THE EULER CLASS AS A COHOMOLOGY GENERATOR

GERARD WALSCHAP

ABSTRACT. We show that a generator of the cohomology group $H^n(S^n)$ cannot be realized as the Euler class of a vector bundle over the n-sphere unless n equals 2, 4, or 8.

A basic question in algebraic topology is which cohomology classes can be realized as characteristic classes. It is known that if X is a CW-complex, then for any cohomology class $\alpha \in H^k(X)$, there exists a vector bundle over X whose Euler class is a multiple of α [4]. What does not seem to be known, however, is whether α itself can occur as an Euler class, even in the simplest possible non-trivial case when X is a sphere.

In this note, we give a geometric proof of the fact that a generator of $H^n(S^n)$ cannot in general occur as the Euler class of a bundle over S^n . More precisely, when $n \neq 2, 4, 8$, then the Euler class of any vector bundle over S^n must be an even multiple of a generator of $H^n(S^n)$. This in turn implies that the Stiefel-Whitney class of any bundle over a sphere is trivial, provided n is not one of these exceptional values. Another consequence is that any rank 4n bundle over S^{4n} with trivial Pontrjagin class is equivalent to a pullback $f^*\tau$ of the tangent bundle τ , for some map $f: S^{4n} \to S^{4n}$.

We also examine some extensions of these results to the non-spherical case.

1. The Euler class of a vector bundle over a sphere

We begin by recalling a geometric way of computing the Euler number of a rank n bundle ξ over S^n : Denote by p and q a pair of antipodal points, and by U_+ and U_- their complements in S^n . Since U_+ , U_- are contractible, there are trivializations

$$\phi_+: U_+ \times \mathbb{R}^n \to \pi^{-1}(U_+), \quad \phi_-: U_- \times \mathbb{R}^n \to \pi^{-1}(U_-).$$

Restricting to the equator, we have a map $\phi_-^{-1} \circ \phi_+ : S^{n-1} \times \mathbb{R}^n \to S^{n-1} \times \mathbb{R}^n$ sending (p,u) to (p,g(p)u) with $g: S^{n-1} \to SO(n)$. g is called the *clutching map* of E, and its significance lies in that free homotopy classes of such maps classify vector bundles over S^n up to isomorphism type.

Received March 5, 2001; received in final form August 20, 2001. 2000 Mathematics Subject Classification. 53C05, 57R20.

©2002 University of Illinois

Now fix a vector $u \in S^{n-1}$, and define a map $f: S^{n-1} \to S^{n-1}$ by f(x) = g(x)u, $x \in S^{n-1}$. The following lemma follows from the arguments in [5], but as it is not explicitly argued, we provide a proof here for convenience of the reader:

LEMMA 1.1. The degree of f equals, up to sign, the Euler number of ξ .

Proof. Endow ξ with a Riemannian connection ∇ , and let Σ_p denote the unit sphere in the tangent space of S^n at p. Fix a unit vector u in the fiber E_p of ξ over p. If $\gamma_x : [0, \pi] \to S^n$ denotes the half-great circle from p to q in direction $x \in \Sigma_p$, and P_{γ_x} is parallel translation along γ_x , we obtain a map from Σ_p to the unit sphere in the fiber of ξ over q by assigning to $x \in \Sigma_p$ the vector $P_{\gamma_x}u$. Both domain and range are (n-1)-spheres, and by [2, Theorem 11.16] the degree of this map equals (up to sign) the Euler number of ξ .

On the other hand, we may use the connection to obtain trivializations of the oriented orthonormal frame bundle $Fr(\xi)$ of ξ : Identify an oriented orthonormal frame b_p at p with a linear isometry $b_p : \mathbb{R}^n \to E_p$, so that any frame at p can be written as $b_p \circ h$ for a unique $h \in SO(n)$. If γ^{pr} denotes the minimal geodesic from p to $r \in U_+$, then the map

$$\phi_+: U_+ \times SO(n) \to \operatorname{Fr}(\xi)$$

$$(r,h) \mapsto P_{\gamma^{pr}}(b_p \circ h)$$

is a trivialization of $\operatorname{Fr}(\xi)|_{U_+}$. Choosing another frame b_q at q yields a similar trivialization ϕ_- of $\operatorname{Fr}(\xi)|_{U_-}$.

Observe that if $\phi_{+}(r,h) = \phi_{-}(r,\bar{h})$, then

$$\bar{h} = (b_a^{-1} \circ P_{\gamma_x} \circ b_p) \circ h,$$

where $x \in \Sigma_p$ is the unique vector for which the geodesic γ_x passes through r. Identifying Σ_p with the equator S^{n-1} via $x \mapsto \gamma_x(\pi/2)$, we see that the clutching map of ξ is given by

$$g(x) = b_q^{-1} \circ P_{\gamma_x} \circ b_p,$$

and the lemma follows.

THEOREM 1.2. If $n \neq 2,4,8$, then the Euler class of any rank k vector bundle over S^n is an even multiple of a generator of $H^k(S^n)$.

Proof. We need of course only consider the case when k=n, and show that the degree of the map f from Lemma 1.1 is even. Now, $f=\pi\circ g$, where g is the clutching map of the bundle and $\pi:SO(n)\to S^{n-1}$ denotes the principal fibration

$$SO(n-1) \to SO(n) \to S^{n-1}$$
.

It therefore remains to show that for non-exceptional values of n, im $\pi_{\#} = 2\mathbb{Z} \subset \pi_{n-1}(S^{n-1}) = \mathbb{Z}$.

To see this, notice that in the portion

$$\cdots \to \pi_{n-1}(SO(n-1) \xrightarrow{\pi_{\#}} \pi_{n-1}(S^{n-1}) \xrightarrow{\partial} \pi_{n-2}(SO(n-1)) \to \cdots$$

of the long exact homotopy sequence of this fibration, ∂ is not trivial: In fact, if $h: S^{n-1} \to BSO(n-1)$ is a classifying map for the tangent bundle of the (n-1)-sphere, then $h_{\#} = \partial$ under the isomorphism $\pi_{n-1}(BSO(n-1)) \simeq \pi_{n-2}(SO(n-1))$. Thus, ∂ vanishes only when TS^{n-1} is trivial; i.e., when n=2,4, or 8. Furthermore, for even $n, \pi_{n-2}(SO(n-1))$ is either \mathbb{Z}_2 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$; see [7]. Together with exactness, this implies that im $\pi_{\#} = \ker \partial = 2\mathbb{Z}$, as claimed.

REMARK. Conversely, given an even multiple 2ku of the standard generator u of $H^n(S^n)$, there exists a vector bundle over S^n whose Euler class equals 2ku: Just consider $f^*\tau$, where τ is the tangent bundle of S^n and $f: S^n \to S^n$ is a map of degree k.

2. Some applications

Theorem 1.2 has several direct consequences. Among them is the following:

COROLLARY 2.1. If $n \neq 2, 4$, or 8, then the Stiefel-Whitney class $w(\xi)$ of any vector bundle ξ over S^n is trivial.

Proof. The top Stiefel-Whitney class is the reduction mod 2 of the Euler class, and thus vanishes by Theorem 1.2. This concludes the argument when the rank of the bundle is $\leq n$. If the bundle has rank n+k, then ξ^{n+k} splits as a Whitney sum $\xi^n \oplus \epsilon^k$ of a rank k bundle ξ^n and a trivial bundle ϵ^k . But then $w(\xi^{n+k}) = w(\xi^n)$, and the claim follows.

Let γ^k denote the canonical bundle over BSO(k). Recall that every oriented rank k bundle over S^n is equivalent to the pullback $f^*\gamma^k$ for some $f: S^n \to BSO(k)$, and that two such bundles $f^*\gamma^k$, $g^*\gamma^k$ are equivalent iff $[f] = [g] \in \pi_n(BSO(k)) \simeq \pi_{n-1}(SO(k))$. Furthermore, these bundles are determined up to finite ambiguity by their characteristic classes; i.e., the map c which assigns to $[f] \in \pi_{n-1}(SO(k))$ the pair $(l,m) \in \mathbb{Z} \oplus \mathbb{Z}$, where l denotes the [n/4]-th Pontrjagin number and m the Euler number of $f^*\gamma^k$, is a homomorphism with finite kernel; see, for example, [1].

COROLLARY 2.2. Let ξ denote an oriented rank 4m bundle over S^{4m} . If the Pontrjagin class of ξ is zero, then ξ is the pullback $f^*\tau$ of the tangent bundle τ for some $f: S^{4m} \to S^{4m}$.

Proof. Since $\pi_{4m-1}(SO(4m)) = \mathbb{Z} \oplus \mathbb{Z}$ (see [7]), the homomorphism c from above is one-to-one. Consider first the case when m > 2: According to the remark following Theorem 1.2, there exists a map $f: S^{4m} \to S^{4m}$ such that $f^*\tau$ has the same Euler class as ξ . But $f^*\tau$ has trivial Pontrjagin class,

so the statement follows. Next, suppose m=1. From the arguments on page 246 of [6], it is easy to see that $c:\pi_3(SO(4))\to\mathbb{Z}\oplus\mathbb{Z}$ is given by c(k,l)=(-4k-2l,l). If the rank 4 bundle ξ has trivial first Pontrjagin class, then l=-2k. Since the tangent bundle τ has (k,l)=(-1,2), ξ is equivalent to $f^*\tau$, where $f:S^4\to S^4$ has degree -k. Finally, the case when m=2 is argued in exactly the same way; see, for example, [3] for an explicit description of $c:\pi_7(SO(8))\to\mathbb{Z}\oplus\mathbb{Z}$.

The Hurewicz homomorphism allows us to also draw some conclusions in the non-spherical case:

COROLLARY 2.3. Let M be simply connected and rationally (k+1)/2connected, where $k \neq 2$, 4, or 8. If $H^k(M)$ is not a torsion group, then there
exists a cohomology class in $H^k(M)$ that cannot be realized as the Euler class
of any bundle over M.

Proof. The Hurewicz homomorphism $h: \pi_k(M) \to H_k(M)$ is a \mathcal{C} -epimorphism under the above hypotheses; i.e., $H_k(M)/h(\pi_k(M))$ is finite; see [4]. By the universal coefficient theorem, $H_k(M)$ is not a torsion group, so there must exist some $\sigma \in h(\pi_k(M))$ of infinite order. Invoking once again the universal coefficient theorem, there exists some $\alpha \in H^k(M)$ such that $\langle \alpha, \sigma \rangle = 1$. If $f: S^k \to M$ satisfies $f_*[S^n] = \sigma$ (i.e., $h[f] = \sigma$), then $1 = \langle \alpha, f_*[S^k] \rangle = \langle f^*\alpha, [S^k] \rangle$, and $f^*\alpha$ is a generator of $H^k(S^k)$; since $f^*\alpha$ cannot be realized as an Euler class, neither can α .

EXAMPLE. Consider the Stiefel manifold $V_{2k,k}$ of k-frames in \mathbb{R}^{2k} , with k even, $k \neq 2$, 4, or 8. It is well-known that $V_{2k,k}$ is (k-1)-connected, and that $\pi_k(V_{2k,k}) = \mathbb{Z}$; see, for example, [8]. By Hurewicz and the universal coefficient theorem, $H^k(V_{2k,k}) = \mathbb{Z}$. A generator of the latter group cannot be realized as an Euler class.

References

- I. Belegradek, Counting nonnegatively curved manifolds, Ph.D. Thesis, University of Maryland, 1998.
- [2] R. Bott and L. Tu, Differential forms in algebraic topology, Springer-Verlag, New York,
- [3] M. Čadek and J. Vanžura, On complex structures in 8-dimensional vector bundles, Manuscripta Math. 95 (1998), 323–330.
- [4] L. Guijarro, T. Schick, and G. Walschap, Bundles with spherical Euler class, Pacific J. Math., to appear.
- [5] L. Guijarro and G. Walschap, Twisting and nonnegatively curved metrics on vector bundles over the round sphere, J. Diff. Geometry 52 (1999) 189–202.
- [6] J. Milnor and J. Stasheff, Characteristic classes, Princeton University Press, Princeton, 1974
- [7] M. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161–169.

[8] G. Whitehead, Elements of homotopy theory, Springer-Verlag, New York, 1978.

Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA $\emph{E-mail address}$: gerard@math.ou.edu