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RANDOM STOPPING PRESERVES REGULAR VARIATION
- OF PROCESS DISTRIBUTIONS

By PrisciLLA GREENWOOD AND ITREL MONROE
University of British Columbia and University of Arkansas

Let S, be a stochastic process with either discrete or continuous time
parameter and stationary independent increments. Let N be a stopping
time for the process such that EN < co. If the upper tail of the process
distribution, F, is regularly varying, certain conditions on the lower tail
of Fand on the tail of the distribution of N imply that limy.. P(Sx > »)/(1 —
F(y)) = EN. A similar asymptotic relation is obtained for sups Sy, if 7
is discrete. These asymptotic results are related to the Wald moment iden-
tities and to moment inequalities of Burkholder. Applications are given
for exit times at fixed and square-root boundaries.

1. Introduction. If a random walk S, = X 7, X,, where the X, are independ-
ent, identically distributed random variables, is evaluated at a stopping time N,
the resulting random variable S, satisfies a family of identities called Wald’s
equations. For instance ES, = EX,EN and, if EX, = 0, ES,” = EX;EN when
appropriate moments are finite. The identities arise from a family of polynomial
expressions in n and S, which form martingales in » and when stopped at N have
zero expected value. They have been obtained for random walks by Chow,
Robbins and Teicher (1965), (1966), for martingales by Brown (1969), and for
processes with stationary independent increments by Hall (1970) and recently
by Athreya and Kurtz (1973) using Dynkin’s formula. From these identities
and Holder’s inequality one can derive certain of the stopping time moment in-
equalities of Burkholder and Gundy (1970). Anexample is computed by Athreya
and Kurtz. On the other hand, such a moment inequality may give improved
moment conditions under which Wald’s equations hold. Hall gave an example.

This paper concerns the relation of the asymptotic properties of the distribu-
tions of S, X;, and N when 1 — F(y) = P(X; > y) is regularly varying. Green-
wood (1973) found asymptotic conditions on the joint distribution of S, and N
equivalent to

(1) lim, .. P(Sy > ))/(1 — F(y)) = EN .

Here we give conditions on F and the distribution of N viewed separately which
imply (1). Under these conditions, if Sy, is replaced by sup,.y S,, (1) remains
true. If Sy* = sup,.y |S,|, Burkholder and Gundy’s (1970) relation c, EN*? <
ES,** < C,EN?”, holds for random walks S, if EX, = 0, EX;* = 1, with 0 <
p = 2, and with any positive p if S is Brownian motion. By analogy, we expect
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that when relation (1) holds, the condition that P(N > y) decreases like y=?/
should correspond to the condition that P(X, > y) decreases like y=?. This ex-
pectation would be supported, alternatively, by the observation that Wald’s equa-
tions for ES,? contain powers of N up to N*”* for integral p.

We find, in fact (Theorems 1 and 2), that if P(j(1 >y) ~y?, P(N>y) =
o(y~"),r > p/2, EX, = 0,and F(—y) = O(y~?) then (1) holds. Ifinstead F(—y) =
O(y~7) where g < p, relation (1) still holds if P(N >y) decreases rapidly enough.
Corollary 1 says that S, may be replaced by sup,., S, in the foregoing.

For processes with EX, == 0 we expect a different answer. If F1) =0, for
instance, then S, > N and P(S, > y) = P(N > y). If P(Sy > y) is O(y~?) then
sois P(N > y). We find that (1) holds under the above 'hy‘potheses if the condi-
tion on N is strengthened to P(N > y) = o(y™"), r > p > L.

Limit theorems for ratios of tails of measures have been obtained by Chover,
Ney and Wainger (1973) and by Rudin (1973). Their results are related to ours
for stopping times N which are independent of the process S,. They are stronger
in some respects and weaker in others.

A result of Monroe (1972) implies that for a strictly stable process S,
lim, ., P(S, > y)/P(S, > y) = ET if T is any stopping time such that E7 is finite.
Corollary 2 extends this property to other processes with stationary independent
increments whose Lévy measures v satisfy v(y, o) ~ y=”.

A straightforward argument extends the results from P(X, > y) ~ y~? as written
to P(X, > y) a regularly varying function. Possibly results similar to these can
be proved for processes with distribution functions in the subexponential class
discussed by J. Teugels (1975).

Sections 4 and 5 contain applications to boundary-crossing times and a dis-
cussion of some remaining problems.

2. Dominant terms and sums of truncated terms. The asymptotic property
of the distribution of S, arises from just one randomly determined summand
which dominates the sum. This becomes apparent already in the following
lemma.

The notations f(y) ~ g(y), f(y) < 9(y) mean that lim . f(y)/9(y) = 1,
lim sup,_.. f(»)/9(y) < 1, respectively. By 4’ we mean the complement of A.

LemMMA 1. Let Ay(b), Ay(b) be two parameterized families of Borel sets in R* such
that A(b) > R'*as b— oo, i =1,2and A’ n A = @ for each be (0, o). Let
T(b) = min{n: X, ¢ A,(b)}, i = 1,2, and Tyb) = min {n > Ty(b): X, ¢ A,(b)}.
Suppose P(X, ¢ A,(b)) ~ b, P(X, ¢ Ay(b)) = O(b™7) as b — co. Let N be a stop-
ping time such that EN < co and P(N > n) = o(n™") as n — oo for some r = 1.
Then as b — oo, ‘

i. P(Ty(b) < N) ~ b7 ?EN,
ii. P(Ty(d) V Tyb) < N) = o(b~r-atirvarr),
iii. P(Ty(b) £ N) = o(b7¥+7/),

Proor. i. Each X, is independent of X;, j=1, -..,n — 1 and the event
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(N = n) so that
P(Ty(b) £ N) = X7, P(n = minj: X; ¢ A,(b), N = n)
= T P(X, ¢ AB)P(X; € A(b), j < n, N = n)
< P(X, ¢ A(b)) L5 P(N = n) ~ b7EN .
Also,
P(T(6) = N) 2 b7 55, (P(N 2 n) — P(Ty(5) < m) V 0.
The sum converges to EN by dominated convergence since each term increases

to P(N = n) as b — oo.
ii. We suppress the b and write

T, VT,=N)=PT, <T,=N)+ PT,<T, =N)
=I4+1I.
It is sufficient to study
I=Yo (T, T, = N|T, = m)P(T, = m)
= Y2 Yo P(T,=m+n< N|T, = m)P(T, = m)
S X1 Do P(Xoin @ Ax(0), X5 € Ax(D),
m<j<m+n=<N|T,=mPT, =m).
As in i, the event determined by X,, ., is independent of the others. We have
IS0 Tia PN Z Ty 4 n) = 07E(N — T, N> T)).
If r =1, since E(N,N > T,) - 0 we have I = o(b7%). Similarly IT = o(b7?).
Finally
I+ IT = o(b-7"7) = o(b-?-1+?V1)
In the case » > 1, for any ¢ > 0 one has
E(N—T,N>T)< EN,N>eb?r) + E(N, T, < N < ¢b*)
= [eb”7]P(N > eb®") + Fi_teomr) P(N > 1)
+ eb?"P(T, < N) .
Since P(N > n) = o(n"), the first two terms are o(b~?*?'"), while by i,
eb?"P(T, < N) < eb~?+?"EN .

But ¢ is arbitrary, so I = o(b~*"?*?/").. For T, the proof of i gives P(T, < N) <
b=7EN. The above computation results in an asymptotic bound for /7. Finally
P(T1 \V T2 < N) — o(b—p—q+p/r) + o(b—q-p+q/r)

— o(b—-p—-q+(pvq)/r) .

If T, is replaced by T, in the proof of ii, II is zero and iii follows.

In proofs using truncation the outer part pruned off is commonly discarded
while the remaining truncated portion is essential. Here just the opposite happens.
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The previous lemma will give the limiting value in (1) from outer portions of
the X, while the following lemma will show that the inner parts can be discarded.
We use a distribution inequality of Burkholder (1973, 21.2),

) P(f* > BA, s(f) v d* < 81) < PS>0, 2>0,

52
E—o-1)
where f is a martingale, f* = sup,|f,| its maximal function, s(f) =
(T E(d? | F o))t dy, = fy, — fi—i. Burkholder obtains a moment inequality
from (2) by integrating. We iterate the distribution inequality to obtain a bound
on the tail of the distribution of f* in terms of that of s(f) with the d, truncated.
The lemma is stated in the particular form needed later.

LEMMA 2. Let X;, i = 1,2, ... be a sequence of independent, identically dis-
tributed random variables. Let p, = E(X,, | X;| < b). Let Y (b) = X, — p, if |X;| £ b,
otherwise Y,(b) = —p,. Let a,® denote the variance of Y,(b). Let N be a stopping

time for the sequence {X,} such that P(N > n) = o(n~") for some r > 0. Let Q, =
2NY,, and Q% = sup, |Q,|. If s >0, ¢ >0, then

P(Q* > eb*?) = o (b-0+7g ) as b— oo.

Proor. We have arranged that EY, = 0 and |Y;| < 25. In (2) let f be the
martingale Q,. Then s(f) = Nig,, d, = Y, Iy, and (2) implies

P(Q* > BA, Nia, v Y* < 31) < (ﬁ?—za)zl’(Q* >, 1>0.
Let 2 = b, § = 3. Then
P(Q* > 3b) < ZZ_%P(Q* > b) + P(Nta, vV Y* > 3b) .

Iteration produces for any integer i,

52

PO* > 3%) £ 0

P(Q* > 3-1%) + P(Nig, v Y* > §3¢-1)

IA

IA

0
2 -0

2(k—1) )
+ Tha(yts) (PO > @53k,
+ P(Y* > 0b3"F)) .
Let i be the largest integer < (loge + slog b)/log 3. Then 3¢ < eb* < 3**! and
0" = exp(2ilog 0)
< exp((2log e + 2slog b) log d/log 3)

-— H2slogd/log3,2logelogd/logs
= (4 .

Choose ¢ > 0 so that 2slogd/log3 < —(1 + s)2r, and so that §* < (2.3%)"1.
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Then §% = o (b~"+) as b — oo, since e?!oscloed/loes js constant. We have
P(Q* > eb'*) < P(Q* > 3'b) , , ' ' ,

é 0(b—2'r(1+8)) + Z?ﬂ:l 52(11:—1)[0((5b3i—k0b—l)—2r) + P(Y* > 5b3z—k)]

§ 0(b—2r(1+3)) __I_ 0((6b3iob—l)—2r) Z?c:l 62(11:—-1)321‘]1:

4+ 3, 52”‘"1’1’()’* > 5b3i—k) .

The sum in th‘e-second term is bounded as i — oo, by choice of d. Because
|Y] < 2b, the last sum has a finite number [ of terms, / depending only on 4.
The last term, then, is bounded by a multiple of 6%. Since ¢* = o (b~*r*+), g,

is bounded away from zero as b — oo, and 3¢ ~ ¢b°, all three terms are of .the
desired order.

3. Stopped random walks and Lévy processes. Lemma 1 could have been
written for X; having distribution F with arbitrary asymptotic properties. Lemma
2 is distribution-free with respect to the X; if the second moment is finite. To
obtain (1) we assume that 1 — F(y) ~ y=?. The reader familiar with the theory
of regularly varying functions will see that 1 — F(y) could be regularly varying
as y — oo. Whether the following theorems can be extended to F with other
asymptotic properties we do not know.

THEOREM 1. Let X, i=1,2, ... bea sequence of independent, identiéally dis-
tributed random variables such that P(X, > y) ~ y=?, some p > 0, and P(X; < —y)y*
is bounded, some q > 0. Let N be a stopping time for the sequence such that
P(N > n)=o(n"), wherer > 1,r > plg,r = p/2. IfEX, = p+ 0, assumer = p.
Then

P(RX, X, >y) ~y?EN as y—oo.

Proor. Let u, = E(X,, |X;| £ b), Y, =X, — p, if |X;| £ b, otherwise Y, =
—tys Z; = X, — Y,. We replace y by b'+7? where 5 > 0 will be chosen later.
Given 1 > ¢ > 0, we have the two inequalities

(3)  P(TIL X, > 00) = PN, Z, > (L + ebi™) — P(DL, ¥, < —eb*)
and

(@) P(ELX >0 S PR Zo > (1 — ™) + P(UL, Y, > b))
We have assumed r = p/2. If p A ¢ > 2, ¢, in Lemma 2 is bounded and

®) P(|ZL Y| > eb'7) = o(b=+77) .

If p A g =2, 0= O(log b) and the left side of (5) is o(b-"+7* log" b). Either

p=2andr > 1 implies 2r > p, or g = 2and r > p/qg = p/2 implies 2r > p. In
both cases o (b~**7* log" b) can be replaced by o(b=-**7?). If p A g < 2,

0 <\, X dF = O(b7"7) .
From Lemma 2 the left side of (5) is o (b= *+n¥p¥r—wr0r) — o (p~2r1+@rar). The

condition “r > 1 and r > p/q” is equivalent to the condition r(p A q) > p. Since
also 2r > p, the left side of (5) is o (b~ *+7?),
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Under our hypotheses on p, ¢ and r, it will be shown that one can choose
n > 0 so that

(6) P(RY,Z, > (1 —e)bt7) < (1 — &)~ h~ M DPEN 4 o (b~1477) .
Let A(b) = (— o0, b], Ayb) = [—b, oo) inLemma 1. Choose 0 < 7 < 1 — 1/r.
The event on the left in (6) can happen in three ways. A calculation similar to
(4) gives, for 0 < ¢ < %,‘
P Z > (1 — b)) < P(Npy > ¢(1 — €)b'*)
~ + P(X;, > (1 — &b, T, < N) + P(T, < N).

By choice of » and Lemma 1, P(T; < N) = o(b~**7?). As in the proof of
Lemma 1,

P(Xp > (1 — )0™1, T, < N) < (1 — )b +02EN .

The term containing g, is 0 whenever g, = 0. Otherwise, P(Ny, > ¢(1 — €)b'*7) =

0|6+,

If 0 < [p] < oo, (6) is evident from the hypothesis r = p. If pA g > 1 and
r=0, \ |

1] = |1t — ol = Sass [¥| dF = OB 77 ) .
Ifprg<1,
13| < Siaiss [X] dF = O(b*=71)

In these two cases, P(N|uy| > e(1 — €)b'*7) is o (b~"7+?~0). Since r(p A q) > p,
one can choose » so small that r(y + p A q) > (y + 1)p, and (6) follows. If
pAgq=1, then |g,| = O(log b) and P(N|u,| > e(1 — ¢)b*+7) is o (b="**7(log b)")
which is o (b=**7?) since p=1 < ror p/g=p<r.

Finally, we need a lower asymptotic bound like (6). For each § > e,

P(ZILZ > (1 + e)br)
= P(Xp, > (1 4 0)b"7, T, < N) — P(Npy, < —(8 — e)b'*7)
— P(T, v T, < N)
> (1 + 8)~Pb=U+1PEN — o (b=+1») — o(h-p-a+zvar) |

The same arguments as above apply to the first and second terms. If p < g,
choose 7 > 0sothat —p — g + q/r < —p(1 + 7). If p > g, choose 7 so that
—p —q + p/r £ —p(1 + ). This is possible since we assume —q + p/r < 0.
We have

(1) P(DILZ, > (1 + )b+r) > (1 + 8) b-U+DPEN — o(b=0+77) ,

The proof is finished by combining statements (3) through (7).

The following result for the case r = 1 does not involve Lemma 2. If p < 2,
much of the information in Theorem 1 for r > 1 can be obtained as in the proof
of Theorem 2.
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THEOREM 2. Let X, be a sequence and N a stopping time with associated parameters
Ps 9, and r as defined in Theorem 1. Suppose thatp < q,p < 2,r = 1, and EN < oo.
In addition suppose that p < 1, or that E(X,, |X,| < b) = p, is bounded if p =1,
or that EX, =0 if p > 1. Then

P(3L X, >y)~y?EN  as y—oo.

Proor. We will choose a function 5(b) which increases to infinity slowly as
b — co. Expressions (3) through (7) will hold with 4'+7 replaced by by(b). For
(3) and (4) this is immediate. A martingale inequality and Wald’s equation give

P(sup, | 5L Yl > ebp(b)) = E(LiL, Yi)'/(ebn(b))?
= ENEY*/(by(b))* .
Under the restriction that p < 2, EY,;> = O(b*-?). For this range of p we have
the more general version of (5),

CY) P2 Yl > eby(b)) = o((bn(6))™) ,
for any 7(b) which increases to co as b goes to oo.

To obtain (6) and (7) with by(b) replacing b'+? we choose 7(b) so that P(T, < N)
and P(T, v T, < N) are o((by(b))"*). Lemma 1 says this is true if »(b) <
((P(Ty = N)VP(T, VT, = N)).b*)" and A,(b) = (— o0, b], Ay(b) = [—b, o).

To complete the proof of (6) and (7) we must verify that
®) PNl > e(1 = )bn(5)) = o((br(8))™) -

Choose 5(b) so that
P(N > b) = o((b7())™) -
For instance, in addition to the above conditions on 7(b) suppose n(b) <

(bP(N > b))~t. If p = 1 and p, is bounded then |g,[~'b7(b) is eventually >b, so
that

P(N > || 709(0)) = o (|s|[6m(B)n(|1]707(5))]7)
= o(lrlo™n(6)7?) -
If p > 1 and EX; = 0, we have |¢,| = O(b'~?) as in the proof of Theorem 1, and
(8) follows. If p =1 and g, is bounded, (8) follows. If p < 1, again |g,| =
O(b'?). We need only use P(N > b) = o(b7?) to obtain
P(Nes| > byp(8)) = o ((|exs]~b7(8))™)
= o((b(6))™) = o ((b7(6))™?) -
CoROLLARY 1. Let X; be a sequence of random variables and N a stopping time
as in Theorem 1 or 2. Then

lim,_, P(sup, Sy,, > y)y* = EN
and
P(sup,cy S, > y) ~ P(Sy > ) -
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PRrOOF. Since sup,cy S, = Sy, we need prove only the < part of the equality,
for which we require appropriate versions of (4), (5) and (6). Instead of (4) we
have

P(sup,<y S, > » = P(sup,<y 27, Z; > (1 —e&)y) + P(SupnsN 2 Y, > €y) .

Replace y by b'*7 or by(b) if p, g, r are related as in Theorem 1 or 2, respectively.
Lemma 2 or the argument for (5’) in Theorem 2 gives

P(sup,sy 211 Y > &) = o(y7?)
where y = b'*7 in the former case and y = by(b) in the latter. The argument

for (6) also applies intact if sup,_, Y7, Z, replaces Y¥, Z,, in both Theorems
1 and 2.

COROLLARY 2. Let X, be a process with stationary, independent increments with
Lévy measure v such that v(y, c0) ~ y=*, some p > 0, and y(— oo, —y) = O(y™9),
some q > 0. Let T be a stopping time for the process X, such that P(T > s) = o(s™"),
and p, q, r are related as in Theorem 1 or 2. Then

lim,_ P(X, > y)y?» = ET.

PRrOOF. Suppose that X, is adapted to the increasing family of o-fields ..
Let ¢ >0, Y, = X,., N = integral part of (1 + T/¢). Then Y, is a sum of
independent random variables distributed like X.. By a theorem of Feller
(1969), P(X, > y) ~ ¢y~*. An examination of Feller’s proof reveals that also,
P(X. < —y) = O(y™9). (A minor correction is necessary.) Further, Nisa stop-
ping time for {Y,,, &, }. If § = Ne — T, then 0 < & < e. Under the condition
that T takes a certain value 7, W, = Y, — X, has the same distribution as X .
where & = ¢[1 + t/e] — t < . The hypotheses on T and v allow us to obtain
from Theorem 1 or 2,

© lim, .. P(Xy, > y)/P(X, > y) = ENe.
As ¢ — 0, Ne converges to T and ENe — ET. Since Xy, = W, + X,, if 6 > 0,
(10) P(Xy. > ) = P(W: > yd) + P(Xy > y(1 —3)).

From the above information about & and W, we obtain
lim sup, .., P(W, > yd)y* = limsup,_., {¢ P(W, > yd|T = )P(T e dr)y®
< e07?.
Multiply (10) by y* and let y — oo to see that
ENe < €67% + (1 — 0)~? liminf,_ P(X, > y)y”.
First let ¢ — 0 and then § — 0 to conclude that
ET < liminf,__ P(X, > y)y*.
By a conditioning argument similar to the above,

PXy. >y) = P(X, > (1 + 0)y)P(supyg,<. |Xi| < dy);
ET =z (1 + 9)~7 limsup, ., P(X; > y)y®.
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4. Applications. The stopping times which arise most frequently are bound-
ary-crossing times. We state here asymptotic results for S, which are immediate
corollaries of Theorems 1 and 2 using known asymptotic rates for the distribution
of N, where N is the exit time at a fixed one-sided or two-sided boundary or at
a two-sided square-root boundary. Similar results for sup,, S, and for Lévy
processes can be obtained from Corollaries 1 and 2.

COROLLARY 3. Let S, be a random walk such that P(X, > y) ~ y~* and
P(X, < —y) = O(y~?) for some p, ¢ > 0. Leta <0 < b,and N =min(n: S, ¢
[a, b]). Then :
lim,_, P(Sy > y)y* = EN.

Proor. All moments of Nare finite (Feller, XVIII). Consequently P(N > y) =
o(y~") for all r > 0, and the hypotheses r > p/q, r = p/2, or r = p of Theorem 1
are satisfied.

COROLLARY 4. Let S, be a random walk such that 37, (1/n)P(S, = 0) < oo,
P(X;>y) ~ y 0 < p< 1 and P(X, < —y) = O(y~?). LetN = min(n: S, > 0).
Then EN < oo and lim,__, P(S, > y)y* = EN.

Proor. From EN = exp (3., (1/n)P(S, < 0)) (Feller, XII), we have P(N >n)=
o(n~") with r = 1. Theorem 2 applies.

COROLLARY 5. LetS, be a random walk such that PX;>p)~y? PX, < —y)=
O(y~9) for some p, g < 3, and EX, = 0. There exists ¢, > 0 such that if ¢ < c,
and if N, = min (n: |S,| > cn?) then

lim, .. P(Sy, > y)y* = EN,.

Proor. Breiman (1967) showed that for each ¢ > 0 either there is an n such
that P(N, > n) = 0 or P(N, > n) ~ an~#, where a is a constant depending on
the distribution of X;, and f(c) is a universal constant for each ¢ such that
lim,_, B(c) = oo. We can choose ¢, so that §(c,) > p/2. Theorem 1 applies.

5. Some problems. It will be observed that Lemma 2 is a more sensitive esti-
mator of the asymptotic property of a randomly stopped truncated sequence than
is the method used to obtain (5’) in Theorem 2. Lemma 2 gives a rate in terms
of P(N > y) whereas the method using Wald’s equation produces a bound with
EN as a factor. Possibly Lemma 2 could be proved with by(b), 7(b) a slowly
varying function, replacing 5'*7.

If r < 1 then EN = oo, and we wouild expect for some range of p and ¢ that

(11) P(Sy > y)yP — 0.

One sees from the proof of Lemma 1 that P(T, < N)b? — co in this case. Lemma
2 holds for any » > 0. To complete the proof of (11) one would need to show
that P(T, v T, £ N)b® — co more slowly than P(T, < N)b?. An example which
suggests that (1 1) holds if » < 1, for appropriate p and ¢, is obtained from results
of Rogozin (1971). He showed (Theorem 9) that if the process distribution of
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a random walk is in the domain of attraction of a stable process of index a and
au < 1, u'= P(X; > 0), then its ascending ladder variable is in the domain of
attraction of a stable law of index au. The ladder variable is Sy where N =
min (n: S, > 0). Rogozin also showed (Theorem 4) that N is in the domain of
attraction of a stable law of index v, 0 < v < 1iflim,_., (1/n) 32_, P(S, > 0) = v,
and 317, P(S, > 0)/k = co. If a random walk is stable and symmetric of index
p> then P(X; > y) ~ cy=?. Rogozin’s results imply P(S, > y)y* ~ ¢’y*”%, and
P(N > y) ~ y~¥(y) where ¢(y) is slowly varying.

The combination of Corollaries 1 and 2 leads us to believe that under the
hypotheses of Corollary 2,

lim _ P(sup,c, X, > y)y* = ET .
We have not found a proof.
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