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COMPACT HERMITIAN SURFACES AND
ISOTROPIC CURVATURE

VESTISLAV APOSTOLOV AND JOHANN DAVIDOV

ABSTRACT. It is shown that on a Ki.hler surface the non-negativity (resp. non-positivity) of the isotropic
curvature is implied by the non-negativity (resp. non-positivity) of the holomorphic bisectional curvature.
The compact Hermitian surfaces ofnon-negative isotropic curvature are described. The full list ofcompact
half conformally flat Hermitian surfaces of non-positive isotropic curvature is also given.

1. Introduction

The notion of curvature on totally isotropic two-planes has been introduced and
successfully used by M. Micallef and J. Moore [20] to study the topology of Rieman-
nian manifolds. Given such a manifold (M, g), extend the Riemannian metric g to a
complex bilinear symmetric form on the complexification TcM of the tangent bundle
of M. The complex linear extension 7",.: A2TCM A2TCM ofthe curvature opera-
tor is then a Hermitian operator with respect to the Hermitian metric (z, w) g(z, -)
on TCM. For any 2-dimensional complex subspace a span{z, w} of TCM,
pM,

(7(z ^ w), z ^ w)
K (cr)

IIz ^ wll 2

is a real number which does not depend on the choice of the basis {z, w}. A complex
subspace V of TCM is said to be totally isotropic if g(v, v) 0 for every v V. If
r is a totally isotropic two-plane, we shall say that K(a) is the isotropic curvature at
r. Since the dimension of any totally isotropic subspace does not exceed 1/2 dim M,
the notion of isotropic curvature is non-vacuous only if dimM > 4.

Micallef and Moore [20] have been able to prove that every compact simply con-
nected Riemannian manifold ofdimension > 4 which has positive isotropic curvature
is homeomorphic to the unit sphere. Their proof suggests that the condition "posi-
tive isotropic curvature" could be useful in studying minimal surfaces in Riemannian
manifolds (in this connection see [22]). Using a different approach, R. Hamilton
15] has recently proved that any compact simply connected four-manifold of pos-

itive isotropic curvature is, in fact, diffeomeorphic to the unit sphere. This is a
consequence of a more general result of his on four-mainifolds of positive isotropic

Received January 19, 1999; received in final form February 15, 1999.
1991 Mathematics Subject Classification. Primary 53C55, 53C25.
V. Apostolov was partially supported by a grant from EPDI/IHES.

(C) 2000 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

438



HERMITIAN SURFACES AND ISOTROPIC CURVATURE 439

curvature which implies a diffeomorphic classification of the manifolds with this
property under the assumption that their fundamental group is trivial, Z2, or Z. Other
interesting classification results for compact Riemannian manifolds of non-negative
isotropic curvature satisfying some additional topological or curvature restrictions
have been also obtained in [21], [25], [26], [27], [31], [33].

Let us note that either ofthe following commonly used curvature conditions implies
non-negative (positive) isotropic curvature [20]: (1) M has non-negative (positive)
curvature operator; (2) the sectional curvature of M is point-wise (strictly) quarter-
pinched. In dimension four, there is a simple necessary and sufficient condition for
positive (negative) isotropic curvature [20], [22]: Denote by r and W: A2TM
A2TM the scalar curvature and the Weyl curvature operator of M. Then M has
non-negative (positive, non-positive, negative) isotropic curvature if and only if the
operator 79 Id W is non-negative (positive, non-positive, negative). In partic-
ular, since W is a traceless operator, every four-manifold of non-negative (positive)
isotropic curvature has non-negative (positive) scalar curvature r; moreover if r 0,
then W 0. (In fact this holds in any dimension [21 ].) The topological significance
ofthe operator 79 on four-manifolds can be seen by means ofthe Weitzenb6ck formula
for 2-forms: for any 2-form we have A V*V + 2P(). In particular, if 79 is
strictly positively defined, i.e., if M is of positive isotropic curvature, then there are
no harmonic two forms on M, i.e., the second Betti number b2(M) ofM vanishes. In
the case that 79 is non-negative, so that M is of non-negative isotropic curvature, any
non-zero harmonic 2-form on M is in fact parallel and thus defines a Kiihler structure
on M (see Section 4).
A simple example of a four-manifold of non-negative (non-positive) isotropic

curvature is the product of two Riemann surfaces: it can be easily seen that the
product metric has non-negative (non-positive) isotropic curvature if and only if the
sum of the Gauss curvatures is non-negative (non-positive). Moreover, on any K/ihler

surface, the condition ofnon-negative (non-positive) isotropic curvature can be nicely
expressed in terms of the scalar curvature and holomorphic bisectional curvature:

=r IDenoting by T’+ the restriction of the operator 79 d W on the bundles A2a:TM
of self-dual and anti-self dual 2-vectors, we have the following result.

PROPOSITION 1. Let (M, g, J) be a Kiihler surface. Then:

(a) The operator 79+ is non-negative (non-positive) ifand only ifso is the scalar
curvature . Moreover, 79+() Ofor a A2+ TtM, 5k O, ifand only if
v(p) 0 or qb is a multiple ofthe Kiihlerforrn of (M, g, J).

(b) The operator 79_ is non-negative (non-positive) ifand only ifthe holornorphic
bisectional curvature H(a’, a") ofany two rnutuallyperpendicularJ-invariant
planes a and a" is non-negative (resp. non-positive). Moreover, 79_ () 0

for a A2__TpM, O, ifand only ifH(a’, a") Ofor anyperpendicular
J-invariant planes a’ and a" which, considered as elements ofAZ_. TpM, are
perpendicular to .



440 VESTISLAV APOSTOLOV AND JOHANN DAVIDOV

It thus follows that compact Kler surfaces of non-negative holomorphic bisec-
tional curvature are all of non-negative isotropic curvature. The former have been
described by A. Horward and B. Smyth 16] and, partially motivated by this fact, we
consider more generally compact four-dimensional Riemannian manifolds (M, g) of
non-negative (or non-positive) isotropic curvature under the condition that the confor-
mal class of g admits a compatible complex structure J, i.e., (M, g, J) is a Hermitian
surface. We use the topological meaning of the non-negativity of the operator 79
explained above together with the Kodaira classification of the complex surfaces to
describe the compact Hermitian surfaces of non-negative isotropic curvature. More
precisely, we prove the following result.

THEOREM 1. Any compactHermitian surface ofnon-negative isotropic curvature
is either biholomorphically isometric to

(1) aflat Kiihlerian torus or
(2) aflat Kiihlerian hyper-elliptic surface or
(3) (C]P gl) x (C g2)for some Hermitian metrics g and g2 on C]P such that

the sum oftheir Gauss curvatures is non-negative or
(4) a unitary flat C-bundle over a compact Riemann surface , ofgenus > 1

with a metric gfor which there exist Hermitian metrics gl on and g2 on CIP
such that g locally is the product g x g2 and the sum ofthe Gauss curvatures

ofg and g2 is non-negative,

or the surface is biholomorphic to

(5) the complex projective space Oil:}2 and the metric is Kiihler, or
(6) a Hopfsurface.

The next remarks are to show that Theorem is the optimal result that can be obtained.

Remarks.

1. There are a lot of Hermitian metrics g gl x g2 on C]P x C]11 ofnon-negative
isotropic curvature. Indeed, let K and K2 be two smooth functions on CIP
such that Ki(x) Ki(-x) for x CIP S2, Ki is positive at some point
xi, 1, 2, and Ks + K2 > 0 everywhere. By a result of J. Moser [23],
there exist metrics gl and g2 in the conformal class of the standard metric
of CIP whose Gauss curvatures are equal to K and K2, respectively. Then
gl g2 is a Hermitian metric on C]P x C]P of non-positive isotropic curva-
ture.

2. Suppose M is a unitary flat Cilia-bundle over a compact Riemann surface E
and g, g2 are Hermitian metrics on E and CIl, respectively. Then M ad-
mits a Hermitian metric g which locally is the product g x g2. This follows
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from the fact that the group PSU(2) is conjugate in PSL(2) to a (maximal)
compact subgroup which contains the group of holomorphic isometrics of g2.

It is well-known that every C-bundle over E is the projectivization P(E)
of a holomorphic vector bundle E of rank 2 over E (e.g., see [2]). By the
Narasimhan-Seshadd theorem [24], M is unitary flat if and only if M P(E)
for a bundle E which is either stable or else the sum of two line bundles over
E of the same degree. Note that, by the Gauss-Bonnet theorem, the Gauss
curvature of the metric g2 on C] is everywhere non-negative (positive if E is
of genus > 1).

3. The Fubini-Study metric on C2 has non-negative isotropic curvature which
vanishes at a point p only on the two-plane associated with the K/ihler form at
p. According to Proposition 1, any Kahler metric on C2 sufficiently close to
the Fubini-Study metric is of non-negative isotropic curvature.

4. It is well-known [7], [8], [28] that some of the Hopf surfaces admit a canonical
conformally flat metric of constant positive scalar curvature [35]. Its isotropic
curvature is positive and suitably deforming this metric and the complex struc-
ture as in 13] one provides plenty of Hopf surfaces with Hermitian metrics of
positive isotropic curvature.

We observe finally that the proof of Theorem in fact shows slightly more: If
a compact complex surface M admits a metric (not necessary compatible with the
complex structure) whose isotropic curvature is non-negative, then M is diffeomorphic
to one ofthe smooth manifolds underlying the complex surfaces described in (1)-(6)
ofthe Theorem 1.

In Section 5 we consider Hermitian metrics of non-positive isotropic curvature. A
simple observation shows that a compact Hermitian surface of non-positive isotropic
curvature must be Kihler (Section 5, Lemma 2). A necessary and sufficient condition
for non-positivity of the isotropic curvature is then given by Proposition 1; it follows
in particular that the isotropic curvature of a compact Hermitian surface can not be
strictly negative. Moreover, Einstein surfaces of non-positive isotropic curvature can
be related via Lemma 2 and Proposition 1 to a still open conjecture of Siu which states
that any Kihler-Einstein surface of non-positive bisectional curvature is a compact
quotient of the complex hyperbolic space (see [32] and [27] for some results in this
direction). Finally, observing that compact anti-self-dual Hermitian surfaces of non-
positive isotropic curvature are in fact conformally-flat (Section 5, Lemma 3), we
use the classification of compact self-dual Kihler surfaces [9], 18], [6], 10], [1] to
give the full list of compact half-conformally-flat Hermitian surfaces on non-positive
isotropic curvature (Section 5 Corollary 1).

Classification results concerning Einstein or half-conformally-flat 4-manifolds of
non-negative isotropic curvature have been given in [21], [33], [27] and [25], respec-
tively. In the particular case of compact Hermitian surfaces, the corresponding lists
can be also easily derived from Theorem 1.
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2. Preliminaries

Let (M, g) be an oriented Riemannian manifold of dimension four. The Rie-
mannian metric g induces a metric on the bundle AaTM of 2-vectors on M by
g(X1 A Xa, X3 A X4) det(g(Xi, Xj)). Identifying AgTM with the dual bundle
(AaTM)* via this metric, we shall consider any operator on AgTM as an operator
on the 2-forms.

The curvature operator is the self-adjoint endomorphism of AaTM defined by

g((X A Y), Z A W) g(R(X, Y)Z, W)

(for the curvature tensor we adopt the following definition: R(X, Y) Vtx, v
[Vx, Vv]). Let r: TM ---> TM be the Ricci operator and r the scalar curvature of
M. Then the operator B: AaTM -- AaTM defined by

B(X A Y) r(X) A Y + X Ar(Y) X A Y (1)

is self-adjoint and traceless. The manifold M is Einstein if and only if B 0. The
Weyl cuature operator W: A2TM A2TM given by

AY
3

is also self-adjoint and traceless and we have the splitting

+ + w.

The Hodge st operator defines an involution on A TM and

1
B (- ,,); (+ ,,) Id.12

The 2-fos of the eigen-spaces ATM and ATM of coesponding to the
1-eigenvalues e called self-dual and anti-self-dual fos, respectively. As a con-

sequence of the ohogonal decomposition A TM A TM A TM, we have the
splitting of W into two (self-adjoint and traceless operators) We (W W).
The (2,1)-tensors coesponding to these operators e invant under confoal
changes of the metric and reversing the orientation of the manifold interchanges their
roles. Also, obsee that the operator B interchanges ATM and A[TM whilee
vanishes on ATM.

An oriented Riemannian four manifold is said m be self-dual (resp. anti-self-dual)
if W_ 0 (resp. + 0).

If {E, E, E3, E4} is a local oriented ohonoal frame of TM, p M, then

(E1 a EE E4), (E1 EE4 E),
z
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t (E A E4-’[-E2 A E3) (3)

is a local oriented orthonormal frame of A2, TM. Moreover, the complex two-plane
cr spanc{E + E2, E3 -i- E4} is totally isotropic and any totally isotropic two-
plane cr possesses a basis of this form Oust take a complex basis z E + E2,
w E3 + iE4 of tr such that Izl Iwl and < z, to >= 0). Assume we are
given such a basis of an isotropic two-plane cr which yields the orientation of TpM.
The isotropic curvature at cr is then given by

+

We also observe that for any non-vanishing self-dual 2-form qb 6 A2+ TpM, there is a

positively oriented orthonormal basis of TpM for which can be written as 4_ inI1
(3). It thus follows that the isotropic curvature is non-negative (positive) if and only
if the operator

T’ gld- W (4)

is non-negative (positive) [20], [22]. In particular, the traceless Ricci operator/3
does not effect the isotropic curvature. Since Trace(W) 0, the isotropic curvature
vanishes identically exactly when 0 and W 0. Also, observe that if the
operator T’ is non-negative, positive, non-positive, negative or vanishes, then the
scalar curvature r is also non-negative, positive and so on. It is well-known that
the operator 79 is noting but the curvature term of the the Weitzenbtick formula for
2-forms on M: For any 2-form 4 we have

Ab V*Vb + 2P(b) (5)

where V is the Levi-Civita connection, V* is the formal adjoint operator of V and A
is the Laplacian of (M, g).

Finally, recall that the so-called .-scalar curvature v* of a Hermitian surface
(M, g, J) is defined by

4

* y g(R(JEk, EI)JEI, Ek)
k.l=l

where Ej is an orthonormal basis. By the first Bianchi identity we have

v*
1- g(R(E, JE)E, JE)

k.l-1

Denote by (X, Y) g(JX, Y) the Khler form of M. It is well-known (e.g.,
see [36]) that df w/x f where m -f o J is the Lee form of M and the scalar
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and ,-scalar curvatures are related by

r r* 2&o + Ilwll 2

Note that on a Kahler surface we have

(6)

3. Proof of Proposition I

(a) It is well-known that the eigenvalues of the operator l/V+ on a Kihler surface
r r This fact, which can be traced back to 11 ], can be seenM are equal to ?,, 12, l"

as follows: Let J be the complex structure ofM and El, E2 JEl, E3, E4 JE3
an orthonormal frame. Define bl+, b2+, b3+ by (3). Then the decomposition (2), the
Kihler curvature identities and the first aianchi identity imply that b., (2+, (3+ are
eigenvectors of )/V/ corresponding to the eigenvalues g, 12,-" Thus q., b2+,
43+ are eigenvectors of the operator 79+ corresponding to the eigenvalues 0, X, X. In
our notation fb. is the the Kfihler form of M. In particular, on a Kler surface,
the operator 79+ is non-negative (non-positive) if and only if the scalar curvature v is
non-negative (non-positive); moreover, "P+(a) 0 for a a A2+TpM, tr O, if and
only if r (p) 0 or cr is a multiple of the K/ihler form, which completes the proof of
Proposition 1 (a).

(b) Let a’ and a" be two perpendicular J-invafiant tangent planes at a point
p E M. Take an orthonormal basis {El, E2 JEl, E3, E4 JE3 of TpM such
that a’ spanR{E1, E2}, a" spanR{E3, E4} Let 4 1 2, 3, be define by (3).
By the first Bianchi identity and the Kihler curvature identities we have

2H(a’,a") 2R1234
2(R13 + R14)

g(z( + _), + _) +g(( + 3_), + 3_)

where H(., .) is the holomorphic sectional curvature, Rijkl g(R(Ei, gj)Ek, Et)
and Rij Rijij. Since the Ricci tensor of a Kler surface is J-invariant, formula (1)
implies

g((), _) o, g((), _) o.
Now, using (2) and the fact that q2+ and q3+ are eigenvectors of W+ corresponding to
the eigenvalue , we obtain

2H(a’,a")
r
+ gO/V_(2), 2) + gO/V_(t3), t3)- g(W_(,_),

g(,_(,’_), _)



HERMITIAN SURFACES AND ISOTROPIC CURVATURE 445

Thus if 79_ is non-negative (non-positive), so is H (tr’, tr"). To prove the converse,
take qb A2 TpM, O. Then the formula

g(KX, r) -4,(X, r), X, r TM
defines a complex structure K on the vector space TpM compatible with the metric
g and the opposite orientation of TpM. Since J yields the orientation of TpM,
the operators K and J commute. Then Q KJ is a symmetric operator whose
eigenvalues are equal to 4-I. Let E and E3 be unit eigenvectors corresponding to
the eigenvalues l and +l, respectively. Thus JE KEl and JE3 -KE3. Put
E2 JE E4 JE3 and define b/.. 2, 3, by (3). Then @_ Taking theII
planes tr’ spanR El, JE and tr" spana E3, JE3 }, we have

g(T’_(q), b) lbl2g(T’_(b_), b_) 21q12H(tr’,

and Proposition follows, r-1

4. Proof of Theorem I

Here and in the sequel we shall need the following result.

LEMMA 1. Let (M, h) be a compactfour-dimensional Riemannian manifold and
g a Riemannian metric in the conformal class of h with (everywhere) non-negative
or non-positive isotropic curvature. Then:

(a) The metrics h and g cannot have isotropic curvatures ofopposite signs.
(b) If (M, h) is a Kiihler surface, the metric g is homothetic to h.

ProofofLemma 1. Let g q92h for a smooth positive function o. Denote by
and rh the scalar curvatures of g and h. Then (e.g., see [3])

3g 6Ahtp + .t,h (7)

where Ah is the Laplacian of h. Since the Weyl tensors of g and h coincide and
g 4h on A2TM, the corresponding Weyl operators )/Vg and Wh are related by
Wg o-2Wh. Therefore if 79g and 79h are the operators defined by (4), then

g -3Ah. Id + qg-2h

Thus for b A2TM, b 0, we have

Ahtp q93g(b, )-l (g(79g(b) b) qgEh(79h (b), b)).

(a) If h and g have isotropic curvatures of opposite signs, then Ah >_. 0 or

Ah0 < 0, hence tp const by the maximum principle for sub-harmonic functions.
(b) If (M, h) is a Kihler surface, then T’h (b) 0 for the Kler form p of (M, h).

It again follows that Ahtp >_ 0 or Ahq9 < 0, hence tp const.
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ProofofTheorem 1. Let (M, g, J) be a compact Hermitian surface of nonnega-
tive isotropic curvature. Since 79 >_ 0 and Trace(W) 0, we have r >_ 0; moreover
if r 0, then W 0, i.e., M is conformally flat.

Suppose 0. Then the classification of compact conformally flat Hermitian
surfaces due to C. Boyer [7], [8] and M. Pontecorvo [28], and Lemma imply that M
is biholomorphically isometric to one of the surfaces listed in the cases (1), (2), (4).
Now assume 0. It is well-known that the sign of the scalar curvature is an

invariant of the conformal class of g, called its type (this follows from (7)). So, in our
case, (M, g) is of positive type. Then, according to 12] (also, see 1, Lemma 3.3]),
all plurigenera of M vanish, i.e., M has Kodaira dimension -cx. As usual, denote
by b- (M), resp. b- (M), the dimension of the space of self-dual, resp. anti-self-dual,
harmonic two-forms on M. We have to consider the following cases:

(1) b-(M) 0, b(M) 0. It is a well-known result of H.Grauert that every
compact complex surface can be obtained from a minimal one by successive blowing
ups (e.g., see [2]). It is also well-known that a blowing up at a point decreases b(M)
by one and does not affect bl (M),b(M) and the Kodaira dimension. Since b- (M)
0, we infer that M is minimal. Then, by the Kodaira classification ofminimal surfaces
(e.g., see [2]), M is rational, of class VII or ruled of genus >_ 1. But, among the latter
surfaces, only those of class VII have b(M) 0. Thus M is a minimal surface
of class VII. Hence bl (M) 1, so c2(M) X (M) 2 2bl (M) bE(M) 0
and c21(M) 3(b-(M) b(M)) + 2c2(M) 0. Therefore, by the Bogomolov
theorem [4], [5] (e.g., also see [34]), M is biholomorphic either to a Hopf surface
or to an Inoue surface. Suppose M is biholomorphic to an Inoue surface. It is a
consequence of the considerations in [37] that every Inoue surface is finitely covered
(at most doubly) by a solvmanifold S, i.e., a compact quotient of a solvable Lie group
by a discrete subgroup. The lift on S ofthe metric g has non-negative scalar curvature.
By a result of M.Gromov and H.B.Lawson 14, Theorem A (and Corollary 4.4)] any
metric of non-negative scalar curvature on a solvmanifold is Ricci flat, in particular is
scalar flat. Thus, ifour surface M is biholomorphic to an Inoue surface, we have r 0
while we have assumed r 0. Therefore M is biholomorphic to a Hopf surface.

(2) b-(M) 0, b(M) > 0. Since b-(M) > 0, M admits a non-zero harmonic
anti-self-dual form b. By the Weitzenb6ck formula (5),

By hypothesis, g(79(q), b) > 0; therefore Vq 0. Then the formula

g(KX, ) ,77"7,,,(X, Y), X, r TM,

defines a complex structure which is Kihlerian with respect to g (and yields the
opposite orientation of M). Hence bl (M) is an even number, i.e., (M, J) is of Kihler
type and then b-(M) 2pg + > 0 where pg h’ is the geometric genus, a
contradiction.
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(3) b-(M) > 0, b" (M) 0. In this case (M, g) admits an orthogonal Kihler
structure I compatible with the orientation of M. We claim that I 4-J. This
fact is an immediate consequence of the more general result [29, Prop. 3.1] and the
assumption 3 0, but we prefer to re-prove it in our particular situation. As we
have already mentioned, the operator W+ has eigenvalues g, 12, 2" Thus, at
each point p M, either Spect(W+)p 2 or 3(p) 0. In particular, the set U of
points where Spect(W+) 2 is open. It has been observed by A. Derdzinski [10]
and S. Salamon [30] that if Spect(W+)p 2 at a point p, then, up to sign, there is
only one complex structure on TpM compatible with the metric. Hence Jp -4-1p.
It follows that, on each connected component of the open set U, either J I or
J -I. Thus (g, J) is a Kihler structure on U, hence 3 3" on U. If p M \ U,
then 3(p) 0 and we have (’l,V+)p 0 since 79+ gld I/V+ is a non-negative
operator and Trace(W+) 0. It is well known that g(W+(f2), f2) 3r*-r where6
f2 is the Kihler form of (M, g, J) ([7, Lemma 2, 2)]) and (6), Section 2). Therefore
3" 3 0 on M \ U. Thus 3 3" 0 at each point of M and, by (6), we have
2&o + I1oll 2 0 where o9 is the Lee form of (M, g, J). Integrating the latter identity
on M, we see that o9 0, so (M, g, J) is a K/ahler surface. Since the Kihler forms of
both I and J are parallel, we conclude that I 4-J everywhere on M. Now, since

b- (M) 0, the signature cr (M) of M is positive, hence M is biholomorphic to C2

by the Kodaira classification.
(4) b-(M) > 0, b-(M) > 0. In this case (M, g) admits two Kihler structures

I and K one of which, say I, yields the orientation of M and the other one yields
the opposite orientation. The latter property of I and K implies that the operators I
and K commute. Since we have assumed that 3(p) -7/: 0 for at least one point, we
can then see as above that (g, J) is a Kihler structure and J 4-1. For any Kihler
surface of Kodaira dimension -oo, we have b(M) 1. Similarly (M, g, K) is a
Kihler surface and we infer that b-(M) 1. Thus the signature cr (M) 0 and,
by the Kodaira classification, M is biholomorphic to a ruled surface. Moreover,
since J commutes with K, it follows that M is locally biholomorphically isometric
to the product (M, g) x (M, g2) of two Riemann surfaces ("folklore"). Indeed,
the endomorphism Q JK is parallel, Q2 Id and Q 4-Id at each point.
Therefore the (real) tangent bundle ofM splits into two orthogonal vector sub-bundles
of rank 2 corresponding to the eigenvalues 4-1 of Q. They are J-invariant and are
invariant under parallel transport which implies our claim. If M is a ruled surface
of genus 0 (i.e., a minimal rational surface), then M is simply connected, hence it is
globally biholomorphically isometric to the product of two Riemann surface. Each
of these surfaces is compact and simply connected, hence biholomorphic to CI?1.
Now assume that M is a ruled surface over a compact Riemann surface E of genus
> 1. Then M is the projectivization P (E) of a holomorphic vector bundle E of rank
2 over ]2 (e.g., see [2]). It is well-known that the universal covering of M can be
constructed in the following way" Let zr" X E be the (holomorphic) universal
covering of E. Then X is either the complex plane C or the unit disk A in C,
hence the pull-back bundle zr*E over X is (holomorphically) trivial. Thus we have



448 VESTISLAV APOSTOLOV AND JOHANN DAVIDOV

a trivialization map : X x CI? -- zr*P(E) and composing with the canonical
map rr*" rr*P(E) - P(E) we get a covering map X x C -- P(E) M.
Denote by , the pull-back on X x CI? of the metric g on M. By the preceding
considerations, there is a biholomorphic isometry F (F, F2) of (X x C, )
onto the product (M, g) x (M2, g2) of two Riemann surfaces. Both ofM and M2
are simply connected, so each of them is the unit disk A, the complex plane C or the
complex projective line C]. Obviously at least one of M and M2, say M, is not
compact, so M A or M C. Then F does not depend on the CI-vadable
by the maximum principle. It follows that M2 C]. We also have M1 A if
X A and M C if X C in view of the Liouville theorem. Therefore X M
and (X x CI1, ) is biholomorphically isometric to (X, g) x (C1, g2) where g
and g2 are Hermitian metrics. The sum of their Gauss curvatures is non-negative
since is of non-negative isotropic curvature. Every holomorphic automorphism F
of X x CI?has the form F(z, w) (tp(z), ap(z, w)). If F is a deck-transformation
of the covering (X, g) x (C, g2) (M, g), then F leaves the metric g x g2

invadant. It is easy to see that this implies that (z, w) does not depend on z. Hence
tp leaves g invariant. If h is a deck-transformation of the covering X -- E, then
h(z, w) (h(z),m), (z,m) E X x P(E), is a biholomorphism of zr*P(E) and
oo- is a deck-transformation ofX xC ofthe form (z, w) - (h(z), (w)).
Therefore g is invadant under every deck-transformation h of the coveting X - E.
Thus g descends to a (Hermitian) metric on E.

To show that M P(E) is a unitary flat Cl-bundle, we shall use arguments
suggested in essence by C. LeBmn. The homotopy sequence for the bundle M
P(E) Z, gives an isomorphism zr(M) zq(E), so zr(E) can be considered
as the group of deck-transformations of the covering X x C -- M. Thus zr (E)
acts on X x CI’ by holomorphic isometries (z, w) - (tp(z), ap(w)) of g x g2

where z - o(z) is the action on X of zr (E) considered as the group of deck-
transformations of X - E. Denote by p the representation of zr (E) defined by
w - (w). Then M is isomorphic to the bundle X x, C’1 - E associated to
the principal bundle zr" X -- E by means of the representation p, the holomorphic
isomorphism being given by [x, w] - zr*o(x, w), (x, w) XxC. The group of
holomorphic isometries of g2 is a compact subgroup of PSL(2), hence it is contained
in a maximal compact subgroup of PSL(2). This subgroup is conjugate to PSU(2)
by a biholomorphism f of CI. Thus the representation fpf- of zr (E) takes its
values in the group Psu(2); therefore the associated bundle X xf,f- C admits
a flat projective unitary connection. But the latter bundle is (biholomorphically)
isomorphic to the bundle X xC by the map [x, w] - [x, f- (w)]. E!

5. Non-positive isotropic curvature and half conformally fiat surfaces

In this section we describe compact half conformally flat Hermitian surfaces of
non-negative isotropic curvature.
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We start with the following general observations"

LEMMA 2. Any compact Hermitian surface whose operator 79+ Id W+ is
non-positive is Kiihler.

Proof. Denote by 2 the Kahler form of such a surface. As already mentioned in
the preceding section, we have g(W+(2), f2) 3*-. hence g(79+(f2) 2) r-r_.._.L"

6 2
Thus z r* _< 0 and the identity (6) implies to 0, i.e., the metric is Kihler.

LEMMA 3. Any compact anti-self-dual Hermitian surface of everywhere non-
positive isotropic curvature is conformallyflat.

Proof. If the isotropic curvature is non-positive, then the surface is Kihler ac-
cording to Lemma 2, hence the scalar curvature identically vanishes (since the
metric is anti-self-dual). Therefore 79 < 0 implies W 0. E]

As a direct consequence of Lemmas 1, 2 and 3 and the classification of compact
self-dual Kihler surfaces [9], [18], [6], [10], [1], we obtain the following result.

COROLLARY 1. Let M be a compact half conformally fiat Hermitian surface of
non-positive isotropic curvature. Then it is biholomorphically isometric to one ofthe
following surfaces:

(i) aflat Kiihler torus;
(ii) aflat Kiihler hyper-elliptic surface;
(iii) a unitary flat C]l-bundle over a Riemann surface )2 ofgenus > 2 with the

conformallyflat Kiihler metric which locally is the product of(+ 1)-curvature
metric on CI and (-1)-curvature metric on ;

(iv) a compact quotient ofthe unit ball in C2 with the Bergman metric.
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