
Illinois Journal of Mathematics
Volume 46, Number 1, Spring 2002, Pages 165–169
S 0019-2082

THE EULER CLASS AS A COHOMOLOGY GENERATOR

GERARD WALSCHAP

Abstract. We show that a generator of the cohomology group Hn(Sn)

cannot be realized as the Euler class of a vector bundle over the n-sphere
unless n equals 2, 4, or 8.

A basic question in algebraic topology is which cohomology classes can be
realized as characteristic classes. It is known that if X is a CW-complex, then
for any cohomology class α ∈ Hk(X), there exists a vector bundle over X
whose Euler class is a multiple of α [4]. What does not seem to be known,
however, is whether α itself can occur as an Euler class, even in the simplest
possible non-trivial case when X is a sphere.

In this note, we give a geometric proof of the fact that a generator of
Hn(Sn) cannot in general occur as the Euler class of a bundle over Sn. More
precisely, when n 6= 2, 4, 8, then the Euler class of any vector bundle over Sn

must be an even multiple of a generator of Hn(Sn). This in turn implies that
the Stiefel-Whitney class of any bundle over a sphere is trivial, provided n is
not one of these exceptional values. Another consequence is that any rank 4n
bundle over S4n with trivial Pontrjagin class is equivalent to a pullback f∗τ
of the tangent bundle τ , for some map f : S4n → S4n.

We also examine some extensions of these results to the non-spherical case.

1. The Euler class of a vector bundle over a sphere

We begin by recalling a geometric way of computing the Euler number of
a rank n bundle ξ over Sn: Denote by p and q a pair of antipodal points, and
by U+ and U− their complements in Sn. Since U+, U− are contractible, there
are trivializations

φ+ : U+ × Rn → π−1(U+), φ− : U− × Rn → π−1(U−).

Restricting to the equator, we have a map φ−1
− ◦φ+ : Sn−1×Rn → Sn−1×Rn

sending (p, u) to (p, g(p)u) with g : Sn−1 → SO(n). g is called the clutching
map of E, and its significance lies in that free homotopy classes of such maps
classify vector bundles over Sn up to isomorphism type.
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Now fix a vector u ∈ Sn−1, and define a map f : Sn−1 → Sn−1 by f(x) =
g(x)u, x ∈ Sn−1. The following lemma follows from the arguments in [5], but
as it is not explicitly argued, we provide a proof here for convenience of the
reader:

Lemma 1.1. The degree of f equals, up to sign, the Euler number of ξ.

Proof. Endow ξ with a Riemannian connection ∇, and let Σp denote the
unit sphere in the tangent space of Sn at p. Fix a unit vector u in the fiber
Ep of ξ over p. If γx : [0, π]→ Sn denotes the half-great circle from p to q in
direction x ∈ Σp, and Pγx is parallel translation along γx, we obtain a map
from Σp to the unit sphere in the fiber of ξ over q by assigning to x ∈ Σp the
vector Pγxu. Both domain and range are (n− 1)-spheres, and by [2, Theorem
11.16] the degree of this map equals (up to sign) the Euler number of ξ.

On the other hand, we may use the connection to obtain trivializations
of the oriented orthonormal frame bundle Fr(ξ) of ξ: Identify an oriented
orthonormal frame bp at p with a linear isometry bp : Rn → Ep, so that any
frame at p can be written as bp ◦ h for a unique h ∈ SO(n). If γpr denotes
the minimal geodesic from p to r ∈ U+, then the map

φ+ : U+ × SO(n)→ Fr(ξ)

(r, h) 7→ Pγpr (bp ◦ h)

is a trivialization of Fr(ξ)|U+ . Choosing another frame bq at q yields a similar
trivialization φ− of Fr(ξ)|U− .

Observe that if φ+(r, h) = φ−(r, h̄), then

h̄ = (b−1
q ◦ Pγx ◦ bp) ◦ h,

where x ∈ Σp is the unique vector for which the geodesic γx passes through
r. Identifying Σp with the equator Sn−1 via x 7→ γx(π/2), we see that the
clutching map of ξ is given by

g(x) = b−1
q ◦ Pγx ◦ bp,

and the lemma follows. �

Theorem 1.2. If n 6= 2, 4, 8, then the Euler class of any rank k vector
bundle over Sn is an even multiple of a generator of Hk(Sn).

Proof. We need of course only consider the case when k = n, and show that
the degree of the map f from Lemma 1.1 is even. Now, f = π ◦ g, where g is
the clutching map of the bundle and π : SO(n)→ Sn−1 denotes the principal
fibration

SO(n− 1)→ SO(n)→ Sn−1.

It therefore remains to show that for non-exceptional values of n, imπ# =
2Z ⊂ πn−1(Sn−1) = Z.
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To see this, notice that in the portion

· · · → πn−1(SO(n− 1)
π#−−→ πn−1(Sn−1) ∂−→ πn−2(SO(n− 1))→ · · ·

of the long exact homotopy sequence of this fibration, ∂ is not trivial: In fact,
if h : Sn−1 → BSO(n− 1) is a classifying map for the tangent bundle of the
(n − 1)-sphere, then h# = ∂ under the isomorphism πn−1(BSO(n − 1)) '
πn−2(SO(n − 1)). Thus, ∂ vanishes only when TSn−1 is trivial; i.e., when
n = 2, 4, or 8. Furthermore, for even n, πn−2(SO(n − 1)) is either Z2 or
Z2⊕Z2; see [7]. Together with exactness, this implies that imπ# = ker ∂ = 2Z,
as claimed. �

Remark. Conversely, given an even multiple 2ku of the standard genera-
tor u of Hn(Sn), there exists a vector bundle over Sn whose Euler class equals
2ku: Just consider f∗τ , where τ is the tangent bundle of Sn and f : Sn → Sn

is a map of degree k.

2. Some applications

Theorem 1.2 has several direct consequences. Among them is the following:

Corollary 2.1. If n 6= 2, 4, or 8, then the Stiefel-Whitney class w(ξ) of
any vector bundle ξ over Sn is trivial.

Proof. The top Stiefel-Whitney class is the reduction mod 2 of the Euler
class, and thus vanishes by Theorem 1.2. This concludes the argument when
the rank of the bundle is ≤ n. If the bundle has rank n+ k, then ξn+k splits
as a Whitney sum ξn ⊕ εk of a rank k bundle ξn and a trivial bundle εk. But
then w(ξn+k) = w(ξn), and the claim follows. �

Let γk denote the canonical bundle over BSO(k). Recall that every ori-
ented rank k bundle over Sn is equivalent to the pullback f∗γk for some
f : Sn → BSO(k), and that two such bundles f∗γk, g∗γk are equivalent iff
[f ] = [g] ∈ πn(BSO(k)) ' πn−1(SO(k)). Furthermore, these bundles are
determined up to finite ambiguity by their characteristic classes; i.e., the map
c which assigns to [f ] ∈ πn−1(SO(k)) the pair (l,m) ∈ Z ⊕ Z, where l de-
notes the [n/4]-th Pontrjagin number and m the Euler number of f∗γk, is a
homomorphism with finite kernel; see, for example, [1].

Corollary 2.2. Let ξ denote an oriented rank 4m bundle over S4m. If
the Pontrjagin class of ξ is zero, then ξ is the pullback f∗τ of the tangent
bundle τ for some f : S4m → S4m.

Proof. Since π4m−1(SO(4m)) = Z⊕Z (see [7]), the homomorphism c from
above is one-to-one. Consider first the case when m > 2: According to the
remark following Theorem 1.2, there exists a map f : S4m → S4m such that
f∗τ has the same Euler class as ξ. But f∗τ has trivial Pontrjagin class,
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so the statement follows. Next, suppose m = 1. From the arguments on
page 246 of [6], it is easy to see that c : π3(SO(4)) → Z ⊕ Z is given by
c(k, l) = (−4k− 2l, l). If the rank 4 bundle ξ has trivial first Pontrjagin class,
then l = −2k. Since the tangent bundle τ has (k, l) = (−1, 2), ξ is equivalent
to f∗τ , where f : S4 → S4 has degree −k. Finally, the case when m = 2 is
argued in exactly the same way; see, for example, [3] for an explicit description
of c : π7(SO(8))→ Z⊕ Z. �

The Hurewicz homomorphism allows us to also draw some conclusions in
the non-spherical case:

Corollary 2.3. Let M be simply connected and rationally (k + 1)/2-
connected, where k 6= 2, 4, or 8. If Hk(M) is not a torsion group, then there
exists a cohomology class in Hk(M) that cannot be realized as the Euler class
of any bundle over M .

Proof. The Hurewicz homomorphism h : πk(M) → Hk(M) is a C-epimor-
phism under the above hypotheses; i.e., Hk(M)/h(πk(M) is finite; see [4]. By
the universal coefficient theorem, Hk(M) is not a torsion group, so there must
exist some σ ∈ h(πk(M)) of infinite order. Invoking once again the universal
coefficient theorem, there exists some α ∈ Hk(M) such that 〈α, σ〉 = 1. If
f : Sk → M satisfies f∗[Sn] = σ (i.e., h[f ] = σ), then 1 = 〈α, f∗[Sk]〉 =
〈f∗α, [Sk]〉, and f∗α is a generator of Hk(Sk); since f∗α cannot be realized
as an Euler class, neither can α. �

Example. Consider the Stiefel manifold V2k,k of k-frames in R2k, with
k even, k 6= 2, 4, or 8. It is well-known that V2k,k is (k − 1)-connected,
and that πk(V2k,k) = Z; see, for example, [8]. By Hurewicz and the universal
coefficient theorem, Hk(V2k,k) = Z. A generator of the latter group cannot
be realized as an Euler class.
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