SOME EXAMPLES OF FREE INVOLUTIONS ON HOMOTOPY S x S"S

BY
RoBErT WELLS!

1. Introduction

Suppose M is a closed s-parallelizable manifold and G is a finite group acting
freely and differentiably on M. A natural question to ask is: What is the
(reduced) normal bundle v(M/G) of the quotient M /G?

If r : G — GL(n; R) is any representation we may form the vector bundle
M X, R" — M/Q@ associated to the principal fibration

M-T,M/G.

Call the reduced class of this bundle £(r). One may then conjecture an an-
swer to the above question, namely

Answer 1. v(M/Q@) = &(r) some 7.
However, it is not hard to see that this answer has to be expanded at least to

Answer 2. v(M/G) = &(r) 4+ 5 some r and some reduced fiber homotopic-
ally trivial 7, such that 7y is trivial.

That is, one hopes that the normal bundle is ‘essentially’ £(r) for some r.
The purpose of this paper is to show that Answer 2 is also wrong, even if
G = Z,, the action is orientation preserving and M is highly connected. In
fact

If I = 0 (8) and [ = 8, then there is a free orientation preserving action of
Z, on M, a differentiable manifold homotopy equivalent to S* X 8 such that
v(M/Z,) — £(r) is stably fiber homotopically trivial for no r.

It follows from Wall’s classification of (I — 1)-connected manifolds [2] that
M is s-parallelizable, so that M/Z, is a counterexample to Answer 2, and
Answer 1 too for that matter. It would be interesting to know just what is
the right answer.

2. Amap

Suppose we have a free orientation preserving action of Z, on M a dif-
ferentiable manifold homotopy equivalent to 8' X §'. In [3], it is shown that
if [ is even then M/Z, = E(y) uy E(y) where v is an [-dimensional vector
bundle over P; , with twisted Euler class equal to 1 or 0, and ¢ : S(y) — S(v)
is a diffeomorphism.

To distinguish the two terms in expressions like X uy X, recall the definition
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of such a space: Itis X X 0u X X 1 divided by the smallest equivalence
relation containing (f(z), 0) # (z, 1) for all z ¢ dom f, and given the quotient
topology.
We obtain an embedding P; < M /Z, by
P, 0 section E(y) X 0.

Let g : 8" — M be the cover of P, C M/Z,. Then we know from [3] that
gx[8"] = (1, —1) or (1,0) with respect to a symplectic basis of H;(M) = Z + Z.
Thus in either case an embedding f : S8 — M representing (0, 1) will have
algebraic intersection equal to 1 with g. Since

F5IS-£418" = f4lS'] s f4[8"] = 0,

where p € Z, is the non-trivial element, we may assume = o f is an embedding
with trivial normal bundle [3]. We may suppose as well that f is transverse
regular along ¢g. Suppose z, ¥ are two intersections of g with f of opposite
signs. We may pick an arc « in g(8") from z to y which misses the rest of

g(8") n [f(s") u pf(8H)]

and misses pa as well. We may pick an are 8 in f( S from y to  which misses
the rest of g(8%) nf(S"). Notice that f(S*) n pf(S') = @. Then we may find
v : D* — M with boundary o + 8 such that = o v is an embedding normal at
the boundary to P; and f(8%), such that

v(D*) npf(8") =@ and woy (int D*) n (P u nf(S)) = 0.

Since z and y have opposite signs, we may thicken v(D?) to apply the Whitney
procedure. It follows at once that we may thicken = o y(D?) to apply the
Whitney procedure, to obtain an isotopy from = o f to = o f/ where f’ has two
fewer geometric intersections with g than f. Iterating the Whitney procedure
as above finally gives us an embedding f : S’ — M such that = o f is an em-
bedding with trivial normal bundle meeting P, transversally at a single point.
By altering the decomposition M /Z, = E(vy) uy E(y) so that E(y) X Ois a
suitably small tubular neighborhood of P; , we may assume that the embedding
 where

nf : D' u D' — M/Z,
is just a standard inclusion of a fiber D'X 0c E(y) X 0on D' X 0, and

carries D' X 1into E(y) X 1. Since v(x o f(8') : M/Z,) is trivial, we have
two isotopic copies S and = o £(S8') in M/Z,. We may assume

E(y) | Py X 0n St = 0.

Let 0 = E(y | P1) us E(y | P,) where 1 : S(v | P1) — S(y | P1). We
wish to find a map

jio— M/Zy — Si
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(where St © M/Z, is the other copy of S, isotopic to = o £(8*)) such that,
on E(y | P1) X 0 it is the natural embedding

E(y|P) X0C E(y) X0,

and such that it carries E(y | P1) X 1 into E(y) X 1. First, extend the
natural inclusion

E(v|P) XOCE(y|P) XOCE(y) X0
to

E(v|P) uiE(y|P)) » M
by

E(v|Po) yE(y | Py) = Dyuy Dy = S‘._l'_°i_,M,

so that E(y | Po) X 1 — E(y) X 1. Now, ¢ is S(¢ 4+ v | P1) with v un-
orientable, so that

o= (PV 8 vy, D

up to homotopy, where . : 8 — P, \/ §'is the standard inclusion and
represents the generator of m(P; \/ 8'). We have also

o = (E(y| Py) ui E(y | Py)) un D'

where 1 : S(y | Po) — S(y | Po) and & : 8" — S(y | P1) u1 E(y | Ps). Then
we have the following homotopy commutative diagram

st Py (s M/Zy — St
n

” E(’Ylpl) UxE(’)’.Po) U
U

S Se1PY wEG Py 2" By X 1 — Sta (B X 1.

We also have the commutative diagram
M/Zy — wo f(8') — M — f(8') —pof(8) =R X 8" X &
T u u
B(y) X 1= o f(8)n(B(y) X 1) « 8 X D' = f(D') — pof(D)

= R x Sl—l x Dl
so that

m(E(y) X 1 — 7o f(8) n (E(y) X 1) - m(M/Z; — w0 f(S"))
is a monomorphism. It follows that
7(E(y) X 1 — 8'n (E(y) X 1)) > 7(M/Z, — 81)

is a monomorphism.
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But P, \/ 8 — M — 81 carries ¢ to ¢ represented by o f, and it carries
¢ onto the element 7 o f o (—1) where —1 : 8' — 8 is a linear map with
matrix

-1 0
1 .
0 1
That is, 7e — — ¢, 80 ¢« + 70 — 0. Then it follows from the monomorphism
above, and the first diagram, that h extends to

D' S E(y) X 1 — 8in (E(y) X 1),
so that the map
Bly | Py) w By | Po) 2725, y/z, —
extends to a map
¢io=E@|P)wEQN|P)— M/Z — 8.

Now, 8§ € M and = o f(S8') € M are isotopic, so we may interchange them
and finally obtain

¢:10—>M/Zy — wo f(S)
such that

(1) S'coe M /Z, is an embedding isotopie to = o f,

(2) ¢|E(y|P1) X0 =incl (E(y|P1) X0C E(y) X0),

(3) ¢:E(v|P)) X1 - E(y) X1.

3. The normal bundle

With M a homotopy S* X S' as above, with involution p and I even, we now

now seek v(M/Z,). By collapsing E(y) X 1 to a point, we obtain
M/Z, 2 T(y),

the Thom space of y. The sequence

P Mz, P )

is a cofibration, where & is the inclusion of P;in E(y) X 1. The composition

P;—L»M/Zg—-)P

is homotopic to the standard inclusion. Also, KO™'(P) — KO (P;) — 0 is
an epimorphism, so it follows that

0— KO(T(v)) -—Zf—> KO(M/Z,) — KO(P;) - 0
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isexact. It follows that the reduced stable normal bundle of M/Z,is k¢ + p*a
where £ is the reduced canonical line bundle, o is uniquely determined in
KO(T(y)). Since p preserves orientation, k is even. The bundle ¥ depends
only on k and [, and we have [3], when [ = 0 (8):

=7Z+2Zy, k=0,4(8)

Since index (M/Z;) = 0, a cannot have infinite order, so o = 0 or possibly
the element of order 2.
Now we have to investigate « more closely. Recall that

v+t = (2P — 1 —1— k)t
where t = 2°Y — 21 — 1 — k, 80 8'T(y) = Piyat/Pry1s. Also,
StT('Y l P1) = Pii141/Piyia
and S'T(y | P;) © S'T(y) is the natural inclusion
Puii/Pivis € Pryot/Pryrs .
Assume l = k = 0 (8). Thent = —1 (8) so that

RO(T(v)) = RO'(8Y(T(7))) = KO (Pu121/Prsr1)

! ! !
KO(T('Y | Py)) = KO‘(StT(’Y | Py)) = Ko—l(Pt+l+1/Pt+t—1)

Now, KO™*(Piy11) = Zy + Z, and the image of
KO7*(Piya) — RO (Piyi1) and RO*(Pipi4r) — KO (Piyi)
are the same subgroup Z, of KO ?(Pi111). Let 8¢ KO ?(Pipiy) be an
element not in that image. Then if § is the coboundary
P ) _
KO(Pyy1-1) —— KO (Peyar/Prir),

it is straightforward to check that 88 is the element of order 2. But if &’ is
the coboundary

Konz(PH-z—l) - KO_I(PH-H-l/PH-l—-l)
we must have 8’8 # 0. Since
KO—I(Pt+l+l/Pt+l—1) = Z2 )

it follows that the element of order 2 in KO (Pi91/P1s1-1) is carried onto
the generator of KO'(Pi1141/Piri1). Thus the element of order 2 in
KO(T(y)) is carried onto the generator of KO(T(v | P1)) = Z,.

Now we can see that the sequence

0— KO(T(v)) _”*—> RO(M/Zy) — RO(P;) — 0
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is split exact. TFor the splitting map KO(P;) — KO(M/Z,) we choose the
one that carries the reduced canonical line bundle over P; to £, the reduced
canonical line bundle over M/Z,. This splitting map will be well defined
provided that 2°¢ = 0. Now, 2°’¢ = p*(2) for 2 uniquely determined in
KO(T(v)), and clearly x = Q orz = o = the element of order 2 in KO(T'(y)).
Using properties (2) and (3) of the map ¢ : ¢ — M/Z, , we obtain the follow-
ing commutative diagram

U———S‘i———)M/Zz

Lo

T(y|P) < T(v)

where Py, — ¢ — T(y | P1) is a cofibration. Clearly, ¢*p*a is the unique non-
zero element of ker (KO(s) — KO(Py)). But 0* 2t = 050 ¢*(2°¢) = 0.
Thus 2°P¢ = p*(a) is impossible and we must have 2°”¢ = 0, so the sequence
above is split exact (even with respect to Adams operations).

Now consider what happens to k¢ and k& + p*a (where « is the element of
order 2 in KO(T(v))) under the map

*

RO(M/Z,) —£— KO(o).
Since KO™(P;) = 0, the following diagram is commutative with exact rows
0— KO(T(y|P1)) —» KO(s) = KO(P,) — 0
E3
W ]
0 — KO(T(v)) — KO(M/Z;) — KO(P;) — 0
Then ¢*¢ is the reduced canonical line bundle of o, and that has order 2, so
o*(k&) = O since k is even. But ¢*(kt + p*a) = u is the unique non-zero
element of ker(KO(c) — KO(P;)). Thus the two cases of v(M/Z,) are
distinguished by ¢*.
Now,
o/8" = (8" X 8)/(8' X %) = 8V 8,
and the map /8" — 8 of degree 1 is simply

S'— % and S L, g

The map
§=Pico—g/8=258V8"
is simply
gL, g

Let j: 8" — /8" be the natural inclusion of 8'**.  Then

S g8 S(SY
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has degree 2 since H'*'(¢) = Z,, so the collapsing map
Sl v Sl+1 — 0/sl N Sl+1
is
S — % and S — S,

Since KO(8'*™) = Z, it follows that the following sequence is exact, and the
attached triangle commutative.

Ros™) %, Ro(s v 8 — Ro(e) -2 RO(SY

N

Ro(8")

The first 0 follows from KO(S**") = Z, and the degree 2 map, and the second
0 follows from KO(S') = Z and KO(s) finite. It follows that y is the pull-
back of the generator of KO(S'*') = Z, under the degree 1 map & — 8"+, and
in turn restricts to that generator under

g+ I, .8

4, The example

Suppose I = 0 (8) and I > 8. Let n — 8" be an I-plane bundle over S**
whose reduced stable class is non-zero in KO(S8'*'). Let S(n) be the sphere
bundle of 5. Define an involution of ¢ of S() by ¢(¢) = —z. Then

S(n)/2Zs —2 g+

is a P;_s-bundle. Then the reduced tangent bundle of S(n)/Z,is It + &8
where £ is the reduced canonical line bundle and 8 ¢ KO(8**') is the non-zero
element. It follows that

v(8(n)/Zs) = (2° — 1) + &"B
sothatk = 25 —1=0(8).
Let w: S(n)/Z,— P be the classifying map of the cover

S(n) — 8(n)/Z .
Then the map
S(n)/2 L2 P x 5

pulls back the normal bundle from k¢ X 8. Let Piy C S(n)/Z. be a fiber.
The immersions S'*' — P, has trivial normal bundle. Observe that the
canonical line bundle over P;; is included in v(Pi : S(%)/Z,). Regarding
St as its S’-bundle, we obtain an embedding S < S(n)/Z, with trivial
normal bundle such that either of its covers generates H; 1(S(9)) = Z. By
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surgering S < 8(7)/Z, we obtain a manifold M /Z, together with a map
§:M/Zy— P X 8

such that v(M/Z,) = ¢*(k&é X B) and M is a homotopy S* X S'. We obtain
S(n)/Z, back again by surgering

Stc S)/Zy — 87 < M/Z,

where 8' © S(#9)/Z is a linking sphere of S".
Notice that the embedding Pi_y < S(n)/Z: — S may be extended to an
embedding P; € M/Z, which meets S' C M/Z, transversally, exactly once.
Since v(S' : M/Z,) is trivial, it follows that S © M/Z, may be the map-
ping mof of Section 2.

Remark. Let fbe a cover of 8 © M/Z, above, and § : S*— M the cover
of P, © M/Z, above. Then with respect to a symplectic basis of H;(M), we
may take f*[S"] = (0,1). Then according to [3],

g«[8'] = (1,0) + (2a,2b) or (0,1) + (2a,2b) or (1, —1) + (2a,2b).

Then the algebraic intersection f*[8"]-g*[S"]is 1 + 2a or 2a or 1 + 2a respec-
tively. Since the geometric intersection = 1, it follows that the middle case
is excluded, and @ = 0 in the other two cases. It follows that we may replace
P, © M/Z, by another P, © M /Z, with cover g : 8' — M such that gx[S'] =
(1,0) or (1, —1) and geometric intersection 1 with « o f(S*).

In any case, we have ¢ © M/Z;, — w0 f(S") with 8' © ¢ M/Z, isotopic to
xo f(S'). By performing the surgery reverse to the one above, on = o f(S%),
we get S(n)/Z, back again, with

o < S(n)

/!
/

a/S

commutative. Then we have

S L /8 S(n)/ 2 —2s S,
We wish to show that this composition has degree + 1. We may write
o/8" = D"y, 8V Stuy. D'

as above. If ¢; is the (I + 1) cell represented by the left D'*' and e, is the
(I 4+ 1) cell represented by the right D**', then w = (7.)* = 1 so we have
that e, — 2e, represents the generator of H,4;(o/8"). Now let 8" < 8(n)/Z.
be the sphere that was surgered to obtain M/Z,. Then on 8™ = @ and the
geometric intersection of e, with S is 1. Thus the algebraic intersection
(es — 2¢)-8""is —2. But the homology class represented by S'™ is twice
the homology class represented by a fiber P,y . Thus (e; — 2¢;)- Py = —1,
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S0 e, — 2e; representes the generator of H;.1(S(9)/Z;) and consequently
/2" — S(n)/Z — 8"
carries e; — 2e; to a generator of S, It follows that the map above has
degree == 1, and consequently that
v(S(n)/Z2)/o = p.

But then v(M/Zy) /o = v(S(n)/Zs) /o = u, so v(M/Zy) = k't + n*a (Where
K = kork + 2°¢7).

Finally, 7*(a) cannot be fiber homotopically trivial because 7*(a) | ¢ = u,
and it is straightforward to see that u cannot be fiber homotopically trivial
since it corresponds to the generator of KO(S**') under the isomorphism

RO(S' \/ S = RO(s).
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