
character χ with modulus q satisfies Hypothesis Z(H2(q

∗),R), where q∗ is the
conductor of χ. Then

Ψq,m,r(x;H)<Gq,m,R(x2, r;H,H2) .

Proof. By Definition 2.16, Lemma 3.4, and Definition 3.3,

Ψq,m,r(x;H) =Hm+1Υq,m(x;H)(logx)r(4.15)

<Gq,m,R(x;H,H2) (logx)
r
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=
∑
d|q

ϕ∗(d)g
(3)
d,m,R

(
x;H,H2(d)

)
(logx)r

+
1

2

∑
d|q

Fd,m,R(x;H2(d)) (logx)
r.

The terms in the first summation are straightforward: by hypothesis,

x≥ x2 ≥ e2m+2 ≥ e2r,

and so (logx)r/xλ is decreasing for any λ≥ 1
2 . Consequently, by Definition 3.2,

g
(3)
d,m,R

(
x;H,H2(d)

)
(logx)r

= g
(1)
d,m

(
H,H2(d)

)
· (logx)

r

x1/2
+ g

(2)
d,m

(
H,H2(d)

)
· x

1/(R log dH2(d))(logx)r

x

≤ g
(1)
d,m

(
H,H2(d)

)
· (logx2)

r

x
1/2
2

+ g
(2)
d,m

(
H,H2(d)

)
· x

1/(R log dH2(d))
2 (logx2)

r

x2

= g
(3)
d,m,R

(
x2;H,H2(d)

)
(logx2)

r.

(The hypotheses R ≥ 0.435 and H2(d) ≥ H ≥ H1(m) ≥ 102, combined with
d ≥ 1, ensure that the fraction at the end of the second line is of the form
(logx)r/xλ with λ≥ 1

2 .)
The terms in the second summation of (4.15) have been addressed, in

essence, in Proposition 4.29. In particular, beginning with Definition 3.3,

Fd,m,R(x;H2(d)) (logx)
r =

∑
χ (mod q)

q∗=d

Hm+1Fχ,m,R(x;H2(d)) (logx)
r

≤
∑

χ (mod q)
q∗=d

Sd,m,R

(
r,H,H2(d)

)

= ϕ∗(d)Sd,m,R

(
r,H,H2(d)

)
.

A comparison to Definition 4.30 confirms that the last line of (4.15) is now
seen to be bounded by Gq,m,R(x, r;H,H2). �

The function we now define is ultimately what we compute to obtain our
upper bounds for |ψ(x; q, a) − x/ϕ(q)| and hence is the main function we
program into our code, although (of course) several auxiliary functions from
earlier in this paper must also be programmed.

Definition 4.32. Let H0 be a function on the characters modulo q, and
let H2 be a function on the divisors of q. Let Wq(x) be as in Definition 2.7,
ν(q,H0,H) as in Definition 2.10, Gq,m,R(x, r;H,H2) as in Definition 4.30, and
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αm,k as in Definition 2.19. Then define Dq,m,R(x2;H0,H,H2) by

Dq,m,R(x2;H0,H,H2) =
1

ϕ(q)
(T1 + T2 + T3 + T4),

where

T1 = ν(q,H0,H)
logx2√

x2
,

T2 =
m+ 1

H
Gq,m,R(x2,m+ 1;H,H2)

1
m+1

(
1 +

ν(q,H0,H)√
x2

) m
m+1

,

T3 =

m∑
k=1

αm,k

2m−kHk+1
Gq,m,R

(
x2,

m+ 1

k+ 1
;H,H2

) k+1
m+1
(
1 +

ν(q,H0,H)√
x2

)m−k
m+1

,

T4 =
2αm,m+1

Hm+2
Gq,m,R

(
x2,

m+ 1

m+ 2
;H,H2

)m+2
m+1

+Wq(x2) logx2.

See Appendix A.5 for an indication of which terms Ti in this expression
contribute the most to its value for the ranges of parameters most important
for our purposes.

Theorem 4.33. Let 3 ≤ q ≤ 105 be an integer, and let a be an integer
that is coprime to q. Let 3 ≤m ≤ 25 be an integer, and let x2 ≥ e2m+2 and
H ≥ H1(m) and R ≥ 0.435 be real numbers. Let H0 be a function on the
characters modulo q with 0 ≤ H0(χ) ≤ H for every such character. Let H2

be a function on the divisors of q with H2(d) ≥max{H,108/d} for all d | q,
such that every character χ with modulus q satisfies Hypothesis Z(H2(q

∗),R),
where q∗ is the conductor of χ. Then for all x≥ x2,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ / x

logx
≤Dq,m,R(x2;H0,H,H2),

where Dq,m,R(x2;H0,H,H2) is as in Definition 4.32.

Proof. Combine Proposition 2.20 (taking note of the remark following its
statement) with Proposition 4.31 and Definition 4.32. �

To apply Theorem 4.33, we must use a value of R for which it is guaran-
teed that Hypothesis Z(108/q,R) is satisfied; fortunately, suitable results are
present in the literature, as we record in the following proposition. Once we
do so, we will be able to complete the proof of Theorem 1.1.

Proposition 4.34 (Platt, Kadiri, Mossinghoff–Trudgian). Let 1≤ q ≤ 105.
Then q satisfies Hypothesis Z(108/q,5.6).

Proof. By Definition 3.1 we need to confirm, for every Dirichlet L-function
modulo q, that every nontrivial zero β + iγ with |γ| ≤ 108/q satisfies β = 1

2 ,

and that every nontrivial zero with |γ|> 108/q satisfies β ≤ 1−1/5.6 log(q|γ|).



EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 479

For the values of q under consideration, the first assertion was shown by
Platt [26, Theorem 7.1], while the second assertion was shown by Kadiri [15,
Theorem 1.1] for q ≥ 3 and by Mossinghoff and Trudgian [22] for q ∈ {1,2}. �

Proof of Theorem 1.1 for small moduli. For any 3 ≤ q ≤ 105, by Theo-
rem 4.33 we obtain an admissible value for cψ(q) by computing Dq,m,R(x2;H0,
H,H2) for any appropriate values of m, R, x2, H0, H , and H2. We always
choose m ∈ {6,7,8,9} and R= 5.6, where the latter choice is valid by Propo-
sition 4.34. Then we choose x2 = x2(q) as in Definition 1.18 (this satisfies
x2(q)≥ 1011 > e22 ≥ e2m+2 as required).

We take H2(d) to be as large as possible, subject to having verified GRH
up to that height for all primitive characters with conductor d. By [27] and
[26], we set

H2(d) =

{
30,610,046,000, if d= 1,

108/d, if 1< d≤ 105.

That is, we take H2(d) = h3(d) as per Definition 2.6. We optimize via calculus
over m ∈ {6,7,8,9} and H ∈ [H1(m),H2(q)], and set H0 according to H :
for 1≤ d≤ 12, we choose H0(d) to be the largest among 102,103,104 that is
smaller thanH , for 12< d≤ 1000,H0(d) is the larger of 10

2,103 that is smaller
than H , for 1000< d≤ 2500 we take H0(d) = 100, for 2500< d≤ 10,000 we
take H0(d) = 10, and, finally, for 10,000< d< 100,000 we choose H0(d) = 0.

These evaluations establish the inequality (1.9) for x≥ x2(q); we then com-
pute by brute force the smallest positive real number xψ(q) such that the in-
equality (1.9) holds for all x≥ xψ(q) and all gcd(a, q) = 1. See Appendix A.6
for a discussion of these computations. With these values of cψ and xψ(q) in
hand, we verify the asserted inequalities cψ(q) < c0(q) and xψ(q) < x0(q),
where c0(q) and x0(q) are defined in equations (1.10) and (1.11) respec-
tively. �

5. Deduction of the upper bounds upon |θ(x; q, a)− x/ϕ(q)| and
|π(x; q, a)− Li(x)/ϕ(q)|, for q ≤ 105

In this section, we will focus upon obtaining bounds for |θ(x; q, a)−x/ϕ(q)|
and |π(x; q, a) − Li(x)/ϕ(q)|, for small values of q, given the bounds for
|ψ(x; q, a)−x/ϕ(q)| derived in the preceding sections. We also define a variant
θ#(x; q, a) of θ(x; q, a) (see equation (5.1) below) and establish similar bounds
for its error term.

5.1. Conversion of bounds for ψ(x; q, a) − x/ϕ(q) to bounds for
θ(x; q, a) − x/ϕ(q). The difference between ψ(x; q, a) and θ(x; q, a) is, of
course, the contribution from the squares of primes, cubes of primes, and
so on in the residue class a (mod q). We use standard estimates to bound
these contributions, and assemble them into the function Δ(x; q) which we
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now define. As always, we adopt the viewpoint that any upper bound that
can be easily programmed is sufficient for our purposes.

Definition 5.1. Define ξk(q) to be the number of kth roots of 1 modulo q.
For fixed k, the function ξk(q) is a multiplicative function of q, with values
on prime powers given by certain greatest common divisors:

ξk
(
pr
)
=

⎧⎪⎨
⎪⎩
gcd(k, pr−1(p− 1)), if p is odd,

gcd(k,2)gcd(k,2r−2), if p= 2 and r ≥ 2,

1, if pr = 21.

Further, define ξk(q, a) to be the number of kth roots of a modulo q, and note
that for gcd(a, q) = 1, the quantity ξk(q, a) equals either ξk(q) or 0 according
to whether a has kth roots modulo q or not.

Then, for real numbers x > 1, define the functions

Δk(x; q) =

{
min{ 2ξk(q)

ϕ(q) (1 + log(qk)
log(x/qk)

),1 + k
2 logx}, if x > qk,

1 + k
2 logx , if 1< x≤ qk

and

Δ(x; q) =

�logx/ log 2�∑
k=2

logx

x1−1/k
Δk(x; q).

The graph of Δ(x; 3) is shown in Figure 1. (The jump discontinuities occur
each time x passes a power of 2, which is when the number of summands in
the definition of Δ(x; q) increases.)

The following lemma makes it clear why we have defined these quantities.

Lemma 5.2. Let q ≥ 3 and let gcd(a, q) = 1. For all x > 1,

0≤ ψ(x; q, a)− θ(x; q, a)

x/ logx
≤Δ(x; q).

Figure 1. The graph of Δ(x; 3).
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Proof. From their definitions, we have the exact formula

0≤ ψ(x; q, a)− θ(x; q, a) =

�logx/ log 2�∑
k=2

∑
b (mod q)

bk≡a (mod q)

θ
(
x1/k; q, b

)
.

The number of terms in the inner sum is either 0 or ξk(q). Appealing to the
Brun–Titchmarsh theorem [20, Theorem 2],

θ
(
x1/k; q, b

)
≤ log

(
x1/k
)
π
(
x1/k; q, b

)
< log

(
x1/k
) 2x1/k

ϕ(q) log(x1/k/q)
=

2x1/k

ϕ(q)

(
1 +

log qk

log(x/qk)

)
,

and therefore

∑
b (mod q)

bk≡a (mod q)

θ
(
x1/k; q, b

)
< x1/k · 2ξk(q)

ϕ(q)

(
1 +

log qk

log(x/qk)

)
.

Moreover, for x > 1,

∑
b (mod q)

bk≡a (mod q)

θ
(
x1/k; q, b

)
≤ θ
(
x1/k
)
< x1/k +

x1/k

2 log(x1/k)
= x1/k

(
1 +

k

2 logx

)
,

where the second inequality was given by Rosser and Schoenfeld [31, Theo-
rem 4, page 70]. We thus have, for x > 1,∑

b (mod q)

bk≡a (mod q)

θ
(
x1/k; q, b

)
≤ x1/kΔk(x; q).

It follows that

0≤ ψ(x; q, a)− θ(x; q, a)

=
∑
pk≤x

pk≡a (mod q)
k≥2

logp=

�logx/ log 2�∑
k=2

∑
p≤x1/k

pk≡a (mod q)

logp

=

�logx/ log 2�∑
k=2

∑
b (mod q)

bk≡a (mod q)

∑
p≤x1/k

p≡b (mod q)

log p
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=

�logx/ log 2�∑
k=2

∑
b (mod q)

bk≡a (mod q)

θ
(
x1/k; q, b

)

≤
�logx/ log 2�∑

k=2

x1/kΔk(x; q) =
x

logx
Δ(x; q),

which is equivalent to the statement of the lemma. �
When examining the fine-scale distribution of prime counting functions

such as θ(x; q, a), one often considers the limiting (logarithmic) distribution
of the normalized error term (θ(x; q, a)− x/ϕ(q))/

√
x. It is known that this

distribution is symmetric, but not necessarily around 0; rather, it is symmetric
around −ξ2(q, a)/ϕ(q), where ξ2(q, a) is the number of square roots of a mod-
ulo q as in Definition 5.1. There is consequently some interest in the variant
error term ∣∣∣∣θ(x; q, a)−

(
x

ϕ(q)
− ξ2(q, a)

√
x

ϕ(q)

)∣∣∣∣.
For this reason, we define the slightly artificial function

(5.1) θ#(x; q, a) = θ(x; q, a) +
ξ2(q, a)

√
x

ϕ(q)

and, where the effort involved is modest, establish our error bounds for
|θ#(x; q, a)− x/ϕ(q)| alongside those for |θ(x; q, a)− x/ϕ(q)|.

Lemma 5.3. Let q ≥ 3 and let gcd(a, q) = 1. For all x≥ 4,∣∣∣∣ψ(x; q, a)− θ#(x; q, a)

x/ logx

∣∣∣∣≤Δ(x; q).

Proof. The upper bound on the quantity inside the absolute value fol-
lows immediately from Lemma 5.2. As for the lower bound, since ψ(x; q, a)≥
θ(x; q, a) we have

−ψ(x; q, a)− θ#(x; q, a)

x/ logx
=

(θ(x; q, a) + ξ2(q, a)
√
x/ϕ(q))−ψ(x; q, a)

x/ logx

and hence

−ψ(x; q, a)− θ#(x; q, a)

x/ logx
≤ ξ2(q, a)

√
x/ϕ(q)

x/ logx
≤ ξ2(q) logx

ϕ(q)
√
x

.

Observe that

ξ2(q) logx/
(
ϕ(q)

√
x
)
<

(
1 +

k

2 logx

)
logx√

x

as ξ2(q)≤ ϕ(q), and for x > qk trivially

ξ2(q) logx

ϕ(q)
√
x

<
2ξk(q)

ϕ(q)

(
1 +

log(qk)

log(x/qk)

)
· logx√

x
.
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Thus,
ξ2(q) logx

ϕ(q)
√
x

≤ logx√
x
Δ2(x; q),

and as x≥ 4, we have

logx

x1−1/2
Δ2(x; q)≤Δ2(x; q)≤Δ(x; q). �

We cannot quite say that Δ(x; q) is a decreasing function of x due to its
jump discontinuities (as we can see for q = 3 in Figure 1). However, the max-
imum effect of these discontinuities is quite small, and the following lemma
will suffice for our purposes. Thereafter we will establish an analogue of Theo-
rem 4.33 for θ(x; q, a), which enable us to complete the proof of Theorem 1.2.

Lemma 5.4. Let q ≥ 3 be an integer and x2 > e2. For x > x2,

Δ(x; q)<Δ(x2; q) +
6 logx2

x2
.

Proof. From Definition 5.1, we see that for a given q and k ≥ 2, the function
Δk(x; q) is a decreasing function of x. Since (logx)/x1−1/k is decreasing for
x > ek/(k−1) and hence certainly for x > e2, the function Δ(x; q), shown with
q = 3 in Figure 1, is decreasing in x, except that it has positive jump disconti-
nuities every time a new summand is introduced. So although we cannot say
simply that Δ(x; q)≤Δ(x2; q), we can say that Δ(x; q) is at most Δ(x2; q) plus
the sum of all the jump discontinuities at values greater than x2. It remains
to show that this sum of jump discontinuities is less than (6 logx2)/x2.

The summand k = j is introduced at x= 2j , and its value is

log(2j)

(2j)1−1/j
Δj

(
2j , q
)
=

log(2j)

(2j)1−1/j

(
1 +

1

2j log(2j)

)
=

j log 2

2j−1
+

1

j2j
,

since 2j < qj . Note that for any d≥ 1,

∞∑
j=d

j log 2

2j−1
=

(d+ 1) log 2

2d−2
and

∞∑
j=d

1

j2j
<

1

d

∞∑
j=d

1

2j
=

1

d2d−1
.

For a given x2, the first jump discontinuity lies at an integer d such that
2d > x2, which means that the corresponding sum of jump discontinuities can
be estimated by

(5.2)
(d+ 1) log 2

2d−2
+

1

d2d−1
<

( logx2

log 2 + 1) log 2

x2/4
+

1
logx2

log 2 x2/2
.

This last quantity is just

(5.3)
4 log(2x2) + (2 log 2)/ logx2

x2
<

6 logx2

x2
.
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Here, the inequality in (5.2) holds because d
2d

is a decreasing function of d for

2d > e; inequality (5.3), which is valid already when x2 = e2, holds because
the ratio of the two sides is a decreasing function of x2. �

Theorem 5.5. Let 3≤ q ≤ 105 be an integer, and let a be an integer that
is coprime to q. Let 3≤m≤ 25 be an integer, and let x2 ≥ e2m+2, H ≥H1(m)
and R≥ 0.435 be real numbers. Let H0 be a function on the characters modulo
q with 0 ≤ H0(χ) ≤ H for every such character. Let H2 be a function on
the divisors of q with H2(d) ≥ max{H,108/d} for all d | q, such that every
character χ with modulus q satisfies Hypothesis Z(H2(q

∗),R), where q∗ is the
conductor of χ. Then for all x≥ x2,∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣
/

x

logx
≤Dq,m,R(x2;H0,H,H2) +Δ(x2; q) +

6 logx2

x2
,

where Dq,m,R(x2;H0,H,H2) is defined in Definition 4.32 and Δ(x2; q) is de-
fined in Definition 5.1. The same upper bound holds for

(5.4)

∣∣∣∣θ(x; q, a)− x− ξ2(q, a)
√
x

ϕ(q)

∣∣∣∣
/

x

logx
=

∣∣∣∣θ#(x; q, a)− x

ϕ(q)

∣∣∣∣
/

x

logx
,

where ξ2(q, a) is as in Definition 5.1 and θ#(x; q, a) is as in equation (5.1).

Proof. Since |θ(x; q, a)− x
ϕ(q) | ≤ |ψ(x; q, a)− x

ϕ(q) |+ |ψ(x; q, a)− θ(x; q, a)|,
it suffices to combine Theorem 4.33 with Lemmas 5.2 and 5.4. To establish
the inequality (5.4), we simply replace Lemma 5.2 with Lemma 5.3. �

Proof of Theorem 1.2 for small moduli. The remaining argument is essen-
tially the same as the proof of Theorem 1.1 (which appears at the end of
Section 4.4), but using Theorem 5.5 instead of Theorem 4.33. �

5.2. Conversion of estimates for θ(x; q, a) to estimates for π(x; q, a)
and for pn(q, a). There is a natural partial summation argument that derives
information for π(x; q, a) from information for θ(x; q, a). Two terms arise while
integrating by parts in such an argument: a main term, which is a small
multiple of the hypothesized error bound for θ(x; q, a); and several boundary
terms, one of which is guaranteed to be negative. To obtain a simple upper
bound of the type that appears in Theorem 1.3, we define a function that
collects most of these boundary terms together, and work under an otherwise
artificial assumption (see equation (5.6) below) that this function is smaller
than the remaining negative boundary term.

Definition 5.6. Given a positive integer q, an integer a that is relatively
prime to q and a real number u, define

E(u; q, a) = π(u; q, a)− Li(u)

ϕ(q)
− 1

logu

(
θ(u; q, a)− u

ϕ(q)

)
.
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Proposition 5.7. Let q be a positive integer, and let a be an integer that
is relatively prime to q. Let κ and x3 be positive real numbers (which may
depend on q and a). Suppose we have an estimate of the form

(5.5)

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ κx

logx
for x≥ x3,

and also that the inequality

(5.6)
∣∣E(x3; q, a)

∣∣≤ κx3

(logx3 − 2) log2 x3

is satisfied. Then∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ κ(logx3 − 1)

logx3 − 2

x

log2 x
for x≥ x3.

Proof. By partial summation,

π(x; q, a)− Li(x)

ϕ(q)
(5.7)

= π(x3; q, a)−
Li(x3)

ϕ(q)
+

∫ x

x3

1

log t
d

(
θ(x; q, a)− x

ϕ(q)

)

= π(x3; q, a)−
Li(x3)

ϕ(q)
+

θ(x; q, a)− x/ϕ(q)

logx

− θ(x3; q, a)− x3/ϕ(q)

logx3

+

∫ x

x3

(
θ(x; q, a)− x

ϕ(q)

)
dt

t log2 t

=E(x3; q, a) +
θ(x; q, a)− x/ϕ(q)

logx

+

∫ x

x3

(
θ(x; q, a)− x

ϕ(q)

)
dt

t log2 t
.

Using the hypothesized bound (5.5) and the triangle inequality, we see that∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ ∣∣E(x3; q, a)
∣∣+ κx

log2 x
+

∫ x

x3

κ

log3 t
dt

≤
∣∣E(x3; q, a)

∣∣+ κx

log2 x
+

κ

logx3 − 2

∫ x

x3

log t− 2

log3 t
dt

=
∣∣E(x3; q, a)

∣∣+ κx

log2 x
+

κ

logx3 − 2

t

log2 t

∣∣∣∣
x

x3

=
∣∣E(x3; q, a)

∣∣+ κ(logx3 − 1)

logx3 − 2

x

log2 x



486 M. A. BENNETT ET AL.

− κx3

(logx3 − 2) log2 x3

≤ κ(logx3 − 1)

logx3 − 2

x

log2 x
,

where the last step used the inequality (5.6). �

Proof of Theorem 1.3 for small moduli. For any 3≤ q ≤ 105, Theorem 1.2
gives the hypothesis (5.5) with κ= cθ(q) and any x3 ≥ xθ(q). The results of
our calculations of the quantities xθ(q) satisfy

xθ(q)≤ xθ(3) = 7,932,309,757< 1011 for all 3≤ q ≤ 105

(links to the the full table of xθ(q) can be found in Appendix A.6), and
therefore we may choose x3 = 1011. We then computationally verify the in-
equality (5.6) for κ= cθ(q) and x3 = 1011. By Proposition 5.7, we set

cπ(q) = cθ(q)
(
log
(
1011
)
− 1
)
/
(
log
(
1011
)
− 2
)

and verify the inequality cπ(q) < c0(q). See Appendix A.4 for the details of
the computations involved.

This argument establishes the inequality (1.13) for all x≥ 1011. By exhaus-
tive computation of π(x; q, a) for small x, we find the smallest positive real
number xπ(q) such that the inequality (1.9) holds for all x≥ xπ(q), and verify
the inequality xπ(q)< x0(q). See Appendix A.6 for details of the computations
involved. �

If we prefer to compare π(x; q, a) to x/ logx (as in Theorem 1.4) rather than
to Li(x) (as in Theorem 1.3), we may do so after establishing the following
two routine bounds upon Li(x).

Lemma 5.8. We have Li(x)> x
logx + x

log2 x
+ 2x

log3 x
+ 6x

log4 x
for all x≥ 190.

Proof. Repeated integration by parts gives from

Li(x) =

∫ x

0

dt

log t
−
∫ 2

0

dt

log t

the identity

Li(x) =
x

logx
+

x

log2 x
+

2x

log3 x
+

6x

log4 x
+

(∫ x

0

24dt

log5 t
−
∫ 2

0

dt

log t

)
.

The last term (the difference of integrals) is an increasing function of x for
x > 1, and direct calculation shows that it is positive for x= 190. �

Lemma 5.9. We have Li(x)< x
logx + 3x

2 log2 x
for all x≥ 1865.
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Proof. Define f(x) = (Li(x)− x
logx )/

x
log2 x

. Since x ≥ 190, Lemma 5.8 im-

plies

x2f ′(x) = x(logx− 1)− Li(x)(logx− 2) logx

< x(logx− 1)−
(

x

logx
+

x

log2 x
+

2x

log3 x
+

6x

log4 x

)
(logx− 2) logx

=
2x(6− logx)

log3 x
,

which is clearly negative for x≥ 404> e6. In particular, f ′(x)< 0 for x≥ 404,
whereby f(x) is decreasing for such x. The desired result follows from directly
calculating that f(1865)< 3

2 . �

Proof of Theorem 1.4. From Theorem 1.3, we know that for x > xπ(q),

π(x; q, a)>
Li(x)

ϕ(q)
− cπ(q)

x

log2 x
.

The results of our calculations of the quantities xπ(q) (see Appendix A.6 for
details) satisfy

(5.8) xπ(q)≥ xπ(99,989) = 14,735 for all 3≤ q ≤ 105.

In particular, xπ(q) > 190, and thus Lemma 5.8 implies that Li(x) > x
logx +

x
log2 x

. Hence

π(x; q, a)>
x

ϕ(q) logx

(
1 +
(
1− cπ(q)ϕ(q)

) 1

logx

)
,

and the right-hand side exceeds x
ϕ(q) logx under the hypothesis cπ(q)ϕ(q)< 1.

The fact that this hypothesis holds for q ≤ 1200 follows from direct calculation
(see Appendix A.4 for details).

Similarly, combining Theorem 1.3 and Lemma 5.9 gives us

π(x; q, a)<
x

ϕ(q) logx

(
1 +
(
3 + 2cπ(q)ϕ(q)

) 1

2 logx

)
.

The assumption that cπ(q)ϕ(q)< 1 yields the desired result. �

Upper bounds for π(x; q, a) are equivalent to lower bounds for pn(q, a),
the nth smallest prime that is congruent to a (mod q), and vice versa; the
following two proofs provide the details.

Proof of the upper bound in Theorem 1.5. To simplify notation, we abbre-
viate the term pn(q, a) by pn during this proof. If pn ≤ xπ(q) then there is
nothing to prove, so we may assume that pn > xπ(q). From Theorem 1.4 with
x= pn,

n= π(pn; q, a)>
pn

ϕ(q) log pn
,
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and therefore

(5.9) nϕ(q)>
pn

log pn
.

Taking logarithms of inequality (5.9),

log
(
nϕ(q)

)
> log

(
pn

log pn

)
= log pn ·

(
1− log log pn

log pn

)
,

which implies

log
(
nϕ(q)

)(
1 +

4 log log pn
3 logpn

)
> logpn ·

(
1− log log pn

log pn

)(
1 +

4 log log pn
3 logpn

)
.

The function (1− t)(1+ 4
3 t) is greater than 1 for 0< t < 1

4 , and 0< log log p
log p < 1

4

for all p≥ 6000. Since (5.8) implies that xπ(q)> 6000, the previous inequality
thus gives

log
(
nϕ(q)

)(
1 +

4 log log pn
3 log pn

)
> log pn.

Furthermore, the function log log t
log t is decreasing for t≥ 16> ee. If pn ≤ nϕ(q),

then the desired upper bound is satisfied (other than the trivial case nϕ(q) = 2,
for which pn ≤ 7< xπ(q) is easily checked by hand), so we may also assume
that pn > nϕ(q). It follows that

log
(
nϕ(q)

)(
1 +

4 log log(nϕ(q))

3 log(nϕ(q))

)
> log

(
nϕ(q)

)(
1 +

4 log log pn
3 log pn

)
> log pn.

Using this upper bound in inequality (5.9) yields

(5.10) nϕ(q) log
(
nϕ(q)

)(
1 +

4 log log(nϕ(q))

3 log(nϕ(q))

)
> nϕ(q) log pn > pn,

which is the desired inequality. �

Proof of the lower bound in Theorem 1.5. We again abbreviate pn(q, a) as
pn during this proof. If pn ≤ xπ(q), then there is nothing to prove, so we may
assume that pn > xπ(q); in particular, pn > 14,735 by equation (5.8). In this
case, we know from equation (5.10) that

(5.11) f
(
log(nϕ)

)
= nϕ(q)

(
log
(
nϕ(q)

)
+

4

3
log log

(
nϕ(q)

))
> pn > 14,735,

where f(t) = et(t + 4
3 log t) is increasing for all t > 0. Since f(7.2) < 14,735,

we see that the inequality (5.11) implies that log(nϕ(q))> 7.2.
Now, suppose for the sake of contradiction that pn(q, a)≤ nϕ(q) log(nϕ(q)).

In particular,

n= π(pn; q, a)(5.12)

≤ π
(
nϕ(q) log

(
nϕ(q)

)
; q, a
)
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≤ Li(nϕ(q) log(nϕ(q)); q, a)

ϕ(q)
+ cπ(q)

nϕ(q) log(nϕ(q))

log2(nϕ(q) log(nϕ(q)))

<
n log(nϕ(q))

log(nϕ(q) log(nϕ(q)))
+

5n log(nϕ(q))

2 log2(nϕ(q) log(nϕ(q)))
,

where the middle inequality used Theorem 1.3 and the assumptions

nϕ(q) log
(
nϕ(q)

)
≥ pn > xπ(q),

and the last inequality used Lemma 5.9 and the assumptions

nϕ(q) log
(
nϕ(q)

)
≥ pn > xπ(q)> 430.

Define the function

g(t) =
t

t+ log t
+

5t

2(t+ log t)2
,

so that the inequality (5.12) is equivalent to the statement that
g(log(nϕ(q)))> 1. On the other hand, g(t) is decreasing for t < t0 ≈ 21.8 and
then strictly increasing for all t > t0. Since limt→∞ g(t) = 1 and g(7.2)< 1, it
follows that g(t)< 1 for all t > 7.2, a contradiction. �

For moduli q that are not too large, our calculations of the constants cπ(q)
allow us to establish clean and explicit versions of Theorems 1.4 and 1.5 with
a bit of additional computation.

Proof of Corollary 1.6. For q = 1 and q = 2, we may quote results of Rosser
and Schoenfeld: the bounds on π(x; q, a) follow from [31, Theorem 1 and
Corollary 1], while the bounds on pn(q, a) follow from [31, Theorem 3 and
its corollary]. For 3≤ q ≤ 1200, we verify from the results of our calculation of
the constants cπ(q) that cπ(q)ϕ(q)< 1 (see Appendix A.4 for details), which
establishes the corollary in the weaker ranges x > xπ(q) and pn(q, a)> xπ(q).
For each of these moduli, an explicit computation for x up to xπ(q) confirms
that the asserted inequalities in fact hold once x≥ 50q2 and pn(q, a)≥ 22q2,
as required. See Appendix A.7 for details of these last computations. �

We remark that our methods for large moduli (consider for example Propo-
sition 6.19 below with Z = 3) would allow us to obtain the inequalities in
Corollary 1.6 for q > 105; by altering the constants in our arguments in Sec-
tion 6, we could in fact deduce those inequalities for all moduli q > 1200. The
established range of validity of those inequalities, however, would be substan-
tially worse than the lower bounds 50q2 and 22q2 given in Corollary 1.6: they
would instead take the form exp(κ

√
q(log q)3) for some absolute constant κ.
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6. Estimation of |ψ(x; q, a)− x/ϕ(q)|, |θ(x; q, a)− x/ϕ(q)|, and
|π(x; q, a)− Li(x)/ϕ(q)|, for q ≥ 105

In this section, we will derive bounds upon our various prime counting
functions for large values of the modulus q, specifically for q ≥ 105. In this
situation, our methods allow us to prove inequalities of comparable strength
to those for small q (and indeed even stronger inequalities), but only when the
parameter x is extremely large: one requires a lower bound for x of the shape
logx�√

q log3 q, which is well beyond computational limits. Because of this
limitation, we have opted for clean statements over minimized constants.

The reason that the parameter x must be extremely large in such results, as
is well known, is that we must take into account the possibility of “exceptional
zeros” extremely close to s = 1. We use the following explicit definition of
exceptional zero in this paper.

Definition 6.1. Define R1 = 9.645908801. We define an exceptional zero
of L(s,χ) to be a real zero β of L(s,χ) with β ≥ 1 − 1

R1 log q . By work of

McCurley [17, Theorem 1], we know that Hypothesis Z1(9.645908801) holds
for the relevant moduli q ≥ 105 (as per Definition 3.1), and therefore there
can be at most one exceptional zero among all of the Dirichlet L-functions to
a given modulus q.

The first goal of this section is a variant of Proposition 2.1, which is essen-
tially Theorem 3.6 of McCurley [17] but where we relax the assumption that
the L-functions involved satisfy GRH(1).

Proposition 6.2. Let x > 2 and H ≥ 1 be real numbers, let q ≥ 105 and
m≥ 1 be integers, and let 0< δ < x−2

mx be a real number. Then for every integer
a with gcd(a, q) = 1,

(6.1)
ϕ(q)

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣<Uq,m(x; δ,H) +
mδ

2
+ Vq,m(x; δ,H) + ε1,

where Uq,m(x; δ,H) and Vq,m(x; δ,H) are as defined in equations (2.5)
and (2.6) and

ε1 <
ϕ(q)

x

(
log q · logx

log 2
+ 0.2516q log q

)
.

This statement is extremely close to that of Proposition 2.1, with the term
Wq(x) of that result replaced by a (potentially) larger quantity ε1. (Indeed,
an easy calculation shows that the statement actually follows from Proposi-
tion 2.1 for 29≤ q ≤ 4 · 105, upon noting that the computations of Platt [26]
confirm that all Dirichlet L-functions to these moduli satisfy GRH(1).) We
prove Proposition 6.2 at the end of Section 6.2; we remark that our argument
is similar to one of Ford, Luca, and Moree [7, Lemma 9]. Once this proposition
is established, we will use it to deduce our upper bounds on the error terms
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for our prime counting functions for these large moduli, thus completing the
proof of Theorems 1.1–1.3.

6.1. Explicit upper bound for exceptional zeros of quadratic Dirich-
let L-functions. To proceed without the assumption of GRH(1), we need to
derive estimates for zeros of L-functions that would potentially violate this
hypothesis. Motivated by the computations of Platt [26], we will prove our
results for q ≥ 4 · 105 though, by direct computation, we can extend these to
smaller values of q.

Lemma 6.3. If χ∗ is a primitive quadratic character with modulus q ≥
4 · 105, then

L
(
1, χ∗)≥min

{
46π,max

{
log

(√
q+ 4+

√
q

2

)
,12

}}
q−1/2

=

⎧⎪⎨
⎪⎩
12q−1/2, if 4 · 105 ≤ q < e24 − 2,
1
2q

−1/2 log q, if e24 − 2< q < e92π − 2,

46πq−1/2, if q > e92π − 2.

Proposition 1.10 is an easy consequence of this lemma; see Section A.10 for
the details of that deduction.

Proof. As the asserted equality is elementary, we focus upon the asserted
inequality. We use the fact [21, Theorem 9.13] that every primitive quadratic
character can be expressed, using the Kronecker symbol, in the form χ∗(n) =
χd(n) = ( dn ) for some fundamental discriminant d, and such a character is a
primitive character (mod q) for q = |d|.

First, we consider negative values of d, so that d ≤ −400000. For these
characters, Dirichlet’s class number formula [21, equation (4.36)] gives

L(1, χd) =
2πh(

√
d)

wd

√
|d|

,

where h(
√
d) is the class number of Q(

√
d), while wd is the number of roots

of unity in Q(
√
d); as is well-known, we have wd = 2 for d <−3. Appealing to

Watkins [42, Table 4], since |d|= q > 319867, we may conclude that h(
√−q)≥

46, and hence that

L
(
1, χ∗)= 2πh(

√
d)

wd

√
|d|

≥ 46πq−1/2.

Now, we consider d > 0. For these characters, Dirichlet’s class number for-
mula [21, equation (4.35)] gives

L(1, χd) =
h(
√
d) log ηd√
d

,
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where h(
√
d) is the class number as above; here ηd = (v0 + u0

√
d)/2, where

v0 and u0 are the minimal positive integers satisfying v20 − du2
0 = 4. Since

h(
√
d)≥ 1 and

ηd =
v0 + u0

√
d

2
≥

√
d+ 4+

√
d

2
,

we thus have that

L
(
1, χ∗)≥ log

(√
q+ 4+

√
q

2

)
q−1/2.

It only remains to show that L(1, χ∗)≥ 12q−1/2, assuming q = d≥ 4 · 105.
As log(

√
q+4+

√
q

2 ) ≥ 12 for q ≥ 2.65 · 1010 > e24 − 2, we may further assume

that 4 · 105 ≤ q < 2.65 · 1010. In this range, we can verify the inequality

h(
√
d) log ηd > 12

computationally (see Section A.10 for the details), which completes the proof
of the lemma. �

It is worth noting that work of Oesterlé [23], making explicit an argument
of Goldfeld [9], provides a lower bound upon class numbers of imaginary qua-
dratic fields, which can be used to improve the order of magnitude of our lower
bound for L(1, χ∗) in Lemma 6.3. Tracing the argument through explicitly,
for d < 0 a fundamental discriminant, we could show that

(6.2) h(
√
d)> log |d| exp

(
−10.4

√
log log |d|

log log log |d|

)
,

leading to an improvement in the lower bound of Lemma 6.3 of order
(log q)1−o(1) for large q. Unfortunately, such an improvement would not ul-
timately lead to a more accessible range of x in Theorems 1.1–1.3 for large
moduli.

Lemma 6.4. Let q ≥ 3 be an integer, and let χ∗ be a primitive character
with modulus q. Then for any real number σ satisfying 1− 1

4
√
q ≤ σ ≤ 1 and

any y > 4,

(6.3)
∣∣L′(σ,χ∗)∣∣≤ y1−σ

(
log2 y

2
+

1

10

)
+

2
√
q

π
log

4q

π
· log y

yσ
.

Proof. We proceed as in the proof of [7, Lemma 3]. We start by consid-
ering the incomplete character sum fχ∗(u, v) =

∑
u<n≤v χ

∗(n), which can be

bounded [21, Section 9.4, p. 307] by

fχ∗(u, v)≤ 2
√
q

(q−1)/2∑
a=1

1

sinπa/q
.
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Since the function 1/sin(πz/q) is convex for 0≤ z ≤ q
2 ,

1

sinπa/q
<

∫ a+1/2

a−1/2

dz

sinπz/q

for each 1≤ a≤ (q− 1)/2, and therefore

fχ∗(u, v)≤ 2
√
q

∫ q/2

1/2

dz

sinπz/q
=

2
√
q

π
log cot

π

4q
<

2
√
q

π
log

4q

π
,

since tanz > z for 0< z < π
2 . We note that while this simple bound (an explicit

version of the Pólya–Vinogradov inequality) is sufficient for our purposes, it
is possible to sharpen it further (see [28], [8]).

Now for any y > 4,∣∣L′(σ,χ∗)∣∣= ∣∣∣∣−∑
n≤y

χ(n) logn

nσ
−
∑
n>y

χ(n) logn

nσ

∣∣∣∣(6.4)

≤
∑
n≤y

logn

nσ
+

∣∣∣∣∑
n>y

χ(n) logn

nσ

∣∣∣∣
≤ y1−σ

∑
n≤y

logn

n
+

∣∣∣∣
∫ ∞

y

log z

zσ
dfχ∗(y, z)

∣∣∣∣.
Since log z

z is decreasing for z ≥ 4, the first term in expression (6.4) can be
bounded by

y1−σ
∑
n≤y

logn

n
≤ y1−σ

(
log 2

2
+

log 3

3
+

log 4

4
+

∫ y

4

log z

z
dz

)
(6.5)

= y1−σ

(
log 2 +

log 3

3
+

log2 y

2
− log2 4

2

)

< y1−σ

(
log2 y

2
+

1

10

)
.

The second term in expression (6.4), after integrating by parts (and noting
that both boundary terms vanish), becomes∣∣∣∣
∫ ∞

y

log z

zσ
dfχ∗(y, z)

∣∣∣∣=
∣∣∣∣−
∫ ∞

y

fχ∗(y, z)

(
d

dz

log z

zσ

)
dz

∣∣∣∣
≤ 2

√
q

π
log

4q

π

∫ ∞

y

∣∣∣∣ ddz log zzσ

∣∣∣∣dz = 2
√
q

π
log

4q

π
· log y

yσ
,

since log z
zσ is a decreasing function of z for z > e1/σ and since

e1/(1−1/4
√
q) < e

4
√

3
4
√

3−1 < 4< y.

Combining this with inequalities (6.4) and (6.5) establishes the lemma. �
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Lemma 6.5. Let q ≥ 4 ·105 be an integer and let χ∗ be a primitive character
with modulus q. Then, for any real number σ satisfying 1− 1

4
√
q ≤ σ ≤ 1,∣∣L′(σ,χ∗)∣∣< 0.27356 log2 q.

Proof. The upper bound on |L′(σ,χ∗)| in Lemma 6.4 has a factor of 1
yσ

and otherwise does not depend on σ, so it suffices to establish the lemma for
σ = 1− 1

4
√
q itself. Setting y = qα with α to be determined numerically later,

the bound (6.3) becomes

(6.6)
|L′(σ,χ∗)|
log2 q

≤ qα/(4
√
q) ·
(
α2

2
+

2α log(4q/π)

πqα−
1
2 log q

+
1

10 log2 q

)
,

which for every fixed α > 1/2 is a decreasing function for sufficiently large q.
After some numerical experimentation we choose α = 0.655, for which the
right-hand side of equation (6.6) is decreasing for q ≥ 3 (as is straightforward
to check using calculus) and evaluates to less than 0.27356 at q = 4 · 105. �

Proof of Proposition 1.11. If q ≤ 4 · 105, Platt’s computations confirm that
no quadratic character modulo q has a nontrivial real zero, and so the lemma
is vacuously true for these moduli q. Assume now that q > 4 · 105 and that
0< β < 1 is a nontrivial real zero.

We first establish the result under the additional assumption that χ is a
primitive character. Since

min

{
46π,max

{
log

(
1

2
(
√

q+ 4+
√
q)

)
,12

}}
≥ 12,

and q > 4 · 105, Lemma 6.3 implies that

(6.7) 12q−1/2 <L(1, χ) = L(1, χ)−L(β,χ) = (1− β)L′(σ,χ)

for some β ≤ σ ≤ 1 by the Mean Value theorem. If β < 1 − 1
4
√
q , then the

bound q ≥ 4 · 105 implies that β ≤ 1− 40√
q log2 q

as well. On the other hand, if

β ≥ 1− 1
4
√
q , then Lemma 6.5 and equation (6.7) imply

1− β ≥ 12q−1/2

L′(σ,χ)
≥ 12q−1/2

0.27356 log2 q
>

40
√
q log2 q

.

This argument establishes the proposition when χ is primitive. However,
if χ (mod q) is induced by some quadratic character χ∗ (mod q∗), then the
primitive case already established yields

β ≤ 1− 40
√
q∗ log2 q∗

< 1− 40
√
q log2 q

,

as required. �
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Note that an appeal to Oesterlé’s work [23], as discussed before equa-
tion (6.2), would enable us to improve the denominator on the right-hand
side of our upper bound for β in Proposition 1.11 from

√
q log2 q to a com-

plicated (yet still explicit) function of the form
√
q(log q)1+o(1). The strongest

such theoretical bound known, due to Haneke [12], would have
√
q log q in the

denominator.

6.2. An upper bound for |ψ(x; q, a)− x/ϕ(q)|, including the contri-
bution from a possible exceptional zero. Now that we have an explicit
upper bound for possible exceptional zeros, we can modify McCurley’s argu-
ments from [17] to obtain the upper bound for |ψ(x; q, a)− x/ϕ(q)| asserted
in Proposition 6.2. In what follows, we will assume that q ≥ 105; our meth-
ods would allow us to relax this assumption, if desired, with a change in the
constants we obtain but no significant difficulties.

Definition 6.6. Let us define, as in [17, page 271, lines 9–11], b(χ) to be

the constant term in the Laurent expansion of L′

L (s,χ) at s = 0 and m(χ)
(a nonnegative integer) to be the order of the zero of L(s,χ) at s= 0, so that
L′

L (s,χ) = m(χ)
s + b(χ) +O(|s|) near s= 0.

If χ is principal, then L(s,χ) = ζ(s)
∏

p|q(1− p−s), where the first factor

ζ(s) is nonzero at s = 0 while each factor in the product has a simple zero
there; the multiplicity of the zero at s = 0 is therefore ω(q), the number of
distinct primes dividing q. On the other hand, if χ is nonprincipal, then it is
induced by some primitive character χ∗ (mod q∗) with q∗ > 1, and

L(s,χ) = L
(
s,χ∗)∏

p|q
p�q∗

(
1− χ∗(p)p−s

)
,

where the first factor L(s,χ∗) has at most a simple zero at s= 0 while each
factor in the product has a simple zero there; the multiplicity of the zero at
s= 0 is therefore at most 1 + ω(q)− ω(q∗)≤ ω(q). In either case, we see that
the order of the zero of L(s,χ) at s= 0 is at most ω(q), and therefore

(6.8) m(χ)≤ ω(q)

by the properties of logarithmic derivatives.

Our immediate goal is to establish the upper bound for |b(χ)| asserted in
Proposition 1.12; we do so by adapting a method of McCurley to address the
possible existence of exceptional zeros. Afterwards, we will be able to establish
Proposition 6.2.
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Lemma 6.7. For any positive integer q and any Dirichlet character
χ (mod q),

(6.9)
∑

ρ∈Z(χ)
|γ|≤1

2

|ρ(2− ρ)| <
√
q log2 q

40
+ 3.4596 log2 q+ 12.938 log q+ 7.3912.

Proof. Since |ρ| ≥ β and |2− ρ| ≥ 2− β, it suffices to show that

∑
ρ∈Z(χ)
|γ|≤1

2

β(2− β)
<

√
q log2 q

40
+ 3.4596 log2 q+ 12.938 log q+ 7.3912.

We recall that Hypothesis Z1(9.645908801) is true [17, Theorem 1], and there-
fore every zero ρ being counted by the sum on the right-hand side, except
possibly for a single exceptional zero β0 and its companion 1− β0, satisfies

1

R1 log q
< β < 1− 1

R1 log q

by Definition 3.1 (where the lower bound holds by symmetry—see the remarks
following equation (2.2)). We will argue separately according to whether or
not there are any exceptional zeros of L(s,χ), as per Definition 6.1.

We first assume that there is no such exceptional zero. If β = 1/2, then we
have that 2/β(2− β) = 8/3. If β �= 1/2, then we pair the two zeros ρ1 = β+ iγ
and ρ2 = 1− β+ iγ. Clearly one of β and 1− β is less than 1/2 and the other
greater, say 1− β < 1/2< β, whence

2

β(2− β)
+

2

(1− β)(2− (1− β))
=

1

1− β
+

1

1+ β
+

2

β(2− β)
(6.10)

<
1

1− β
+

2

3
+

8

3

< R1 log q+
10

3
.

In particular, the average contribution per zero is at most 1
2R1 log q + 5

3 ,

whether the zero has real part 1/2 or not (recall that R1 ≈ 9.6 and q ≥ 105);
thus

(6.11)
∑

ρ∈Z(χ)
|γ|≤1

2

β(2− β)
≤
(
R1

2
log q+

5

3

)
N(1, χ)

when there is no exceptional zero.
If, on the other hand, L(s,χ) has an exceptional zero β0, then by definition

0< 1− β0 ≤
1

R1 log q
<

1

2
< 1− 1

R1 log q
≤ β0 < 1;



EXPLICIT BOUNDS FOR PRIMES IN ARITHMETIC PROGRESSIONS 497

furthermore, by Proposition 1.11,

40
√
q log2 q

≤ 1− β0.

By the same initial computation as in equation (6.10),

2

β0(2− β0)
+

2

(1− β0)(1 + β0)
<

1

1− β0
+

10

3
≤

√
q log2 q

40
+

10

3
,

so that

(6.12)
∑

ρ∈Z(χ)
|γ|≤1

2

|ρ(2− ρ)| <
√
q log2 q

40
+

10

3
+

(
R1

2
log q+

5

3

)(
N(1, χ)− 2

)

when there is an exceptional zero. Proposition 2.5 tells us that

N(1, χ) =N
(
1, χ∗)< 1

π
log

q∗

2πe
+C1 log q

∗ +C2(6.13)

< 0.71731 log q+ 4.4347

(since q∗ ≤ q), and therefore the right-hand side of the inequality (6.12) is
larger than that of the inequality (6.11). The lemma now follows upon combin-
ing the inequalities (6.12) and (6.13) and rounding the constants upward. �

We remark that this proof shows that the first term on the right-hand side
of the inequality (6.9) can be replaced by the much smaller 2(0.71731 log q +
4.4347) if L(s,χ) has no exceptional zero.

Proof of Proposition 1.12. Our starting point is an inequality of McCur-
ley [17, equation (3.16)]:

(6.14)
∣∣b(χ)∣∣≤ ∣∣∣∣ζ ′(2)ζ(2)

∣∣∣∣+ 1+
∑

ρ∈Z(χ)

2

|ρ(2− ρ)| +
q log q

4
,

where the sum runs over zeros of L(s,χ) in the critical strip. (We remark that
an examination of McCurley’s proof shows that the term (q log q)/4 can be
omitted if χ is primitive, as noted by Ramaré and Rumely [29, page 415].)

For the zeros satisfying |γ|> 1, McCurley [17, page 275] finds that

(6.15)
∑

ρ∈Z(χ)
|γ|>1

2

|ρ(2− ρ)| < 4

∫ ∞

1

N(t,χ)

t3
dt.

Since Proposition 2.5 implies the inequality

N(t,χ)<
t

π
log

q∗t

2πe
+C1 log q

∗t+C2 ≤
t

π
log

qt

2πe
+C1 log qt+C2,
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the bound (6.15) becomes∑
ρ∈Z(χ)
|γ|>1

2

|ρ(2− ρ)| < 4

∫ ∞

1

(
t

π
log

qt

2πe
+C1 log qt+C2

)
t−3 dt

= 4

(
log q− log 2π

π
+C1 ·

2 log q+ 1

4
+C2 ·

1

2

)
< 2.0713 log q+ 8.735.

Combining this bound with Lemma 6.7 yields

(6.16)
∑

ρ∈Z(χ)

2

|ρ(2− ρ)| ≤
√
q log2 q

40
+ 3.4596 log2 q+ 15.01 log q+ 16.126.

From equation (6.14), it follows that

∣∣b(χ)∣∣≤ ∣∣∣∣ζ ′(2)ζ(2)

∣∣∣∣+
√
q log2 q

40
+ 3.4596 log2 q+ 15.01 log q+ 17.126+

q log q

4

and hence ∣∣b(χ)∣∣< 0.2515q log q,

where the last inequality is a consequence of the assumption that q ≥ 105. �

Proof of Proposition 6.2. Arguing as in the proof of Theorem 3.6 of Mc-
Curley [17], but without the assumption of GRH(1), one obtains the inequal-
ity (6.1) with

(6.17) ε1 <
ϕ(q)

x

(
log 2

2
+ |d2| log(2x) + |d1 + d2|

)
,

where (as in McCurley [17, equations (3.4) and (3.5)])

d1 =
1

ϕ(q)

∑
χ (mod q)

χ(a)
(
m(χ)− b(χ)

)
and d2 =− 1

ϕ(q)

∑
χ (mod q)

χ(a)m(χ),

with m(χ) and b(χ) as in Definition 6.6. It follows that

(6.18) |d2| ≤
1

ϕ(q)

∑
χ (mod q)

m(χ)≤ 1

ϕ(q)

∑
χ (mod q)

ω(q) = ω(q)≤ log q

log 2

by equation (6.8) and

|d1 + d2|=
∣∣∣∣ 1

ϕ(q)

∑
χ (mod q)

χ(a)b(χ)

∣∣∣∣(6.19)

≤ 1

ϕ(q)

∑
χ (mod q)

∣∣b(χ)∣∣< 0.2515q log q
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by Proposition 1.12. Inserting the inequalities (6.18) and (6.19) into the upper
bound (6.17) results in

ε1 <
ϕ(q)

x

(
log 2

2
+

log q

log 2
log(2x) + 0.2515q log q

)
.

It is easy to check that the assumption q ≥ 105 implies

log 2

2
+

log q

log 2
log(2x) + 0.2515q log q <

log q

log 2
logx+ 0.2516q log q,

which completes the proof of the proposition. �

6.3. Explicit upper bounds for |ψ(x; q, a) − x/ϕ(q)| and |θ(x; q, a) −
x/ϕ(q)|. To apply Proposition 6.2 for q ≥ 105, we could argue carefully as
in Sections 2 and 4 to bound the various quantities on the right-hand side
of equation (6.1). Our inability to rule out the existence of possible excep-
tional zeros for L-functions of large modulus q forces us to assume that the
parameter x is exceptionally large, however, making such a refined analysis
somewhat unnecessary. Instead, we will simply set m= 2 in Proposition 6.2,
to take advantage of existing inequalities, and proceed from there over the
next three lemmas to obtain an explicit upper bound for |ψ(x; q, a)−x/ϕ(q)|.
Afterwards, we will convert that upper bound to a simpler error estimate (for
both ψ(x; q, a) and θ(x; q, a)) that is a multiple of x/(logx)Z for an arbitrary
Z > 0.

Define the quantities

(6.20) X =

√
logx

R1
, α=

X

log q
− 1, and H = qα =

eX

q
,

and recall that R1 = 9.645908801 as in Definition 6.1.

Lemma 6.8. Let q ≥ 105 be an integer, and let χ be a character (mod q).

For x≥ e4R1 log2 q , ∑
ρ∈Z(χ)
ρ �=β0

|γ|≤H

xβ−1

|ρ| < 0.5001Xe−X ,

where the index of summation means that an exceptional zero β0 for L(s,χ),
if it exists, is excluded.

Proof. We first compute the given sum with the symmetric zero 1−β0 also
excluded. Combining the proof of [17, Lemma 3.7] with Proposition 2.5, for
each character χ modulo q we have∑

ρ∈Z(χ)
ρ/∈{β0,1−β0}

|γ|≤H

xβ−1

|ρ| < ε2 + ε3 + ε4,
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where

ε2 <
q log q+ α log2 q

x
+

1

2
√
x

(
1 + 4α+ α2

2π
log2 q+

2+ α

π
log q

+
C1(α+ 1) log(q) +C2

qα
+ 0.798 log(q) + 11.075

)
and

ε3 =
C1X +C2

qα
e−X ,

ε4 =
1

2

∫ qα

1

t−1e−
logx

R1 log(qt) log(qt/2π)dt=
1

2

∫ qα

1

t−1e−X2/ log(qt) log(qt/2π)dt.

Since x= e(1+α)2R1 log2 q , q ≥ 105 and α≥ 1, straightforward calculus exercises
yield

ε2 < 10−1000Xe−X and ε3 < 10−5Xe−X ,

while the change of variables u=−X2/ log(qt) (as in [7, page 1473]) gives an
upper bound upon ε4 of the shape

1

2

∫ qα

1

e−X2/ log(qt) log qt
dt

t
=

X4

2

∫ X2/ log q

X

e−u

u3
du <

X4

2

∫ ∞

X

e−u

X3
du

=
Xe−X

2
.

We thus have
ε2 + ε3 + ε4 < 0.50005Xe−X .

As for the special zero 1− β0 (when it exists), the bounds

β0 ≥ 1− 1/R1 log q ≥ 0.99

from Definition 6.1 and q ≥ 105 and β0 ≤ 1 − 40/
√
q log3 q from Proposi-

tion 1.11, together with the hypothesis x ≥ e4R1 log2 q which is equivalent to
log q ≤X/2, imply

x(1−β0)−1

1− β0
≤

√
q log3 q

40
x−0.99 ≤ X3eX/4

320x0.99
< 10−1000Xe−X

via another straightforward calculus exercise. Therefore the entire sum is at
most 0.50005Xe−X + 10−1000Xe−X < 0.5001Xe−X as required. �

Lemma 6.9. Let q ≥ 105 be an integer, and let χ be a character (mod q).

For x≥ e4R1 log2 q ,∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)| < 0.511Xe−Xq−2α

where H , X , and α are defined in equation (6.20).
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Proof. As in the proof of Lemma 6.8, we combine Proposition 2.5 with the
proof of [17, Lemma 3.8]; for each character χ modulo q we have

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)| < ε5 + ε6 + ε7,

where

ε5 <
1

2q3α
√
x

(
qα

2π
(1 + α) log q+ 0.798(α+ 1) log(q) + 10.809

)
+

4 log q

xq2α
,

ε6 =
C1

2

∫ ∞

qα
t−4e

− logx
R1 log(qt) dt+

1

2

∫ ∞

qα
t−3e

− logx
R1 log(qt) log(qt/2π)dt,

ε7 =
C1X +C2

q3α
e−X .

Again via calculus, it is routine to show that

ε5 < 10−1000Xe−Xq−2α and ε7 < 0.00001Xe−Xq−2α.

To estimate ε6, note that

ε6 <
1

2

∫ ∞

qα
t−3e

− logx
R1 log(qt) log(qt)dt=

1

2
I2,2
(
(1 + α)2 log2 q, q; qα

)
,

in the notation of Definition 4.1. Applying Lemma 4.4, we have

I2,2
(
(1 + α)2 log2 q, q; qα

)
= (1+ α)2q2(log q)2K2

(
2
√
2(1 + α) log q;

√
2
)

and so

ε6 <
1

2
(1 + α)2q2(log q)2K2

(
2
√
2(1 + α) log q;

√
2
)
.

Work of Rosser–Schoenfeld [32, Lemmas 4 and 5] yields

ε6 <
1

2
q2
(
X +

1

2

)
e−3X =

1

2

(
1 +

1

2X

)(
Xe−Xq−2α

)
< 0.5109Xe−Xq−2α.

It follows that ε5 + ε6 + ε7 < 0.511Xe−Xq−2α as required. �

Lemma 6.10. For q ≥ 105 and x≥ e4R1 log2 q ,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1.012

ϕ(q)
xβ0 + 1.4579x

√
logx

R1
exp

(
−
√

logx

R1

)
,

where the first term on the right-hand side is present only if some Dirichlet
L-function (mod q) has an exceptional zero β0 (in the sense of Definition 6.1).

Proof. Recall the definitions of α, H , and X in equation (6.20), and note
that α≥ 1 due to our hypothesis on x. Applying Proposition 6.2 with m= 2
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and δ = 2
H ≤ 2 · 10−5, we have an upper bound for |ψ(x; q, a)− x

ϕ(q) | of the
shape

x

ϕ(q)

(
Uq,2

(
x;

2

qα
, qα
)
+ Vq,2

(
x;

2

qα
, qα
)
+

2

qα

)
(6.21)

+
log q logx

log 2
+ 0.2516q log q.

Here,

Uq,2

(
x;

2

qα
, qα
)
=A2(δ)

∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)|

=

(
H2 + 6H + 18+

20

H

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)(ρ+ 2)|

< 1.001q2αϕ(q) · 0.511Xe−Xq−2α < 0.512ϕ(q)Xe−X

by Lemma 6.9 and a simple calculation, while

Vq,2

(
x;

2

qα
, qα
)
=

(
1 +

2

H

) ∑
χ (mod q)

∑
ρ∈Z(χ)
|γ|≤H

xβ−1

|ρ| .

It follows that

Vq,2

(
x;

2

qα
, qα
)
≤ (1 + 2q−α)xβ0−1

β0
+
(
1 + 2q−α

)
ϕ(q) · 0.5001Xe−X

by Lemma 6.8, where the first term is present only if some Dirichlet L-function
(mod q) has an exceptional zero.

We may thus conclude from expression (6.21) that |ψ(x; q, a) − x
ϕ(q) | is

bounded above by

(1 + 2q−α)xβ0

ϕ(q)β0
+ 0.5001x

(
1 + 2q−α

)
Xe−X

+ 0.512xXe−X +
2x

ϕ(q)qα
+

log q logx

log 2
+ 0.2516q log q,

where we may omit the first term if no exceptional zero β0 exists. From x=

e(1+α)2R1 log2 q and α≥ 1, we may verify by explicit computation for 105 ≤ q <
3 · 105 that

(6.22) 0.5001
(
1 + 2q−α

)
+ 0.512+

2eX

ϕ(q)qαX
+

eX log q logx

x
Xlog 2

+
0.2516eXq log q

xX
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is at most 1.4579 (and in fact maximal for α = 1 and q = 120120). For q ≥
3 · 105, we appeal to ([31, Theorem 15]) which provides the inequality

n

ϕ(n)
< eγ log logn+

2.50637

log logn
,

and again conclude that inequality (6.22) obtains. Since β0 ≥ 1− 1/R1 log q,
it thus follows that∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣< 1.012
xβ0

ϕ(q)
+ 1.4579xXe−X ,

as desired. �

The next two easy lemmas will help us prepare the upper bound just es-
tablished for simplification to the form we eventually want.

Lemma 6.11. Let a and q be integers with q ≥ 3 and gcd(a, q) = 1. Then,
if x≥ 10500,∣∣ψ(x; q, a)− θ(x; q, a)

∣∣< 1.001
√
x and

∣∣ψ(x; q, a)− θ#(x; q, a)
∣∣< 1.001

√
x,

where θ#(x; q, a) is defined in equation (5.1).

Proof. We will use Rosser–Schoenfeld [31, Theorem 4, page 70]: for all
y > 1,

θ(y)< y+
y

2 log y
.

Define f(x) = x1/2 + x1/2

logx + x1/3 logx
log 2 + 3x1/3

2 log 2 . Even if we pretend that every

proper prime power is congruent to a (mod q), we have

0≤ ψ(x; q, a)− θ(x; q, a)≤
�logx/ log 2�∑

k=2

θ
(
x1/k
)

≤ θ
(
x1/2
)
+ θ
(
x1/3
) logx
log 2

≤ x1/2 +
x1/2

logx
+

(
x1/3 +

3x1/3

2 logx

)
logx

log 2
= f(x).

Recall that ξ2(q, a) is defined in Definition 5.1; trivially from this definition,
we have the inequality ξ2(q, a) ≤ ϕ(q), and therefore ξ2(q, a)

√
x/ϕ(q) ≤ √

x.
Therefore

−f(x)<−
√
x≤ ψ(x; q, a)−

(
θ(x; q, a) +

ξ2(q, a)
√
x

ϕ(q)

)
≤ f(x).

It follows that both |ψ(x; q, a) − θ(x; q, a)| and |ψ(x; q, a) − ψ(x; q, a) −
θ#(x; q, a)| are bounded by f(x). It is easily checked that the decreasing
function f(x)/

√
x is less than 1.001 when x≥ 10500. �
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Lemma 6.12. For q ≥ 105 and x≥ e4R1 log2 q ,∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1.012

ϕ(q)
x1−40/(

√
q log2 q) + 1.4579x

√
logx

R1
exp

(
−
√

logx

R1

)

and ∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1.012

ϕ(q)
x1−40/(

√
q log2 q)

+ 1.4579x

√
logx

R1
exp

(
−
√

logx

R1

)
+ 1.001

√
x,

where the first term on each right-hand side is present only if an exceptional
zero exists for a quadratic L-function with conductor q.

Proof. We simply combine Proposition 1.11 with Lemmas 6.10 and 6.11

(and note that e4R1(log 10
5)2 > 10500). �

The bounds of Lemma 6.12 are both O(x/(logx)Z) for every fixed real num-
ber Z. The purpose of this subsection is to provide several explicit versions of
this observation. The first summand in the bounds, with its unfortunate de-
pendence on q, is the one that really drives the growth. For that term, we need
to take x extremely large before the asymptotic behavior is seen, rendering the
resulting bounds on ψ(x; q, a), θ(x; q, a), and π(x; q, a) impractical, although
explicit. Consequently, we bound all three summands rather carelessly.

Lemma 6.13. Let q ≥ 105 be an integer and Z a real number, and let κ1 ≥
0.0132 be a real number satisfying

460.516κ1

logκ1 + 13.087
≥ Z.

Then for all x≥ exp(κ1
√
q log3 q),

1.012

ϕ(q)
x1−40/(

√
q log2 q) ≤ 10−4 x

(logx)Z
.

Proof. By taking logarithmic derivatives, it is easy to show that the quo-
tient

κ1 log q

log(κ1
√
q log3 q)

is an increasing function of q for q ≥ exp(e/κ
1/3
1 ); in particular, since κ1 ≥

0.0132, it is an increasing function for q > 105. Therefore

κ1 log q

log(κ1
√
q log3 q)

≥ κ1 log 10
5

log(κ1

√
105 log3(105))
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and thus

κ1
√
q log3 q

log(κ1
√
q log3 q)

≥ 5κ1 log 10

logκ1 + log(105/2(log 105)3)

√
q log2 q

>
11.5129κ1

logκ1 + 13.087

√
q log2 q,

for all q ≥ 105. The function (logx)/ log logx is increasing for logx≥ e; since
the hypotheses of the lemma imply

logx≥ κ1
√
q log3 q ≥ 0.0132

√
105 log3

(
105
)
> e,

we conclude that
logx

log logx
≥ 11.5129κ1

logκ1 + 13.087

√
q log2 q,

and in particular
40 logx
√
q log2 q

≥ Z log logx

given the assumption on Z (noting that 40 · 11.5129 = 460.516). By [31, The-
orem 15], for q ≥ 1.2 · 105, we have ϕ(q)≥ 20736, and by direct computation
of ϕ we extend this bound down to q ≥ 105. This implies that

40 logx
√
q log2 q

+ logϕ(q)≥ log 20736 +Z log logx,

ϕ(q)x40/(
√
q log2 q) ≥ 20736(logx)Z

and
x

(logx)Z
≥ 20736

ϕ(q)
x1−40/(

√
q log2 q) ≥ 104

1.012

ϕ(q)
x1−40/(

√
q log2 q),

as desired. �
Lemma 6.14. Suppose that R, κ2, and Z are real numbers with 1≤R≤ 10,

κ2 > 1 and

Z ≤
√

κ2/R+ log(
√
R1/7.2895)

logκ2
− 1

2
.

Then for all x≥ eκ2 ,

1.4579x

√
logx

R
exp

(
−
√

logx

R

)
≤ 1

5

x

(logx)Z
.

Proof. Consider for u > 1/
√
R the function

f(u) =
log(eu/7.2895u)

log(Ru2)
,

whose derivative satisfies

df

du
=

(u− 1) log(Ru2)− 2 log(eu/7.2895u)

u log2(Ru2)
.
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The denominator of the derivative is clearly positive, and its numerator is
continuous, goes to ∞ with u, has derivative logRu2 > 0, and is positive for
u= 1/

√
R (using that 1≤R≤ 10). Therefore, f(u) is increasing.

By our hypothesis on Z, we have that Z ≤ f(
√

κ2/R). As f is increasing, it

follows that Z ≤ f(
√

log(x)/R) provided logx≥ κ2 and
√

log(x)/R > 1/
√
R,

whence our hypotheses that κ2 > 1 and x≥ eκ2 . But Z ≤ f(u) is equivalent
to

1

5
· 1

(Ru2)Z
≥ 1.4579

u

eu
.

The lemma follows upon setting u=
√
log(x)/R and multiplying both sides

by x. �

Lemma 6.15. Let κ3 and Z be real numbers with κ3 > 1 and

Z ≤ κ3 − 6.44

2 logκ3
.

Then for all x≥ eκ3 ,

1.001
√
x≤ 1

25

x

(logx)Z
.

Proof. Consider f(u) = u−6.44
2 logu for u > 1. Clearly f is increasing and our

hypothesis on Z is that Z ≤ f(κ3). Thus Z ≤ f(u) for all u ≥ κ3, and in
particular Z ≤ f(logx). But this is equivalent to

1.001
√
x≤ 1.001

e3.22
x

(logx)Z
,

and 1.001/e3.22 < 1/25. �

With these three lemmas in place, we may now convert Lemma 6.12 into
an explicit upper bound for the error terms related to ψ(x; q, a) and θ(x; q, a).

Proposition 6.16. Let q ≥ 105 be an integer and Z,κ1 ≥ 0.0132, κ2 >
1, κ3 > 1 be real numbers satisfying

(6.23) Z ≤min

{
460.516κ1

logκ1 + 13.087
,

√
κ2/R1 − 0.85317

logκ2
− 1

2
,
κ3 − 6.44

2 logκ3

}
,

for R1 as defined in Definition 6.1. Then for all x ≥ exp(max{κ1
√
q log3 q,

κ2, κ3}),∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1

4

x

(logx)Z
and

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1

4

x

(logx)Z
.

Proof. To apply Lemma 6.12, we need x ≥ 4R1 log
2 q, and here we have

the stronger assumptions that q ≥ 105 and x≥ κ1
√
q log3 q. Now, using Lem-

mas 6.13–6.15 (choosing R = R1 in Lemma 6.14, and using the fact that
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log(
√
R1/7.2895)>−0.85317) shows that

(6.24) max

{∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣,
∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣
}

≤
(
1

5
+

1

25
+ 10−4

)
x

(logx)Z
,

which suffices to establish the proposition. �
The following corollary completes the proof of Theorems 1.1 and 1.2 for

large moduli q > 105, with cψ(q) = cθ(q) =
1

160 and

xψ(q) = xθ(q) = exp
(
0.03

√
q log3 q

)
(upon taking A= 1).

Corollary 6.17. Let q ≥ 105 be an integer and let A be any real number
with 1≤A≤ 8. If x is a real number satisfying x≥ exp(0.03A

√
q log3 q), then∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1

160

x

(logx)A
and

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1

160

x

(logx)A
.

It is worth observing that, appealing to the previously mentioned work
of Oesterlé [23], we could improve the lower bound on x here to x ≥
exp(κ′√q(log q)2+o(1)) for some κ′ > 0, where the o(1) can be made explicit
as in equation (6.2).

Proof. Set κ1 = 0.03A, κ2 = κ3 = 14400A and Z = A + 0.4. By calculus,
the hypotheses of Proposition 6.16 are satisfied, for 1≤ A≤ 8. Moreover, as
q ≥ 105,

κ1
√
q log3 q ≥ 0.03A

√
105
(
log 105

)3
> 14400A=max{κ2, κ3},

and therefore the conclusion of Proposition 6.16 holds for x≥ exp(κ1
√
q log3 q).

Since logx > 14400A in this range, we conclude that

1

4

x

(logx)Z
=

1

4

x

(logx)A
1

(logx)Z−A
<

1

4

1

144000.4
x

(logx)A
<

1

160

x

(logx)A
.

�
Observe here that we were able to obtain a “small” constant factor of 1/160

in Corollary 6.17, by starting with a higher power of logx in the denominator
of our error term than we ultimately desired. Arguing similarly, we can replace
the constant 1/160 with a function of the parameter q that decreases to 0 as q
increases, by starting again with extraneous powers of logx in the denominator
of our error term, and using our assumption that logx≥ κ1

√
q log3 q.

In a recent preprint of Yamada [43, Theorem 1.2], one finds similar results
of the shape ∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣=O

(
x

(logx)A

)
,
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for integers 1≤A≤ 10, valid also for logx�√
q log3 q. Corollary 6.17 is not

directly comparable to Yamada’s results, as the latter contain estimates that
have been normalized to contain factors of the shape ϕ(q) in their denomi-
nators. One may, however, readily appeal to Proposition 6.16 to sharpen [43,
Theorem 1.2] for q > 105, as described in the previous paragraph.

If q is a modulus for which the corresponding quadratic L-functions have
no exceptional zero, all these results hold with a much weaker condition on
the size of x. In particular, this is the case, via Platt [26], for 105 < q ≤ 4 · 105.

Proposition 6.18. Let q ≥ 105 be an integer and suppose that no quadratic
Dirichlet L-function with conductor q has a real zero exceeding 1−R1/ log q.
Let κ2 and Z be real numbers with κ2 > 1 and

Z ≤
√
κ2/R1 − 0.85317

logκ2
− 1

2
.

Then for all x≥ exp(max{κ2,4R1 log
2 q}),∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1

4

x

(logx)Z
and

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1

4

x

(logx)Z
.

Proof. The first assertion, for ψ(x; q, a), follows immediately from Lemma
6.10 (in the case where no exceptional zero is present) and Lemma 6.14.
The second assertion, for θ(x; q, a), follows from Lemma 6.12, together with
Lemmas 6.14 and 6.15. �

6.4. Conversion of estimates for θ(x; q, a) to estimates for π(x; q, a).
Our final task is to convert our upper bounds for |θ(x; q, a) − x/ϕ(q)| for
large q to upper bounds for |π(x; q, a)−Li(x)/ϕ(q)|. We do so using the same
standard partial summation relationship that we exploited in Proposition 5.7
for smaller q; the proof is complicated slightly by our desire to achieve a
savings of an arbitrary power of logx in the error term.

Proposition 6.19. Let q ≥ 105 be an integer and let Z > 0, κ1 ≥ 0.0132,
κ2 > 1, and κ3 > 1 be real numbers satisfying the inequality (6.23). Then if x
is a real number for which

x/(logx)Z+1 ≥ 2000exp
(
max
{
κ1

√
q log3 q,κ2, κ3,Z + 28

})
,

it follows that

(6.25)

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ 1

4

x

(logx)Z+1
.

Proof. Define x4 = exp(max{κ1
√
q log3 q,κ2, κ3,Z + 28}). The function

f(x) = x/(logx)Z+1 is increasing for x > eZ+1 and hence increasing for
x ≥ x4; its value f(x4) is certainly less than 2000x4. Therefore the equa-
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tion f(x) = 2000x4 has a unique solution greater than x4, which we call x5,
so that the proposition asserts the upper bound (6.25) for x ≥ x5. Start at
equation (5.7) (note Definition 5.6 for E(x; q, a)):

π(x; q, a)− Li(x)

ϕ(q)
=E(x4; q, a) +

θ(x; q, a)− x/ϕ(q)

logx

+

∫ x

x4

(
θ(x; q, a)− x

ϕ(q)

)
dt

t log2 t
.

So by the upper bound (6.24) and the fact that logx4 ≥ Z + 28>Z + 1,∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣
≤
∣∣E(x4; q, a)

∣∣+ 0.2401
x

(logx)Z+1
+ 0.2401

∫ x

x4

dt

(log t)Z+2

≤
∣∣E(x4; q, a)

∣∣+ 0.2401
x

(logx)Z+1

+
0.2401

(logx4 − (Z + 1))

∫ x

x4

log t− (Z + 1)

(log t)Z+2
dt

=
∣∣E(x4; q, a)

∣∣+ 0.2401
x

(logx)Z+1
+

0.2401

(logx4 − (Z + 1))

t

(log t)Z+1

∣∣∣∣
x

x4

≤
∣∣E(x4; q, a)

∣∣+ 0.2401(logx4 −Z)

logx4 − (Z + 1)

x

(logx)Z+1

− 0.2401

(logx4 − (Z + 1))

x4

(logx4)Z+1

≤
∣∣E(x4; q, a)

∣∣+ 0.2401(logx4 −Z)

logx4 − (Z + 1)

x

(logx)Z+1
.

A trivial upper bound for |E(u; q, a)| is, for u > 3, simply 2u. To see this, note
that, from Definition 5.6,

∣∣E(u; q, a)
∣∣≤max

{
π(u; q, a) +

u

ϕ(q) logu
,
Li(u)

ϕ(q)
+

θ(u; q, a)

logu

}
,

whereby replacing π(u; q, a) by π(u) and θ(u; q, a) by θ(u), and appealing to
bounds of Rosser–Schoenfeld [31], leads to the desired conclusion. It follows
that, for x≥ x4,∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ 2x4 +
0.2401(logx4 −Z)

logx4 − (Z + 1)

x

(logx)Z+1

=
x

(logx)Z+1

(
0.2401(logx4 −Z)

logx4 − (Z + 1)
+

2x4(logx)
Z+1

x

)
.
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Note that (logx)Z+1

x is decreasing for x > eZ+1; since

logx5 > logx4 ≥ Z + 28>Z + 1,

we see that for x≥ x5,∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣
=

x

(logx)Z+1

(
0.2401(logx4 −Z)

logx4 − (Z + 1)
+

2x4(logx5)
Z+1

x5

)

=
x

(logx)Z+1

(
0.2401(logx4 −Z)

logx4 − (Z + 1)
+

1

1000

)

by the definition of x5. The first summand in parentheses is a decreasing
function of logx4 (when logx4 >Z +1), and its value when we replace logx4

with the smaller quantity Z + 28 is less than 0.249, which completes the
proof. �

Corollary 6.20. For all q > 105 and x≥ exp(0.03
√
q log3 q),∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ 1

160

x

log2 x
.

Proof. Set Z = 1.4, κ1 = 0.0295 and κ2 = κ3 = 14,200. By direct calcula-
tion, the hypotheses of Proposition 6.19 are satisfied. Moreover, as q ≥ 105,

κ1
√
q log3 q ≥ κ1

√
105
(
log 105

)3
> 14,200≥max{κ2, κ3,Z + 28},

and therefore the conclusion of Proposition 6.19 holds as long as we have

x/(logx)Z+1 ≥ 2000exp
(
κ1

√
q log3 q

)
.

Since we assume that x≥ exp(0.03
√
q log3 q),

x

(logx)2.4
≥ exp(0.03

√
q log3 q)

(0.03
√
q log3 q)2.4

,

and hence it remains to show that

exp
(
0.0005

√
q log3 q

)
> 2000

(
0.03

√
q log3 q

)2.4
.

Since q ≥ 105, we may verify that this inequality is satisfied for q = 105 and
then check that the quotient of the left-hand side and the right-hand side is
increasing by taking its logarithmic derivative. We may thus apply Proposi-
tion 6.19 to conclude that∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ 1

4

x

(logx)Z+1
=

1

4

x

log2 x

1

(logx)Z−1
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and hence that∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣< 1

4

1

144000.4
x

log2 x
<

1

160

x

log2 x
. �

A. Computational details

Many of the proofs in this paper required considerable computations, which
we carried out using a variety of C++, Perl, Python, and Sage code. The re-
sulting data files were manipulated using standard Unix tools such as awk,
grep, and sort. The smallest of the required computations were easily per-
formed on a laptop in a few seconds, while the largest required thousands of
hours of CPU time on a computing cluster. In the appendices below, we give
explanations of the computations and also links to the computer code and
resulting data. The interested reader can find a summary of the available files
at the following webpage:

http://www.nt.math.ubc.ca/BeMaObRe/

A.1. Verification of bound on N(T,χ0) for principal characters χ0.
In order to complete the proof of Proposition 2.5, we need to verify the as-
serted bound for χ principal and 1≤ T ≤ 1014. This can be done quite directly
by comparing the bound against a table of zeta function zeros. Such data is
available from websites such as the L-functions and Modular Forms Data-
base [35] or other computer algebra software (such as Sage). At the kth zero
of the zeta function, which is of the form 1

2 + iγk, we compute the upper and
lower bounds implicit in the statement of the bound at t= γk, remembering
that when we take limits from left and right the quantity N(T,χ0) is set to
2(k − 1) and 2k respectively. We give Sage code to perform this verification
and its output in the

BeMaObRe/c-psi-theta-pi/prop2.6/

subdirectory.

A.2. Using lcalc to compute ν2(q,H0). We make use of Rubinstein’s
lcalc program to compute zeros of L-functions. For the sake of interfacing
with lcalc, we compute ν2 in the following way. While Definition 2.10 al-
lows for more general H0(χ), we only use functions H0 that are constant on
characters with the same conductor. Letting H0(d) be that constant, we have

ν2(q,H0) =
∑

χ (mod q)

ν1
(
χ,H0(χ)

)
=
∑
d|q

∑
χ (mod q)

q∗=d

ν1
(
χ,H0(d)

)
.

Further, the functions we use for H0 take on the value 0 (no lcalc data) or
are at least 10.

http://www.nt.math.ubc.ca/BeMaObRe/
http://www.nt.math.ubc.ca/BeMaObRe/prop2.6/
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If H0(d) = 0, that is, if we have made no calculations with lcalc for char-
acters with conductor d, we have∑

χ (mod q)
q∗=d

ν1
(
χ,H0(d)

)

=
∑

χ (mod q)
q∗=d

(
−Θ(d,1) +

⌊
1

π
log

d

2πe
+C1 logd+C2

⌋)

=−ϕ∗(d)Θ(d,1) +ϕ∗(d)

⌊
1

π
log

d

2πe
+C1 logd+C2

⌋
= ν0(d,0)− ν0(d,0),

where we set

ν0(d,0) = 0,

ν0(d,0) = ϕ∗(d)Θ(d,1)−ϕ∗(d)

⌊
1

π
log

d

2πe
+C1 logd+C2

⌋
.

If H0(d)≥ 1, we must address some peculiarities of lcalc. For real char-
acters, lcalc only gives the zeros with positive imaginary part, and for each
complex-conjugate pair of nonreal characters, lcalc returns the zeros of only
one of the pair. Let N ′(h,χ) be the number of zeros of L(s,χ) with imaginary
part in [0, h] if χ is real, and N ′(h,χ) =N(h,χ) if χ is nonreal. We define, for
real h≥ 1,

ν0(d,h) = ϕ∗(d)Θ(d,h) +
2

h

∑′

χ (mod q)
q∗=d

N ′(h,χ),

where
∑′

indicates that the sum includes only one of each pair of complex con-
jugate characters. We have (saving the definition of ν0(d,h) for h=H0(d)≥ 1
until after its use):∑

χ (mod q)
q∗=d

ν1
(
χ,H0(d)

)

=
∑

χ (mod q)
q∗=d

(
−Θ(d,h)− N(h,χ)

h
+
∑

ρ∈Z(χ∗)
|γ|≤h

1√
γ2 + 1/4

)

=−ϕ∗(d)Θ(d,h)−
∑
χ

q∗=d

N(h,χ)

h
+
∑
χ

q∗=d

∑
ρ∈Z(χ∗)
|γ|≤h

1√
γ2 + 1/4

= ν0(d,h)− ν0(d,h).
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The definition of ν0(d,h) for h≥ 1 is then forced to be

ν0(d,h) =
∑

χ (mod q)
q∗=d

∑
ρ∈Z(χ)
|γ|≤h

1√
γ2 + 1/4

= 2

(∑
χ real
q∗=d

∑
ρ∈Z(χ)
0<γ<≤h

1√
γ2 + 1/4

+
∑′

χ not real
q∗=d

∑
ρ∈Z(χ)
0<γ<≤h

1√
γ2 + 1/4

)
.

With these definitions, we have

ν2(q,H0) =
∑
d|q

(
ν0
(
d,H0(d)

)
− ν0

(
d,H0(d)

))
.

We used H0(d) = 104 for d≤ 12, H0(d) = 103 for d≤ 1000, H0(d) = 102 for
d≤ 2500, and H0(d) = 10 for d≤ 104. Then, for a given choice of H , we use
the largest value of H0(d) that is less than H . For example, with H = 120, we
use:

H0(d) =

⎧⎪⎨
⎪⎩
100, if d≤ 2500,

10, if 2500< d≤ 104,

0, if d > 104.

A.3. Computations of worst-case error bounds for q ≤ 105 and for
x≤ x2(q). All our computations were split according to the modulus q. For
each q, we generated the sequence of primes using the primesieve library for
C++ [41]. This implements a very highly optimized sieve of Eratosthenes with
wheel factorisation. We experimented with storing the primes in a file on disc,
but found that it was faster to generate them each time using primesieve. As
each prime was generated, its residue was computed and the three functions

π(x; q, a) =
∑
p≤x

p≡a (mod q)

1

θ(x; q, a) =
∑
p≤x

p≡a (mod q)

logp

ψ(x; q, a) =
∑
pn≤x

pn≡a (mod q)

log p

were updated.
The function π(x; q, a) is straightforward, simply requiring integer arith-

metic. However the functions θ(x; q, a) and ψ(x; q, a) involve summing any-
where up to 1012 floating point numbers. In such computations considerable
rounding error can occur. To deal with these errors, we used interval arith-
metic to keep track of upper and lower bounds on θ and ψ.
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As we computed ψ, θ, and π for increasing x, we also stored data about
the three functions

1√
x

(
ψ(x; q, a)− x

ϕ(q)

)
1√
x

(
θ(x; q, a)− x

ϕ(q)

)
logx√

x

(
π(x; q, a)− Li(x)

ϕ(q)

)
as well as the variant

1√
x

(
θ#(x; q, a)−

x

ϕ(q)

)
=

1√
x

(
θ(x; q, a)− x− ξ2(q, a)

√
x

ϕ(q)

)
as defined in equation (5.1). Each of these expressions is monotone decreas-
ing between jumps at primes and prime powers. Hence to keep track of the
maximum value of each on a given interval, it suffices to check their left and
right limits at each prime power (including the primes themselves) and at the
ends of each interval. A running maximum was kept for each function and was
dumped to a file at each change. For 2≤ x≤ 1011, for example, each modu-
lus took approximately 1 hour on a single core on the WestGrid computing
cluster. Spread over the cluster, which is shared with other users, the whole
computation took about a month of real time.

As part of these computations, we needed to be able to evaluate the
logarithmic integral Li(z) quickly. We exploited the exponential integral

Ei(u) =−
∫∞
−u

e−t

t dt via the formula Li(z) = Ei(log z)−Ei(log 2). Initially, we

computed Ei(u) using the series [1, equation 5.1.10]

Ei(u) =C0 + log |u|+
∞∑
k=1

uk

k · k! ;

in practice, however, this turned out to be too slow for our purposes. Instead
we pre-computed Ei(u) using the above series at 33 ·1000 equally spaced points
u over the range 0≤ u≤ 33 (corresponding to 1≤ z ≤ e33 ≈ 2 · 1014). Then, in
order to compute Ei(u) away from those points, we precomputed the Taylor
expansion of Ei(u) at each of those 33 · 1000 points, namely

Ei(u) = Ei(v) + ev
(
1

v
(u− v) +

v− 1

2v2
(u− v)2(A.1)

+
v2 − 2v+ 2

6v3
(u− v)3 + · · ·

)
.

We found that the error in this approach was sufficiently small when we trun-
cated the Taylor expansion (A.1) at the cubic term. We could then build the
error in Taylor approximation into our interval arithmetic via the Lagrange
remainder theorem.
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For 1≤ x≤ x2(q), where x2(q) is defined in (1.18), for example, we com-
puted that for all q with 3≤ q ≤ 105 and q �≡ 2 (mod 4),

1√
x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1.118034(
supremum achieved at q = 4, x= 5−

)
,

1√
x

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1.817557(
supremum achieved at q = 8, x= 11257−

)
,

1√
x

∣∣∣∣θ#(x; q, a)− x

ϕ(q)

∣∣∣∣≤ 1.053542(
supremum achieved at q = 3, x= 227−

)
,

logx√
x

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ 2.253192(
supremum achieved at q = 4, x= 229−

)
.

(A.2)

Indeed, our computations gave corresponding constants bψ(q), bθ(q), bθ#(q),
and bπ(q) for each modulus q under discussion, which are the smallest con-
stants such that the inequalities∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ bψ(q)
√
x,∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣≤ bθ(q)
√
x,∣∣∣∣θ#(x; q, a)− x

ϕ(q)

∣∣∣∣≤ bθ#(q)
√
x,∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣≤ bπ(q)

√
x

logx

(A.3)

are satisfied for 1≤ x≤ x2(q). A number of these are given in Table 4, rounded
up in the last decimal place; notice the four constants in equation (A.2) ap-
pearing in the rows corresponding to q = 3, 4, and 8. (Similar data for x in the
(smaller) range 1≤ x≤ 1010 can be found in [29, Table 2]. Historically, compu-
tations of this type have been viewed as evidence supporting the Generalized
Riemann Hypothesis, since these error terms would grow like a larger power of
x should GRH be false.) Note that we have skipped the moduli q ≡ 2 (mod 4),
since the distribution of prime powers in arithmetic progressions modulo such
q is essentially equivalent to the distribution of prime powers modulo q

2 ; see
Lemma A.1 below.

In the course of running these computations, we chose a computational-
time trade-off between large values of x2(q) for fewer smaller moduli and
lesser values of x2(q) for the entire range of moduli. The total time for the
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Table 4. Assorted values of x2, bψ, bθ, bθ# and bπ

q x2(q) bψ(q) bθ(q) bθ#(q) bπ(q)
3 4 · 1013 1.070833 1.798158 1.053542 2.186908
4 4 · 1013 1.118034 1.780719 1.034832 2.253192
5 4 · 1013 0.886346 1.412480 0.912480 1.862036

7 1013 0.782579 1.116838 0.829249 1.260651
8 1013 0.926535 1.817557 0.887952 2.213119
9 1013 0.788900 1.108042 0.899812 1.229315
11 1013 0.878823 0.976421 0.885771 1.103821
12 1013 0.906786 1.735501 0.906786 2.001350
...

...
...

...
...

...

101 1012 0.709028 0.709028 0.717402 0.777577
...

...
...

...
...

...

10,001 1011 0.735215 0.735215 0.735215 0.735207
...

...
...

...
...

...
105 1011 0.735419 0.735419 0.735419 0.735417

x2(q) = 1012 run (for q with 100 < q ≤ 104) was similar to the initial 1011

run (to q = 105), while the 1013 and 4 · 1013 runs (to q = 5 and q = 100,
respectively) took approximately 2 weeks of real time. The data for all of
these computations can be found in the

BeMaObRe/b-psi-theta-pi/

subdirectory and are described in the associated readme file.
As has been observed before with similar computations, most of the entries

in this table (particularly for large q) are extremely close to (log 7)/
√
7 ≈

0.735485. For the relatively small values of x under consideration, the maxi-
mum value of (for example) |θ(x; q, a)− x/ϕ(q)|/√x occurs at the first prime
p congruent to a (mod q), leading to the value | log p− p/ϕ(q)|/√p which, for
q large, is very close to (log p)/

√
p; and the function (logx)/

√
x is maximized

at x = e2, to which p = 7 is the closest prime. If one were to continue these
calculations for larger and larger x, we would see these values bψ(q), bθ(q),
and bθ#(q) increase irregularly to infinity.

We also observe, for the small moduli q where the single prime 7 is not
dictating the values of the constants bθ(q) and bθ#(q), that the latter constants
are significantly smaller than the former; this observation reflects the fact that
the distribution of (θ#(x; q, a)− x/ϕ(q))/

√
x is centered around 0 (which is

the precise reason for the definition (5.1) of θ#(x; q, a) in the first place),
unlike the distribution of (θ(x; q, a)− x/ϕ(q))/

√
x.

http://www.nt.math.ubc.ca/BeMaObRe/b-psi-theta-pi/
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If q is twice an odd number, then the distribution of prime powers in
arithmetic progressions modulo q is almost completely equivalent to the dis-
tribution of prime powers modulo q/2 (the powers of 2 are the only ones that
are counted differently).

Lemma A.1. Let k ≥ 3 be an odd integer, and let a be an odd integer that
is coprime to k. Then for all x≥ 2,∣∣ψ(x; 2k, a)−ψ(x;k, a)

∣∣≤(1 + log(x/2)

log(k+ 1)

)
log 2≤ logx,∣∣θ(x; 2k, a)−ψ(x;k, a)

∣∣≤ log 2< 1,∣∣π(x; 2k, a)− π(x;k, a)
∣∣≤ 1.

Proof. We note that ψ(x;k, a) = ψ(x; 2k, a) + ψ(x; 2k, a + k) exactly. On
the other hand, every integer that is congruent to a+ k (mod 2k) is even, so
the only prime powers that could be counted by ψ(x; 2k, a + k) are powers
of 2; and note that a power of 2 is congruent to a+ k (mod 2k) if and only
if it is congruent to a (mod k). If such a power exists, let 2m be the smallest
prime power congruent to a (mod k), and let n be the order of 2 modulo
k, so that the powers of 2 that are congruent to a (mod k) are precisely
2m,2m+n,2m+2n, . . . . The number of such powers of 2 not exceeding x is
exactly

1 +

⌊
log(x/2m)

log(2n)

⌋
≤ 1 +

log(x/2m)

log(2n)
≤ 1 +

log(x/2)

log(k+ 1)
,

where the last inequality is due to m≥ 1 and the fact that 2n > 1 is congruent
to 1 (mod k) and therefore must be at least k+1. The first inequality asserted
in the statement of the lemma follows from the fact that each such power of
2 contributes log 2 to ψ(x; 2k, a+ k) = ψ(x;k, a)−ψ(x; 2k, a). The second and
third asserted inequalities have similar proofs (easier, in fact, since those two
functions count only primes and not prime powers). �

A.4. Computations of the leading constants cψ, cθ, and cπ for q ≤ 105.
The constants cψ(q) and cθ(q) were computed using Theorem 4.33 and Theo-
rem 5.5, after which the constants cπ(q) were computed using Proposition 5.7.
While the expressions in Theorem 4.33 and Theorem 5.5 are cumbersome,
evaluating them is actually a straightforward (if ugly) computation using C++.
To simplify our code, we precomputed data for some of the auxiliary func-
tions (the totient function ϕ(q) and the factorisations involved in the function
Δ(x; q) from Definition 5.1) using the Sage computer algebra system. We also
verified our cψ(q), cθ(q), and cπ(q) values using the Mathematica computer
algebra system.

The resulting code is quite fast, and all of these constants can be computed
for q ≤ 105 and a given m, H , and x2 in only a few seconds. For a given choice
of q and x2, we computed the constants for 4 ≤ m ≤ 12 and computed the
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Table 5. Assorted values of cψ, cθ and cπ

q cψ(q) cθ(q) cπ(q)
3 0.0003964 0.0004015 0.0004187
4 0.0004770 0.0004822 0.0005028
5 0.0003665 0.0003716 0.0003876
6 0.0003964 0.0004015 0.0004187
7 0.0004584 0.0004657 0.0004857
8 0.0005742 0.0005840 0.0006091
9 0.0005048 0.0005122 0.0005342
10 0.0003665 0.0003716 0.0003876
11 0.0004508 0.0004553 0.0004748
12 0.0006730 0.0006829 0.0007121
...

...
...

...
101 0.0008443 0.0008460 0.0008822
...

...
...

...
10,001 0.0034386 0.0034403 0.0035878
...

...
...

...
105 0.0051178 0.0051196 0.0053391

minimum value over H1(m) ≤ H ≤ 109; it turned out that m ∈ {6,7,8,9}
gave the best bound in every case. Our results are given in the

BeMaObRe/c-psi-theta-pi/

subdirectory and described in the corresponding readme file. By way of ex-
ample, we have Table 5.

Note that in order to compute cπ(q) from cθ(q) using Proposition 5.7, we
must verify the hypothesis (5.6) of that proposition. To avoid having to explic-
itly check inequality (5.6) for x > 1011, we examined x1(q) (see Appendix A.6)
and confirmed that x1(q) < 1011. Hence it sufficed to evaluate E(x3; q, a) at
x3 = 1011. To do this, we computed maxgcd(a,q)=1 |E(1011, q, a)| (using code
similar to that used to compute the constants bθ(q) and bπ(q)) for each mod-
ulus q and verified inequality (5.6). This computation took about 1 hour for
each modulus and so approximately 1 month of real time. The data from this
computation can be found in the

BeMaObRe/c-psi-theta-pi/E-bound/

subdirectory.

A.5. Dominant contributions to cψ(q), cθ(q), and cπ(q) for q ≤ 105.
Let us recall the function Dq,m,R(x2;H0,H,H2) from Definition 4.32, certain
values of which are exactly equal to cψ(q). While Dq,m,R(x2;H0,H,H2) is
programmable and hence suffices for our numerical results, it would be helpful

http://www.nt.math.ubc.ca/BeMaObRe/c-psi-theta-pi/
http://www.nt.math.ubc.ca/BeMaObRe/c-psi-theta-pi/E-bound/
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to have some intuition about which terms in the expression contribute the
most to its value. Here we report on numerical investigations into the relative
sizes of the constituent expressions, for the relevant ranges of parameters
(3≤ q ≤ 105, 1011 ≤ x2 ≤ 4 · 1013, R= 5.6, 3≤m≤ 12, and various choices for
H , H0, and H2).

After running our various computations and analyzing the resulting data,
our conclusions are as follows; recall that the quantities T1, T2, T3, and T4 are
defined in Definition 4.32 and satisfy

Dq,m,R(x2;H0,H,H2) =
1

ϕ(q)
(T1 + T2 + T3 + T4).

• As noted previously, the optimal value for m is always in {6,7,8,9}, a fact
for which we have no explanation.

• The optimal value for H quickly becomes small, hitting our floor of H1(q)
around q = 5000. The parameter H controls the zeros which get smoothed,
and larger q, which have more low-height zeros, benefit more from this.

• The term T4 is negligible, always several orders of magnitude smaller than
the other terms. The term T3 is nearly always negligible, accounting for less
than 2% of the total.

• The term T1, where low-height zeros hold sway, accounts for 20%–50% of the
total for q ≤ 100, and growing to around 60% for q near 105. Note that for
large q, we don’t compute these zeros, instead relying on Trudgian’s bound.

• The term T2, where zeros potentially close to σ = 1 have their influence,
accounts for 50%–80% of the total for smaller q, and about 40% for larger q.

• The balance between T1 and T2 depends heavily on the zeros of extremely
low height, and so bounces around considerably for small q. For q near 105,
for which we do not calculate any zeros, the balance is consistently about
59.5% for T1, about 39.5% for T2, and about 1% for T3.

• We illustrate in Tables 6 and 7 our choices for certain values of q and the
corresponding contributions of T1, T2 and T3.

Table 6. Assorted values of m,x2(q),H and cψ(q)

q Factorization of q m x2(q) H cψ(q)
3 3 8 4 · 1013 492,130 0.0003964
4 22 7 4 · 1013 337,539 0.0004770
5 5 8 4 · 1013 276,297 0.0003665
101 101 6 1012 7484 0.0008443
5040 24 · 32 · 5 · 7 6 1012 262 0.0011204
55,440 24 · 32 · 5 · 7 · 11 7 1011 137 0.0034065
55,441 55,441 8 1011 120 0.0048288
99,991 99,991 8 1011 120 0.0058889
100,000 25 · 55 8 1011 120 0.0051178
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Table 7. A sampling of q values, with x2(q), the optimal
choices for m and H , and corresponding cψ(q). The second
table lists the percentage of the bound on cψ(q) that comes
from each of T1, T2, and T3; in each case T4 contributes es-
sentially 0%.

q T1 T2 T3

3 27.73% 72.27% 0%
4 22.18% 77.82% 0%
5 30.39% 69.61% 0%
101 69.27% 30.71% 0.02%
5040 37.58% 61.54% 0.88%
55,440 62.09% 37.30% 0.61%
55,441 69.93% 29.40% 0.67%
99,991 59.14% 39.87% 0.99%
100,000 58.63% 40.44% 0.94%

A.6. Computations of xψ(q), xθ(q), xθ#(q), xπ(q), and x0(q) for q ≤
105. The computation of x0(q) was a three-step process. For the purposes of
describing this process, we focus on θ(x; q, a) since the approach for the other
functions is very similar.

In brief, we start by calculating a crude upper bound on xθ(q) which we
call x1(θ; q), which is easily computed from our bθ(q) and cθ(q) data (see
Appendices A.3 and A.4); typically x1(θ; q) is significantly smaller than x2(q).
Now to compute xθ(q) we need only examine x ≤ x1(θ; q), a much smaller
range than x ≤ x2(q), which saves us considerable computer time. Finally,
from the accumulated data we found a simple upper bound x0(q) on our more
precise constants xθ(q).

We now discuss each of these steps in more detail (still concentrating on
θ(x; q, a)). We wish to find the smallest value of xθ(q) so that for all x≥ xθ(q)
and all integers a coprime to q,

(A.4)

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣< cθ(q)
x

logx
;

the calculation of cθ(q) guarantees that this value xθ(q) is at most x2(q) (see
the proof of Theorem 1.1 for small moduli on page 479). We have already
verified, for x≤ x2(q), that∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣< bθ(q)
√
x
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using the exhaustive computations described in Appendix A.3 above. Accord-
ingly we compute x1 = x1(θ; q) so that

cθ(q)
x1

logx1
= bθ(q)

√
x1,

using a simple Python script and a bisection solver from the scipy library for
Python, and then rounded up that value. From this argument, we know that
we will be able to take xθ(q) ≤ x1(θ; q). Since we did not compute bθ(q) for
q ≡ 2 (mod 4), we instead make use of Lemma A.1 to infer that∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣< bθ

(
q

2

)√
x+ 1;

thus to compute x1(θ; q) for q ≡ 2 (mod 4) we instead solve the slightly dif-
ferent equation

cθ(q)
x1

logx1
= bθ

(
q

2

)√
x1 + 1.

The process for calculating x1(ψ; q), x1(θ#; q), and x1(π; q) is very similar:
when q �≡ 2 (mod 4) they are the positive solutions x1 to the equations

cψ(q)
x1

logx1
= bψ(q)

√
x1,

cθ#(q)
x1

logx1
= bθ#(q)

√
x1

and

cπ(q)
x1

log2 x1

= bπ(q)

√
x1

logx1
,

respectively, while when q ≡ 2 (mod 4) they are the solutions to

cψ(q)
x1

logx1
= bψ

(
q

2

)√
x1 + logx1,

cθ#(q)
x1

logx1
= bθ#

(
q

2

)√
x1 + 1

and

cπ(q)
x1

log2 x1

= bπ

(
q

2

) √
x1

logx1
+ 1,

respectively (using the results in Lemma A.1). The first few values for x1 for
the indicated functions are given in Table 8. We give the full table of x1 data
in the

BeMaObRe/x-psi-theta-pi/compute-x1/

subdirectory.
We are now faced with the problem of determining the supremum xθ(q) of

those real numbers x such that the inequality (A.4) fails (again using θ(x; q, a)
as the example for our discussion); from the previous calculation we know

http://www.nt.math.ubc.ca/BeMaObRe/x-psi-theta-pi/compute-x1/
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Table 8. Assorted values of x1(ψ; q), x1(θ; q), x1(θ#; q) and x1(π; q)

q x1(ψ; q) x1(θ; q) x1(θ#; q) x1(π; q)
3 3.5290 · 109 1.0701 · 1010 3.3100 · 109 1.4980 · 1010
4 2.5810 · 109 7.0120 · 109 2.1260 · 109 1.0712 · 1010
5 2.7660 · 109 7.4690 · 109 2.8590 · 109 1.2479 · 1010
6 3.5320 · 109 1.0701 · 1010 3.3100 · 109 1.4983 · 1010
7 1.2830 · 109 2.7140 · 109 1.4080 · 109 3.2310 · 109
8 1.1320 · 109 4.8160 · 109 9.9300 · 108 6.7670 · 109
9 1.0550 · 109 2.1630 · 109 1.3660 · 109 2.4790 · 109
10 2.7680 · 109 7.4690 · 109 2.8600 · 109 1.2482 · 1010
11 1.7200 · 109 2.1220 · 109 1.7120 · 109 2.5350 · 109
12 7.6000 · 108 3.0840 · 109 7.3600 · 108 3.8480 · 109
...

...
...

...
...

105 5.0 · 106 5.0 · 106 5.0 · 106 5.0 · 106

that this supremum is at most x1(θ; q). In practice x1(θ; q) is significantly
smaller than x2(q), and so determining xθ(q) from an exhaustive search over
x ≤ x1(θ; q) is substantially faster. We again compute the left-hand side of
the inequality (A.4) for x equal to all primes and prime powers in the given
range, using code similar to that used to compute bθ(q). For each residue class
a (mod q), we record the largest prime or prime power p∗(q;a) so that∣∣∣∣θ(p∗(q, a); q, a)− p∗(q, a)

ϕ(q)

∣∣∣∣> cθ(q) ·
p∗(q, a)

log p∗(q, a)
.

The procedure then breaks into two cases depending on the sign of

(θ(p∗(q, a); q, a)− p∗(q,a)
ϕ(q) ). Consider Figure 2, which gives a schematic com-

parison between θ(x; q, a) − x
ϕ(q) (the jagged paths denoting functions with

jump discontinuities) and ±cθ(q)
x

logx (the curved lines).

Figure 2. Comparison of θ(x; q, a)− x
φ(q) to ±cθ(q)

x
logx .
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Table 9. Assorted values of xψ(q), xθ(q), xθ#(q) and xπ(q)

q xψ(q) xθ(q) xθ#(q) xπ(q)
3 576,470,759 7,932,309,757 576,587,783 7,940,618,683
4 952,930,663 4,800,162,889 952,941,971 5,438,260,589
5 1,333,804,249 3,374,890,111 1,333,798,729 3,375,517,771
6 576,470,831 7,932,309,757 576,587,783 7,940,618,683
7 686,060,664 1,765,650,541 500,935,442 1,765,715,753
8 603,874,695 2,261,078,657 603,453,377 2,265,738,169
9 415,839,496 929,636,413 415,620,108 929,852,953
10 1,333,804,249 3,374,890,111 1,333,798,729 3,375,517,771
11 770,887,529 1,118,586,379 770,871,139 838,079,951
12 501,271,535 1,305,214,597 501,062,258 1,970,827,897
...

...
...

...
...

105 17,876 17,870 17,931 16,871

• If θ(p∗(q, a); q, a)− x
ϕ(q) > 0, then we use Newton’s method or a bisection

method to find the first root x, to the right of p∗(q, a), of

θ
(
p∗(q, a); q, a

)
− x

ϕ(q)
= cθ ·

x

logx

to the desired level of precision; we then set xθ(q, a) equal to this root x.
• On the other hand, if θ(p∗(q, a); q, a) − x

ϕ(q) < 0 then simply xθ(q, a) =

p∗(q, a).

We then set xθ(q) =maxgcd(a,q)=1 xθ(q, a). We did analogous exhaustive com-
putations to find xψ(q), xθ#(q), and xπ(q); we give the first few values in
Table 9 (rounded up to the nearest integer). All of this data can be found in
the

BeMaObRe/x-psi-theta-pi/compute-x0/

subdirectory.

A.7. Computations of inequalities for π(x; q, a) and pn(q, a), for q ≤
1200 and very small x. To deduce Corollary 1.6 from Theorems 1.4 and 1.5
for a particular modulus 3≤ q ≤ 1200, we need to determine the largest x at
which each of the four inequalities

π(x; q, a)>
x

ϕ(q) logx

π(x; q, a)<
x

ϕ(q) logx

(
1 +

5

2 logx

)
x > π(x; q, a)ϕ(q) log

(
π(x; q, a)ϕ(q)

)
x < π(x; q, a)ϕ(q)

(
log
(
π(x; q, a)ϕ(q)

)
+

4

3
log
(
log
(
π(x; q, a)ϕ(q)

)))

http://www.nt.math.ubc.ca/BeMaObRe/x-psi-theta-pi/compute-x0/
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fails. (When q = 1 and q = 2, Corollary 1.6 follows from results of Rosser
and Schoenfeld [31, equations (3.2), (3.5), (3.12), and (3.13)].) More precisely,
when q ≥ 3 we know that the inequalities hold for x≥ x0(q), so it suffices to
check the inequalities for x < x0(q). Again, as was the case for calculating
bπ(q) in Appendix A.3, we compute π(p; q, a) at each prime p and then check
the inequalities as x approaches p from the left and from the right. Since
π(x; q, a) is an integer quantity, this can be done very efficiently with simple
C++ code.

The data giving the last x violating the inequalities is in the

BeMaObRe/pi-pn-bounds/

subdirectory. Given this data, one can verify that the x values are bounded
by the simple quadratic functions of q stated in Corollary 1.6.

A.8. Computations of error terms for ψ(x; q, a), θ(x; q, a), and
π(x; q, a), for very small x. To prove Corollary 1.7 from Theorems 1.1, 1.2,
and 1.3 we found, for each 3≤ q ≤ 105, the largest values of

logx

x

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣
logx

x

∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣
log2 x

x

∣∣∣∣π(x; q, a)− Li(x)

ϕ(q)

∣∣∣∣
(A.5)

for all 103 ≤ x≤max{xψ(q), xθ(q), xπ(q)}. Those largest values tend to occur
quite close to 103, as all three error terms are decaying roughly like logx/

√
x.

We confirmed that none of these maximal values exceeded 0.19, 0.40, and 0.59,
respectively. Since our main results ensure bounds for x≥ xψ(q), xθ(q), xπ(q)
(as required), it suffices to check that our computed values for cψ(q), cθ(q),
and cπ(q) (see Appendix A.4) were also bounded by those three constants.
The worst case bounds for ψ(x; q, a), θ(x; q, a), and π(x; q, a) are achieved at
(q, x) = (4,1423−), (q, x) = (4,1597−), and (q, x) = (3,1009−) (respectively),
giving constants of 0.1659, 0.3126, and 0.4236 (respectively).

We then repeated this process for the range 106 ≤ x ≤max{xψ(q), xθ(q),
xπ(q)}, comparing the results against the constants 0.011, 0.024, and 0.027,
respectively. In this case, the worst case bounds for ψ(x; q, a), θ(x; q, a) and
π(x; q, a) are achieved at (q, x) = (46,1015853−), (q, x) = (4,100117−), and
(q, x) = (4,100117−) (respectively), giving constants of 0.0106, 0.0233, and
0.0267 (respectively).

While the methods in this paper work in theory for q = 1 and q = 2, we do
use the assumption q ≥ 3 in many small ways to improve the constants in our
intermediate arguments. We can, however, recover results for q = 1 and q = 2
from our existing results, by noting that (for example) every prime other than

http://www.nt.math.ubc.ca/BeMaObRe/pi-pn-bounds/
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3 itself is counted by π(x; 3,1)+ π(x; 3,2). In the case q = 2, we observe that,
for x≥ 3,

ψ(x; 2,1) = ψ(x; 3,1) +ψ(x; 3,2) +

⌊
logx

log 3

⌋
log 3−

⌊
logx

log 2

⌋
log 2,

θ(x; 2,1) = θ(x; 3,1) + θ(x; 3,2) + log(3/2),

π(x; 2,1) = π(x; 3,1) + π(x; 3,2).

Appealing to Theorems 1.1, 1.2, and 1.3, and applying the triangle inequality,
we thus have∣∣ψ(x; 2,1)− x

∣∣< 2cψ(3)
x

logx
+ 1 for all x≥ xψ(3),∣∣θ(x; 2,1)− x

∣∣< 2cθ(3)
x

logx
+ log(3/2) for all x≥ xθ(3),∣∣π(x; 2,1)− Li(x)

∣∣< 2cπ(3)
x

log2 x
for all x≥ xπ(3).

Similarly, in the case q = 1, we find that∣∣ψ(x)− x
∣∣< 2cψ(3)

x

logx
+ logx for all x≥ xψ(3),∣∣θ(x)− x

∣∣< 2cθ(3)
x

logx
+ log3 for all x≥ xθ(3),∣∣π(x)− Li(x)

∣∣< 2cπ(3)
x

log2 x
+ 1 for all x≥ xπ(3).

(A.6)

Now

cψ(3) = 0.0003964

cθ(3) = 0.0004015

cπ(3) = 0.0004187

and

xψ(3) = 576,470,759

xθ(3) = 7,932,309,757

xπ(3) = 7,940,618,683.

It follows, after a short computation, that we have the desired proof of
Corollary 1.7 for q ∈ {1,2} and, crudely, x ≥ max{xψ(3), xθ(3), xπ(3)} =
7,940,618,683. A final calculation, as in the cases 3≤ q ≤ 105, completes the
proof.

We now find that for 1 ≤ q ≤ 105 and x ≥ 103, the worst case bounds
for ψ(x; q, a), θ(x; q, a), and π(x; q, a) are all achieved at (q, x) = (2,1423−),
giving constants of 0.18997, 0.3987, and 0.5261 (respectively). Similarly,
when we consider all 1 ≤ q ≤ 105 and x ≥ 106, the worst case bounds for
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ψ(x; q, a), θ(x; q, a), and π(x; q, a) are achieved at (q, x) = (46,1015853−),
(q, x) = (4,100117−), and (q, x) = (2,1090697−) (respectively), giving con-
stants of 0.0106, 0.0233, and 0.0269 (respectively).

The upper bound upon |π(x) − Li(x)| given by (A.6) implies that we
have ∣∣π(x)− Li(x)

∣∣< 0.0008375
x

log2 x
for all x≥ 7,940,618,683.

Explicitly checking this inequality for all x < 7,940,618,683 leads to the re-
ported inequality (1.15).

The maximal values of the three quantities in equation (A.5) for 1≤ q ≤ 105

can be found in the

BeMaObRe/cor1.7/

subdirectory. This computation strongly resembles the one undertaken to ob-
tain the constants bψ(q), bθ(q), and bπ(q) (see Appendix A.3), and similar C++
code was used.

A.9. Computations of uniform range of validity for error terms
for ψ(x; q, a), θ(x; q, a), and π(x; q, a). To establish Corollary 1.8 from The-
orems 1.1, 1.2, and 1.3, it suffices to compute a constant A≥ 0.03 so that the
inequalities

xψ(q), xθ(q), xθ#(q), xπ(q)≤ exp
(
A
√
q log3 q

)
hold for all 3≤ q ≤ 105. Using the quantity

xm(q) =max
{
xψ(q), xθ(q), xθ#(q), xπ(q)

}
,

we computed

max
3≤q≤105

{
logxm(q)
√
q log3 q

}
.

This maximum was a number close to 9.92545, obtained at q = 3, but the
quantity under consideration decreases rapidly with q (and is always at most
4.21 for q ≥ 4). For q ≥ 74 the maximum is in fact less than the constant 0.03
from the definition (1.11) of x0(q).

Fixing now q = 3, we verify by direct computation (assuming x ≤ xm(3))
that the conclusion of Corollary 1.8 holds for

x≥ 16,548,949≈ exp
(
7.237439

√
3 log3 3

)
.

Arguing similarly for 3 ≤ q ≤ 73, we again obtain the conclusions of Corol-
lary 1.8, including under the weaker assumption that x≥ exp(0.03

√
q log3 q)

for all q ≥ 58.
The code and data associated with this computation can be found in the

BeMaObRe/cor1.8/

subdirectory.

http://www.nt.math.ubc.ca/BeMaObRe/cor1.7/
http://www.nt.math.ubc.ca/BeMaObRe/cor1.8/
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A.10. Computations of lower bounds for L(1, χ) for medium-sized
moduli q for Lemma 6.3 and Proposition 1.10. We describe one final
computation that was used at the end of the proof of Lemma 6.3 and the de-
duction therefrom of Proposition 1.10. Explicit computation using Sage [36],
over fundamental discriminants d with 4 · 105 ≤ d≤ 107, shows that the quan-
tity h(

√
d) log ηd is minimal when d= 405,173, where we find that h(

√
d) = 1

and ηd = (v0 + u0

√
d)/2 with

v0 = 25,340,456,503,765,682,334,430,473,139,835,173

and

u0 = 39,810,184,088,138,779,581,856,559,421,585.

It follows that h(
√
d) log ηd > 79.2177 for all fundamental discriminants d with

4 · 105 ≤ d≤ 107.
For each pair of positive integers (d,u0) for which d > 107 is a fundamental

discriminant, du2
0 < 2.65 ·1010, and du2

0+4 is a square, we check via Sage [36]
that, in all cases,

h(
√
d) log ηd = h(

√
d) log

(√
du2

0 + 4+ u0

√
d

2

)
> 417;

indeed, h(
√
d) log ηd is minimal in this range when d= 11,109,293, for which

we find that h(
√
d) = 36 and η = 1

2 (10991+33
√
d). We may therefore suppose

that du2
0 ≥ 2.65 · 1010, which then implies that

log ηd = log

(
v0 + u0

√
d

2

)
> log(u0

√
d)

≥ 1

2
log
(
2.65 · 1010

)
> 12,

and so h(
√
d) log ηd > 12, as desired. The Sage [36] code used for this compu-

tation and its output can be found in the BeMaObRe/lemma5.3/ subdirectory.

A.11. Concluding remarks from a computational perspective. From
our code, it is relatively easy to examine the effect of sharpening various
quantities upon our final constant cψ(q) and its relatives. A decrease of 10%
in the value R defining our zero-free region (from its current value of 5.6) has
a very small effect upon cψ(q), leading to a decrease of much less than 1% in
all cases (assuming we leave all other parameters unchanged). Doubling the
value of c2(q), on the other hand, reduces cψ(q) by, typically, 25% or more, for
q with 104 < q ≤ 105; a somewhat less substantial benefit would accrue from
confirming GRH for all Dirichlet L-functions of conductor q, up to height,
say, 2 · 108/q.

http://www.nt.math.ubc.ca/BeMaObRe/lemma5.3/
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B. Notation reference

Table 10. Notation reference: A to Q

Am(δ) equation (2.4)
b(χ) Definition 6.6
bψ(q), bθ(q), bθ#(q), bπ(q) equation (A.3)

Bd,m,R(r,H,H2), B
(1)
d,m,R(x; r,H2), B

(2)
d,m,R(x; r) Definition 3.7

c0(q) equation (1.10)
cθ(q), cπ(q), cψ(q) Theorems 1.1, 1.2, 1.3
C1,C2 Definition 2.4
Dq,m,R(x2;H0,H,H2) Definition 4.32
E(u; q, a) Definition 5.6
erfc(u) Definition 4.5
Fχ,m,R(x;H2) Definition 3.2
Fd,m,R(x;H2) Definition 3.3

g
(1)
d,m(H,H2), g

(2)
d,m(H,H2), g

(3)
d,m,R(x;H,H2) Definition 3.2

Gq,m,R(x;H,H2) Definition 3.3
Gq,m,R(x2, r;H,H2) Definition 4.30
h3(d) Definition 2.6
H1(m) Definition 2.17

H
(1)
d,m,R(x), H

(2)
d,m,R(x;H2) Definition 3.5

Hypotheses Z(H,R), Z1(R) Definition 3.1
In,m(α,β; �) Definition 4.1
J1a(z;y), J1b(x;y), J2a(z;y), J2b(z;y) Definition 4.6
Kn(z;y) Definition 4.3
Li(x) equation (1.4)
Md(�, u) Definition 2.13
m(χ) Definition 6.6
N(T ) proof of Proposition 2.3
N(T,χ) Definition 2.2
P∗(x;m,r,λ,H,R) (various values of ∗) Definition 4.15
Q∗(m,r,λ,H,R) (various values of ∗) Definition 4.16
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Table 11. Notation reference: R to ω

R1 Definition 6.1
Sd,m,R(r,H) Definition 4.28
S(T ) proof of Proposition 2.3
T1, T2, T3, T4 Definition 4.32
Uq,m(x; δ,H) equation (2.5)
Vq,m(x; δ,H) equation (2.6)
Wq(x) equation (2.7)
x0(q) equation (1.11)
xθ(q), xπ(q), xψ(q) Theorems 1.1, 1.2, 1.3
x2(q) equation (1.18)
x3(m,q,H,R) Definition 4.23
Yd,m,R(x,u) Definition 3.2
yd,m,R(x;H2) Definition 4.17
zm,R(x) Definition 4.17
Z(χ) Definition 2.2
αm,k Definition 2.19
Δk(x; q), Δ(x; q) Definition 5.1
θ(x; q, a) equation (1.5)
θ#(x; q, a) equation (5.1)
Θ(d, t) equation (2.8)
ν(q,H0,H) Definition 2.10
ν1(χ,H0) Definition 2.10
ν2(q,H0) Definition 2.10
ν3(q,H) Definition 2.10
ξk(q), ξk(q, a) Definition 5.1
Ξm,λ,μ,R(x) Definition 4.10
τm Definition 4.12
π(x; q, a) equation (1.6)
Υq,m(x;H) Definition 2.16
ϕ∗(d) Definition 2.9
ψ(x; q, a) equation (1.5)
Ψq,m,r(x;H) Definition 2.16
ωm Definition 4.12
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