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Abstract

We prove well-posedness results for backward stochastic differential equations (BS-
DEs) and reflected BSDEs with an optional obstacle process in the case of appropri-
ately weighted L2-data when the generator is integrated with respect to a possibly
purely discontinuous process. This leads to a unified treatment of discrete-time and
continuous-time (reflected) BSDEs. We compare our well-posedness results with the
current literature and highlight that our results are sharp and cannot be improved
within the framework presented here. Finally, we provide sufficient conditions for a
comparison principle.
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1 Introduction

The primary motivation for this work is to develop a unified approach to discrete-time
and continuous-time (reflected) BSDEs with jumps. The formulation we employ here
permits the integration of the generator with a potentially purely discontinuous process.
Informally, for the time being, the (reflected) BSDE studied here is of the form

Yt = ξT +

∫ T

t

fs
(
Ys, Ys−, Zs, Us(·)

)
dCs

−
∫ T

t

ZsdXs −
∫ T

t

∫
E

Us(x)(µ− ν)(ds,dx)−
∫ T

t

dNs +

∫ T

t

dKs,

Y ≥ ξ,∫ T

0

(Ys− − ξs−)dKr
s +

∫ T

0

(Ys − ξs)dK`
s = 0, where

K` :=
∑
s∈[0,·]

(Ks+ −Ks) and Kr := K −K`
−.
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Reflections on BSDEs

Here, T is a stopping time, the process ξ is the obstacle, f is the generator with
stochastic Lipschitz coefficient α, X is the driving martingale, µ the driving random
measure, and C is a non-decreasing, predictable process that dominates the predictable
quadratic variation 〈X〉 of X and the predictable compensator ν of µ. Note that the
above system reduces to a BSDE in case ξ = −∞ on [0, T ). We are then seeking to
find a class of processes within which there exists a unique collection (Y,Z, U,N,K) of
adapted processes that solve the above system. In this work, we prove well-posedness of
these BSDEs and reflected BSDEs under appropriately integrable L2-data (ξ, f) in case
α2∆C ≤ Φ ∈ (0, 1).

Although not yet strictly referred to as BSDEs, the first appearance of these types
of objects in case the generator f is linear was in the works of Bismut [14; 15], and
even earlier by Davis and Varaiya [39]. In the former, BSDEs were introduced as adjoint
equations that originated from an application of the Pontryagin stochastic maximum
principle, and in the latter, they were used to study stochastic control problems with
drift control. What has been recognised already in [39] is that value process of certain
stochastic control problems can be recasted as the Y -component of a BSDE, which
through comparison principles allows one to deduce characterisations of optimal control
responses to stochastic systems. The first systematic study of BSDEs in the non-linear
setting with Lipschitz generator was carried out by Pardoux and Peng [117], and the
same authors later connected BSDEs to quasi-linear PDEs through Feynman–Kac–type
formulas in [118]. The seminal survey article by El Karoui, Peng, and Quenez [55]
collected properties of BSDEs and showed how they may be applied to solve problems in
mathematical finance. Reflected BSDEs were introduced later by El Karoui, Kapoudjian,
Pardoux, Peng, and Quenez [53] directly in a Lipschitz setting, where the immediate
connection to optimal stopping problems and obstacle problems for parabolic PDEs was
drawn. Concomitantly to these early contributions, reflected BSDEs have also been
applied to hedging problems of American options by El Karoui and Quenez [51], and
El Karoui, Pardoux, and Quenez [54], and to an optimal control problem with consumption
by El Karoui and Jeanblanc-Picqué [49], see also Bally, Caballero, Fernandez, and
El Karoui [9].

With time, BSDEs and reflected BSDEs were applied in many areas. In finance, as
mentioned above, for pricing of financial derivatives, see El Karoui, Peng, and Quenez
[55] and [51; 54], or for utility maximisation problems in Hu, Imkeller, and Müller [74].
One can also use BSDEs to construct recursive utilities as in Duffie and Epstein [43; 38].
There have been works on applications to zero-sum games by Hamadène and Lepeltier
[69] and to Dynkin games by Cvitanić and Karatzas [35]. Recently, based on some
new backward propagation of chaos techniques appearing in Laurière and Tangpi [94],
BSDEs have also been applied to mean-field games by Possamaï and Tangpi [128] to
deduce convergence rates of the N -player game to its mean-field counterpart.

Ever since the seminal works [117] and [53], the theory of BSDEs and reflected
BSDEs has expanded rapidly, and there have been various forms of generalisation of
well-posedness results for these systems. Kobylanski [91] and Tevzadze [139] studied
well-posedness of BSDEs with generators that are quadratic in the z-variable, see also
the works of Jackson and Žitković [75], Zheng, Zhang, and Meng [143] and the references
therein, and Kazi-Tani, Possamaï, and Zhou [79; 82] as well as El Karoui, Matoussi, and
Ngoupeyou [56], Jeanblanc, Matoussi, and Ngoupeyou [78], or Matoussi and Salhi [109]
for BSDEs with jumps in the quadratic case. Reflected BSDEs with quadratic growth
have also been considered by Kobylanski, Lepeltier, Quenez, and Torres [93], Lepeltier
and Xu [98], and Bayraktar and Yao [12]. Another possible direction of generalisation
is to consider BSDEs and reflected BSDEs on random time horizon. Here the first well-
posedness result for BSDEs was established by Peng [119], and then extended by Darling
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and Pardoux [37]. Other works on BSDEs with random terminal time include Briand and
Hu [21] and Royer [134]. More recently, Lin, Ren, Touzi, and Yang [106] complemented
this theory and proved well-posedness of random horizon BSDEs, 2BSDEs and reflected
BSDEs with Lp-data to which we also refer the interested reader for more references on
the subject of random horizon systems. Other than the aforementioned works, there have
also been works by Rozkosz and Słomiński [136], Klimsiak [83] and Klimsiak, Rzymowski,
and Słomiński [89] on reflected BSDEs with Lp-data and by Alsheyab and Choulli [4]
on random horizon reflected BSDEs. Furthermore, El Asri and Ourkiya [45], Li and Liu
[102] and Qian [131] study multidimensional reflected BSDEs.

What most of the above references have in common is that they consider one driving
Brownian motion of the system. Works that considered also a driving Poisson random
measure include Barles, Buckdahn, and Pardoux [11], Royer [135], Quenez and Sulem
[132], Becherer, Büttner, and Kentia [13] in the BSDE case, and Hamadène and Ouknine
[70], Crépey and Matoussi [34], Quenez and Sulem [133], Perninge [123; 124] in the
reflected BSDE case, to name but a few. On the other hand, there are very few results
that go beyond the case of Brownian motion to more general martingales. In the BSDE
case there is work by Buckdahn [25], El Karoui and Huang [48], Carbone, Ferrario, and
Santacroce [26], Confortola, Fuhrman, and Jacod [33], Bandini [10], Cohen and Elliott
[31] and the more recent work by Papapantoleon, Possamaï, and Saplaouras [113], to
which we also refer the reader interested in further history for BSDEs. The results
obtained in [113] have been applied to well-posedness results for backward stochastic
Volterra integral equations with jumps by Popier [126], to an optimal reinsurance problem
by Brachetta, Callegaro, Ceci, and Sgarra [20], and to a stochastic control problem
involving Lévy processes by di Nunno [42]. Reflected BSDEs with jumps have also
been considered by Nie and Rutkowski [111], see also the references therein. However,
the well-posedness result in [111] relies on assumptions that are too restrictive for the
applications we have in mind since, for example, the integrator C in [111] is assumed
to be continuous. This immediately excludes piecewise constant integrators, which we
want to cover to some extent at least. In other recent contributions, Aksamit, Li, and
Rutkowski [3] and Li, Liu, and Rutkowski [104] study ‘generalised’ BSDEs and reflected
BSDEs with a view towards applications to pricing of vulnerable options. Additionally,
Gu, Lin, and Xu [63; 64] and Lin and Xu [105] study reflected BSDEs driven by a marked
point process.

In the reflected BSDE case, the regularity of the obstacle has also been lifted over
the years. There are works considering obstacles that are càdlàg, see Hamadène [65],
Lepeltier and Xu [97], Hamadène and Ouknine [70], or merely measurable, see Peng
and Xu [120; 121], Klimsiak [84; 85] and Klimsiak, Rzymowski, and Słomiński [89].
See also the works of Kobylanski and Quenez [92] on a general approach to optimal
stopping problems. Recently, in a series of two inspiring papers, Grigorova, Imkeller,
Offen, Ouknine, and Quenez [60] and Grigorova, Imkeller, Ouknine, and Quenez [62]
considered reflected BSDEs driven by Brownian motion and a Poisson random measure
whose obstacle is merely an optional process. Other than proving well-posedness of the
corresponding reflected BSDE, the aforementioned reference also draws the connection
to the corresponding optimal stopping problem with respect to the induced f -expectation.
Results related to the aforementioned works were obtained by Baadi and Ouknine [7; 8],
Akdim, Haddadi, and Ouknine [2] and Bouhadou, Hilbert, and Ouknine [19]. The case of
predictable obstacles has also been studied by Bouhadou and Ouknine [17; 18].

Although not entirely related to what we study here, we would like to mention that
there have also been works on doubly reflected BSDEs, where the BSDEs are constrained
to stay within an upper and lower obstacle process. Here the first well-posedness
study was carried out by Cvitanić and Karatzas [35], where they also connected the
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Y -component of the corresponding doubly reflected BSDE to the value of a Dynkin game.
Other results were then obtained by Hamadène, Lepeltier, and Matoussi [71], Lepeltier
and San Martín [96], Hamadène and Hassani [67; 68], Hamadène [66], Crépey and
Matoussi [34], Pham and Zhang [125], Essaky and Hassani [57], Dumitrescu, Quenez,
and Sulem [44], Grigorova, Imkeller, Ouknine, and Quenez [61], Nie and Rutkowski
[111], Klimsiak [84; 85; 86], Klimsiak, Rzymowski, and Słomiński [90], Klimsiak and
Rzymowski [87; 88], Arharas and Ouknine [5], Baadi [6], Li and Ning [103] and Li [101].

Our main contributions are two well-posedness results, one for BSDEs and another
for reflected BSDEs. These well-posedness results, as presented, turn out to be sharp
within the framework we lay out and cannot be improved with our methods, due to
counterexamples to existence and uniqueness in Confortola, Fuhrman, and Jacod [33].
This also refines the BSDE results in [113]. The method of proof we use is based on a
fixed-point argument and a priori estimates that we establish by techniques that are
inspired by [48], although we do not use exponential weights like in [113], but stochastic
exponential weights like in [10; 31]. With the techniques in [48], we can exploit the
L2-structure of our problem, allowing us to circumvent a reliance on Itô’s formula.
Our BSDE results thus extend straightforwardly to BSDEs with a multi-dimensional
generator and terminal condition. In the reflected BSDE case, we will also use a fixed-
point argument and a priori estimates. Classically, these estimates are derived by an
application of Itô’s formula. However, in the generality we are aiming for, this would
necessitate imposing additional assumptions on the integrator C. We thus approach this
problem differently, and apply it in combination with the methods in [48] and [62] to
deduce the desired a priori estimates. To the best of our knowledge, the well-posedness
result we will present in the reflected BSDE case is the first of its kind. Let us mention
here that after completing the first version of this manuscript, we became aware that
Papapantoleon, Saplaouras, and Theodorakopoulos [116] independently obtained similar
results for BSDEs.

The link between discrete-time BSDEs and control theory has already been mentioned
in Cohen and Elliott [29; 30; 31]. In continuous-time, BSDEs and reflected BSDEs
are intimately connected to control problems with drift control only, as the dynamic
programming equation in this context is semi-linear (thus quasi-linear). However, for
stochastic control problems with drift and volatility control, the dynamic programming
equation is fully non-linear and can thus not be analysed by classical BSDEs. This fact
was the starting point for the new notion of second-order BSDEs (2BSDEs) introduced
by Cheridito, Soner, Touzi, and Victoir [28] and Soner, Touzi, and Zhang [137; 138].
Here, the Y -component of these 2BSDE corresponds to the classical value process of a
control problem with drift and volatility control. This fact has been recently applied to
principal–agent problems in [36]. For an excellent and comprehensive introduction to
BSDEs, we can refer the interested reader to the books by Touzi [140] and Zhang [142].
The latter reference also covers 2BSDEs. In the previously mentioned seminal works
[137; 138] on 2BSDEs the terminal random variable ξT had to satisfy strong regularity
conditions for existence and uniqueness to hold. This assumption has been lifted by
Possamaï, Tan, and Zhou [129]. In future work, we seek to combine the results of this
work and the techniques in [129] to show well-posedness of 2BSDEs with jumps that go
beyond the case of Poisson random measures in Kazi-Tani, Possamaï, and Zhou [80; 81].

The remainder of this paper is structured as follows: in Section 2, we recall prelimi-
naries on (vector) stochastic integration and orthogonal decompositions of martingales.
We also fix the data and formulate the BSDE and reflected BSDE. In Section 3, we
formulate our main results, separately, for the reflected BSDE first, and then for the
BSDE. We also compare our assumptions with the current literature. In Section 4, we
revisit the Snell envelope and optimal stopping theory, with which we solve the reflected
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BSDE in case of a generator not depending on the solution. In Section 5, we establish
the a priori estimates, which we will use in the contraction argument, separately in
the reflected BSDE case first, and then in the BSDE case. We then establish the two
well-posedness results in Section 6. Finally, we prove a comparison result for our BSDE
in Section 7. The appendices contain proofs of technical results and some auxiliary
results we make use of throughout this work.

Notations: throughout this work, we fix a positive integer m. Let N and R denote
the non-negative integers and real numbers, respectively. For (a, b) ∈ [−∞,∞]2, we write
a ∨ b := max{a, b}, a ∧ b := min{a, b} and a+ := a ∨ 0 = max{a, 0}. We write |a| for the
modulus of a ∈ [−∞,∞], and for b ∈ Rm, we write ‖b‖ for the Euclidean norm of b ∈ Rm.
For a finite-dimensional matrix M , we denote by M> its transpose. For a subset V of a
Hilbert space H, we write V ⊥ for its orthogonal in H; for two subspaces W and W ′ of H
with W ∩W ′ = {0H}, we write W ⊕W ′ for the internal direct sum of W and W ′ in H.
For a set Ω and A ⊆ Ω, we denote by 1A its indicator function defined on Ω. We abuse
notation and sometimes also write 1{x∈A} for 1A(x). For a nonempty set Z, we denote
the Dirac-measure at z ∈ Z by δz. For two measurable spaces (Ω,F) and (Ω′,F ′), we
denote by F ⊗ F ′ the product-σ-algebra on the product space Ω× Ω′. For t ∈ (0,∞], a
limit of the form s ↑↑ t means that s→ t along s < t. Analogously, for t ∈ [0,∞), a limit of
the form s ↓↓ t means that s→ t along s > t. For a stochastic process Y indexed by [0,∞)

or [0,∞], we let Y T := Y·∧T . Let y : [0,∞) → R be a làdlàg function, that is, y admits
limits from the right on [0,∞) and from the left on (0,∞). We define yt− := lims↑↑t ys,
t ∈ (0,∞), and analogously yt+ := lims↓↓t ys, t ∈ [0,∞). Then ∆y : [0,∞)→ R is defined
by ∆yt := yt − yt− if t ∈ (0,∞) and ∆y0 = 0. Similarly, we define ∆+y : [0,∞) → R by
∆+yt := yt+ − yt for t ∈ [0,∞). If y is additionally right-continuous (thus càdlàg) and non-
decreasing, the functions yc and yd denote the continuous part and purely discontinuous
part of y, respectively. They are defined through the formulas ydt :=

∑
s∈(0,t] ∆ys and

yc := y − yd. Note that yc0 = y0. In case y is defined on [0,∞], we additionally define
y∞− := lims↑↑∞ ys, ∆y∞ = y∞ − y∞−, yd∞ =

∑
s∈(0,∞] ∆ys and yc∞ := y∞ − yd∞.

2 Preliminaries and formulation of the reflected BSDE

This section will lay the foundations for the analysis that follows. We recall the
construction and some properties of the vector stochastic integral and compensated
stochastic integral with respect to an integer-valued random measure. We then present
the assumptions we impose on the data and the formulation of our reflected BSDE.

2.1 Stochastic basis

We fix once and for all a probability space (Ω,G,P) and a right-continuous filtration
G = (Gt)t∈[0,∞). We denote by G∞ := G∞− the σ-algebra on Ω generated by the sets in
∪t∈[0,∞)Gt. We denote the P-augmentation of G by GP = (GPt )t∈[0,∞), that is, each GPt ,
t ∈ [0,∞), is generated by Gt ∨ NP, where NP is the collection of (P,G)–null sets. The
universal completion of a σ-algebra A is the σ-algebra AU := ∩P′∈P(Ω,A)AP

′
, where the

intersection is over the set P(Ω,A) of all probability measures P′ on (Ω,A). We will
also assume for simplicity that GU∞ ⊆ G. Unless stated otherwise, probabilistic notions
requiring a filtration or a probability measure will implicitly refer to G or P, respectively.

Remark 2.1. The reason we suppose that GU∞ is included in G is that this ensures the G-
measurability of sups∈[0,∞] ξs for a product-measurable process ξ : Ω×[0,∞] −→ [−∞,∞],
see [52, Proposition 2.21].

For two stopping times S and T , we denote by TS,T the collection of all stopping
times τ satisfying P[S ≤ τ ≤ T ] = 1. Note that TS,T is empty if P[S > T ] > 0. We denote
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by GT the σ-algebra of all A ∈ G∞ for which A ∩ {T ≤ t} ∈ Gt for all t ∈ [0,∞), and by
GT− the σ-algebra generated by G0 and and all sets of the form A ∩ {t < T} for A ∈ Gt
and t ∈ [0,∞). If C is a collection of processes indexed by [0,∞), we define Cloc as the
collection of processes X = (Xt)t∈[0,∞) for which there is a sequence of stopping times
(τn)n∈N that is P–a.s. increasing to infinity, with X·∧τn ∈ C for each n ∈ N.

A real-valued martingale indexed by [0,∞) on our filtered probability space always
has a P-modification for which all its paths are real-valued and right-continuous, and
P–almost all its paths have left-limits on (0,∞) (see von Weizsäcker and Winkler [141,
Theorem 3.2.6]). We will always choose such a modification of a martingale. We
denote by M the space of uniformly integrable martingales and by H2 the space of
square-integrable martingales indexed by [0,∞). We denote by H2

0 the space of all
M ∈ H2 for which M0 = 0, P–almost surely. Note that H2

0 is a closed subspace of H2.
For (M,N) ∈ H2

loc × H2
loc, we denote by 〈M,N〉 the predictable quadratic covariation

between M and N in the sense of [77, Theorem I.4.2] and let 〈M〉 := 〈M,M〉. We endow
H2 with the scalar product (M,N)H2 := E[M0N0] + E[〈M,N〉∞] = E[M∞N∞], which
turns it into a Hilbert space by identifying processes whose paths agree P–almost surely.
We denote the norm associated to (·, ·)H2 by ‖ · ‖H2 . A stable subspace of H2 is a closed
linear subspace X of H2 such that 1AM·∧T ∈ X for each T ∈ T0,∞, each A ∈ G0 and
each M ∈ X . A very thorough study of stable subspaces can be found in Cohen and
Elliott [32], Jacod [76], and Protter [130]. Let us note, however, that according to [76,
Proposition 4.26], if M ∈ H2 is orthogonal to a stable subspace X for the scalar product
(·, ·)H2 , then 〈M,N〉 = 0 for all N ∈ X .

An element M ∈ Mloc has by [77, Theorem I.4.18] a, up to P-evanescence, unique
decomposition M = M0 +M c +Md, where M c ∈ H2

loc has P–a.s. continuous paths and
satisfies M c

0 = 0, while Md ∈Mloc is purely discontinuous in the sense that Md
0 = 0 and

MdN ∈ Mloc for every N ∈ H2
loc with P–a.s. continuous paths. The processes M c and

Md are referred to as the continuous and purely discontinuous local martingale parts
of M , respectively. It is immediate that if M ∈ H2

loc, we also have that Md ∈ H2
loc, and

that we can write 〈M〉 = 〈M c〉 + 〈Md〉. Thus (M c,Md) ∈ H2 × H2 if M ∈ H2 by [76,
Théorème 2.34]. Lastly, we denote by [X,Y ] the optional quadratic covariation between
semi-martingales X and Y in the sense of [77, Definition I.4.45]. In particular, if M ∈ H2,
then [M ]∞ = [M,M ]∞ is integrable, [M ] − 〈M〉 is a uniformly integrable martingale,
and [M c] = 〈M c〉 since [M ]t = 〈M c〉t +

∑
s∈(0,t](∆Ms)

2, t ∈ [0,∞), P–a.s. Note that this

implies [M ] = [M c] + [Md] = 〈M c〉+ [Md] since [Md] =
∑
s∈(0,·](∆Ms)

2.

We now introduce the optional and predictable σ-algebras induced by our filtration
G. The optional σ-algebra O(G) on Ω× [0,∞] is generated by all G-adapted processes
ξ : Ω × [0,∞] −→ R that are right-continuous on [0,∞) and admit left-hand limits on
(0,∞]. The optional σ-algebra on Ω × [0,∞) is given by the trace–σ-algebra O(G) :=

O(G) ∩ (Ω× [0,∞)). We have that O(G) is generated by G-adapted, real-valued, càdlàg
processes defined on Ω×[0,∞). The predictable σ-algebra P(G) on Ω×[0,∞] is generated
by all G-adapted processes ξ : Ω × [0,∞] −→ R that are continuous on [0,∞]. The
predictable σ-algebra on Ω× [0,∞) is the trace-σ-algebra P(G) := P(G) ∩ (Ω× [0,∞)),
which is also generated by all G-adapted, real-valued, continuous processes defined on
Ω× [0,∞). If no confusion may arise, we simply write P := P(G), P := P(G), O := O(G)

and O := O(G). We agree to use the following convention: if not stated otherwise, a
process indexed by [0,∞] is optional (resp. predictable), if it is measurable with respect
to O (resp. P), and a process indexed by [0,∞) is optional (resp. predictable), if it is
measurable with respect to O (resp. P). Finally, a stopping time T is predictable, if
J0, T J:= {(ω, t) ∈ Ω×[0,∞) : t < T (ω)} is in P, and we denote the collection of predictable
stopping times by T p0,∞.

The following result appears in [76, Proposition 1.1] and [77, Lemma I.1.19 and

EJP 29 (2024), paper 66.
Page 6/82

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1123
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Reflections on BSDEs

Lemma I.2.17]. It will allow us to use results proved under the usual conditions in our
setting where the filtration is not assumed to be P-complete. Of course, a similar result
holds for the optional or predictable σ-algebra on Ω× [0,∞].

Lemma 2.2. (i) Suppose that T is a GP-stopping time (resp. GP-predictable stopping
time). There exists a G-stopping time (resp. G-predictable stopping time) T ′ such that
T = T ′, P–almost surely.

(ii) Suppose that X is O(GP)-measurable (resp. P(GP)-measurable), then there
exists an O(G)-measurable (resp. P(G)-measurable) process X ′ such that X = X ′ up to
P-indistinguishability.

2.2 A lot of integrals

This part is purely for completeness as we recall the construction and some results
of (stochastic) integration theory. The integrals in this work are always constructed on
[0,∞), and the corresponding value at infinity of the (stochastic) integrals are determined
by taking the limit [0,∞) 3 t ↑↑ ∞. This allows us to consider them as optional processes
indexed by [0,∞] which are additionally left-continuous at infinity.

2.2.1 Lebesgue–Stieltjes integral

We have collected some results on Lebesgue–Stieltjes integrals in Proposition C.2.1

Suppose that C = (Ct)t∈[0,∞) is an optional process for which P–almost every path is
right-continuous, non-decreasing and [0,∞)–valued. Let f = (fu)s∈[0,∞) be an optional
process with values in [0,∞], or with values in [−∞,∞] and satisfying

∫
[0,t]
|fu|dCu <∞,

P–a.s., t ∈ [0,∞). Here, the measure dCu charges {0} with mass C0. We denote by∫ ·
0
fudCu = (

∫ t
0
fudCu)t∈[0,∞) the, up to P–indistinguishability, unique, optional process

with P-a.s. right-continuous paths satisfying
∫ t

0
fudCu =

∫
[0,t]

fudCu, t ∈ [0,∞), P–a.s.

Note that
∫ t−

0
fudCu =

∫
[0,t)

fudCu, P–a.s. We denote by
∫∞

0
fudCu the P–a.s. unique G∞-

measurable random variable satisfying
∫∞

0
fudCu = limt↑↑∞

∫ t
0
fudCu =

∫
[0,∞)

fudCu,

P–a.s., in case f is non-negative or
∫

[0,∞)
|fu|dCu < ∞, P–a.s. For two stopping

times S and T , we then use the convention
∫ T
S
fudCu :=

∫ T
0
fudCu −

∫ S∧T
0

fudCu =∫
[0,∞)

1(S,T ](u)fudCu, P–a.s. We also note that in case C0 = 0, P–a.s., we have
∫

[0,t]
fudCu

=
∫

(0,t]
fudCu. This then implies

∫ T
S
fudCu =

∫
(0,∞)

1(S,T ](u)fudCu, P–a.s. In case C and

f are both predictable, the integral process
∫ ·

0
fudCu can be chosen to be predictable

as well. Finally, even when C = (Ct)t∈[0,∞] has a well-defined value C∞ at infinity,
which does not necessarily correspond to its left limit C∞−, we never include∞ in the

domain of the integration. So we always have
∫ T
S
fudCu =

∫
[0,∞)

1(S,T ](u)fudCu and∫ T
S− fudCu =

∫
[0,∞)

1[S,T ](u)fudCu up to a P–null set.

2.2.2 Vector stochastic integral

In this part, we recall the L2-theory of the vector stochastic integral and refer the reader
to [77, Section III.6] or [76, Section IV.2] for details. Let X = (X)t∈[0,∞) be an Rm-valued
process with components in H2

loc with X0 = 0, P–a.s., and denote by H2,0(X) the linear
space of Rm-valued, predictable processes Z = (Zt)t∈[0,∞) for which each component Zi

satisfies

E

[ ∫
(0,∞)

|Zis|2d〈Xi, Xi〉s
]
<∞, i ∈ {1, . . . ,m}.

1While we do not rely on Proposition C.2 in this work, we have included it in order to correct [113, Lemma
B.1].
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Let L2,0(X) denote the linear subspace ofH2 consisting of the component-wise stochastic
integrals

∑m
i=1

∫
(0,·] Z

i
sdX

i
s for Z ∈ H2,0(X). We endow H2,0(X) with the semi-norm

‖Z‖2H2,0(X) := E

[ m∑
i=1

m∑
j=1

∫
(0,∞)

ZisZ
j
sd〈Xi, Xj〉s

]
,

which is finite on H2,0(X) by the Kunita–Watanabe inequality. The map

H2,0(X) 3 Z 7−→
m∑
i=1

∫
(0,·]

ZisdX
i
s ∈ H2, (2.1)

is an isometry between the semi-normed space H2,0(X) and the Hilbert space H2 since〈 m∑
i=1

∫
(0,·]

ZisdX
i
s,

m∑
j=1

∫
(0,·]

ZjsdXj
s

〉
=

m∑
i=1

m∑
j=1

∫
(0,·]

ZisZ
j
sd〈Xi, Xj〉s.

Note that for (Z,Z ′) ∈ H2,0(X)×H2,0(X) with ‖Z − Z ′‖H2,0 = 0, we have
∫

(0,·] ZsdXs =∫
(0,·] Z

′
sdXs, up to P-indistinguishability. In general, the space H2,0(X) is not complete,

and therefore L2,0(X) is not closed in H2. In what follows, we will construct the
completion of H2,0(X), which leads to the notion of the vector stochastic integral whose
collection thereof is a stable subspace of H2, and thus, in particular, closed.

Let C = (Ct)t∈[0,∞) be a predictable process which is P–a.s. right-continuous, non-
decreasing and starts from zero. Consider a predictable process c = (ci,j)(i,j)∈{1,...,m}2

with values in the space of positive semi-definite matrices that satisfies

〈Xi, Xj〉· =

∫
(0,·]

ci,js dCs, P–a.s. (2.2)

Remark 2.3. We borrow the following construction of the pair (c, C) from [112]. Con-
sider C :=

∑m
i=1〈Xi, Xi〉, and let

ci,jt := ĉi,jt 1{ĉi,j
s
∈Sm+ }, where ĉi,jt := lim sup

n→∞

〈Xi, Xj〉t − 〈Xi, Xj〉(t−1/n)∨0

Ct − C(t−1/n)∨0
,

and Sm+ is the space of positive semi-definite, real-valued m×m matrices, and where we
used the convention 0 := 0/0.

The linear space of all predictable processes Z = (Zt)t∈[0,∞) with values in Rm

satisfying

‖Z‖2H2(X) := E

[ ∫
(0,∞)

m∑
i=1

m∑
j=1

Zisc
i,j
s Z

j
sdCs

]
<∞,

is denoted by H2(X). Note that H2(X) does not depend on the choice of the pair (c, C)

for which (2.2) holds and that ‖ · ‖H2(X) is a semi-norm which coincides with ‖ · ‖H2,0

on H2,0(X). The space H2(X) together with ‖ · ‖H2(X) is the semi-norm completion of
H2,0(X) by [76, Théorème 4.35].2 The isometry in (2.1) thus extends uniquely to an
isometry

H2(X) 3 Z 7−→
∫

(0,·]
ZsdXs ∈ H2, (2.3)

between the semi-normed space H2(X) and the Hilbert space H2. Since by conti-
nuity, for two elements Z and Z ′ in H2(X) satisfying ‖Z − Z ′‖H2(X) = 0, we have∫

(0,·] ZsdXs =
∫

(0,·] Z
′
sdXs, we can turn (2.3) into an isometry between Banach spaces

2To be precise, H2(X), together with ‖ · ‖H2(X), forms a complete semi-normed space containing H2,0(X)
as a dense subset.
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after identifying processes in H2(X) with ‖Z − Z ′‖H2(X) = 0. For each Z in H2(X),∫
(0,·] ZsdXs = (

∫
(0,t]

ZsdXs)t∈[0,∞), is the vector stochastic integral of Z with respect to

X. It is the, up to P-indistinguishability, unique process in H2 that starts from zero,
P–a.s., and satisfies〈∫

(0,·]
ZsdXs, N

〉
·

=

∫
(0,·]

( m∑
i=1

Hi
sc
N,i
s

)
dCs, P–a.s.,

where cN,i is a predictable process with 〈N,Xi〉· =
∫

(0,·] c
N,i
s dCs. Similarly to the

stochastic integral of one-dimensional processes, for Z ∈ H2(X) and T ∈ T0,∞, the
predictable process Ω × [0,∞) 3 (ω, t) 7−→ Zs(ω)1[0,T (ω)](s) ∈ Rm is in H2(X) and∫

(0,·] Zs1[0,T ](s)dXs =
∫

(0,·∧T ]
ZsdXs, P–a.s. Moreover, for W in H2

( ∫
(0,·] ZsdXs

)
, the

product WZ is in H2(X) and∫
(0,·]

WsZsdXs =

∫
(0,·]

Wsd

(∫
(0,·]

ZudXu

)
s

.

As the space of vector stochastic integrals L2(X) :=
{ ∫

(0,·] ZsdXs : Z ∈ H2(X)
}

is

the image of an isometry defined on a Banach space, it is a closed subspace of H2.
Additionally, it is also a stable subspace of H2 (see also [76, Definition 4.4 and Theorem
4.35]). Let us stress that for Z ∈ H2(X), we have the following equalities

‖Z‖2H2(X) = E

[ ∫
(0,∞)

m∑
i=1

m∑
j=1

Zisc
i,j
s Z

j
sdCs

]
=

∥∥∥∥∫
(0,·]

ZsdXs

∥∥∥∥2

H2

.

We close this part by agreeing on adopting a useful convention that will ease the
notation in what follows. First, we agree to write

∫ t
0
ZsdXs :=

∫
(0,t]

ZsdXs, t ∈ [0,∞).

Since the vector stochastic integral is in H2, it will have a P–a.s. unique G∞-measurable,
real-valued, square-integrable limit at infinity which we denote by

∫∞
0
ZsdXs. For two

stopping times S and T , we use the convention
∫ T
S
ZudXu :=

∫ T
0
ZudXu −

∫ S∧T
0

ZudXu.

2.2.3 Stochastic integral with respect to a compensated integer-valued ran-
dom measure

Here, we recall the construction of the stochastic integral with respect to compensated
integer-valued random measures in the sense of [32; 76; 77]. Before doing so, we need
to introduce some terminology and notation. The graph of a stopping time T is the set
JT K := {(ω, t) ∈ Ω× [0,∞) : T (ω) = t}, and an optional set D ⊆ Ω× [0,∞) is thin if there
exists a sequence of stopping times (Tn)n∈N such that D = ∪n∈NJTnK. If JTmK∩ JTnK = ∅
for m 6= n, then (Tn)n∈N is referred to as an exhausting sequence of stopping times for
D. Note that every thin set admits an exhausting sequence of stopping times (see [77,
Lemma I.1.31]). Recall from Section 2.1 that a predictable stopping time is a stopping
time T for which J0, T J is a predictable subset of Ω× [0,∞).

We now turn to random measures. Let (E, E) be a Blackwell space in the sense of
Dellacherie and Meyer [40, Definition III.24] and let Ω̃ := Ω× [0,∞)×E.3 We consider
two σ-algebrae on Ω̃, the predictable one given by P̃ := P ⊗ E and the optional one given
by Õ := O ⊗ E . Let µ = {µ(ω; dt,dx) : ω ∈ Ω} be a random measure on B([0,∞)) ⊗ E .
For an G ⊗ B([0,∞)) ⊗ E-measurable function U : Ω̃ −→ R, we define the process
U ? µ = (U ? µt)t∈[0,∞) by

U ?µt(ω) :=


∫

(0,t]×E
Us(ω;x)µ(ω; ds,dx), if

∫
(0,t]×E

|Us(ω;x)|µ(ω; ds,dx) <∞,

∞, otherwise.
(2.4)

3One can think for simplicity of E being a Polish space together with its Borel-σ-algebra E = B(E).
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We suppose that µ is an integer-valued random measure in the sense of [77], that is, there
exists a P̃-measurable function V > 0 satisfying E[V ? µ∞] <∞, an O–measurable, E–
valued process % = (%)t∈[0,∞), and a thin set D with an exhausting sequence of stopping
times (Tn)n∈N such that

µ(ω; dt, dx) =
∑

(ω,s)∈D

δ(s,%s(ω))(dt,dx) =
∑
n∈N

1{Tn<∞}(ω)δ(Tn(ω),%Tn(ω)(ω))(dt, dx).

Here δ(s,z)(dt,dx) denotes the Dirac measure at (s, z). Note that U ? µ is an optional

processes for any Õ-measurable function U : Ω̃ −→ R.

Example 2.4. An example of an integer-valued random measure is the jump measure of
an adapted, càdlàg process X

µ(ω; dt,dx) =
∑

s∈(0,∞)

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt,dx).

The predictable compensator of µ is the random measure ν = {ν(ω; dt,dx) : ω ∈ Ω},
which is (up to P–null sets) uniquely characterised by the following: ν(ω; {0}×E) = 0 for
each ω ∈ Ω, the process U ? ν is P-measurable and satisfies E[U ? µ∞] = E[U ? ν∞], for
each non-negative, P̃-measurable function U (see [77, Proposition II.1.28]). Moreover,
we choose a version of ν that satisfies ν(ω; {t} × E) ≤ 1 for every (ω, t) ∈ Ω × [0,∞)

and such that {(ω, t) ∈ Ω × [0,∞) : ν(ω; {t} × E) > 0} can be exhausted by a sequence
of predictable stopping times (see [77, Proposition II.1.17]). Next, there exists (see
[77, Theorem II.1.8] together with [141, Lemma 6.5.10]) a right-continuous, P–a.s.
non-decreasing, predictable process C = (Ct)t∈[0,∞) and a transition kernel K from
(Ω× [0,∞),P) to (E, E) such that

ν(ω; ds,dx) = Ks(ω; dx)dCs(ω), P–a.e. (2.5)

For any G ⊗ B([0,∞)) ⊗ E-measurable function U : Ω̃ −→ R, we define the process
Û = (Ût)t∈[0,∞) by

Ût(ω) :=


∫
{t}×E

Ut(ω;x)ν(ω; dt, dx), if

∫
{t}×E

|Ut(ω;x)|ν(ω; dt, dx) <∞,

∞, otherwise,

and Ũ = (Ũt)t∈[0,∞) by Ũt(ω) := Ut(ω, %t(ω))1D(ω, t)− Ût(ω). Note that Ũ is an optional

process and that for each ω ∈ Ω, the collection {t ∈ [0,∞) : Ũt(ω) 6= 0} is at most
countable, and thus {(ω, t) ∈ Ω× [0,∞) : Ũt(ω) 6= 0} admits an exhausting sequence of
stopping times (see [40, Theorem IV.88]). The sum

∑
s∈(0,∞) |Ũs|2 is thus well-defined

and G-measurable.
We now turn to the construction of the compensated stochastic integral with re-

spect to µ. We denote by H2(µ) the linear space of P̃-measurable functions U :

Ω̃ −→ R satisfying E[
∑
s∈(0,∞) |Ũs|2] < ∞. For each U ∈ H2(µ), there exists a, up

to P–indistinguishability, unique purely discontinuous U ? µ̃ ∈ Mloc whose jumps are
given by ∆(U ? µ̃) = Ũ up to P-evanescence (see [77, Theorem I.4.56]). Note that
(U + U ′) ? µ̃ = U ? µ̃+ U ′ ? µ̃, P–a.s., for (U,U ′) ∈ H2(µ)×H2(µ). Since

[U ? µ̃]· =
∑
s∈(0,·]

|∆(U ? µ̃)s|2 =
∑
s∈(0,·]

|Ũs|2, P–a.s.,

we find that [U ? µ̃]∞ ∈ L1(G∞) and thus U ? µ̃ ∈ H2 (see [77, Proposition I.4.50]). By [77,
Theorem II.1.33], the predictable quadratic variation of the process U ? µ̃ is given by

〈U ? µ̃〉t(ω) = (U − Û)2 ? νt(ω) +
∑
s∈(0,t]

(
1− ζs(ω)

)
|Ûs(ω)|2
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=

∫
(0,·]

∫
E

(
Us(ω;x)− Ûs(ω)

)2
Ks(ω; dx)dCs(ω)

+

∫
(0,t]

(
1− ζs(ω)

)(∫
E

Us(ω;x)Ks(ω; dx)

)2

∆Cs(ω)dCs(ω)

=

∫
(0,·]

(∫
E

(
Us(ω;x)− Ûs(ω)

)2
Ks(ω; dx)

+
(
1− ζs(ω)

)(∫
E

Us(ω;x)Ks(ω; dx)

)2

∆Cs(ω)

)
dCs(ω)

=:

∫
(0,·]

(
|||Us(ω; ·)|||s(ω)

)2
dCs(ω), t ∈ [0,∞), P–a.e. ω ∈ Ω,

where ζ = (ζs)s∈[0,∞) is the predictable process defined by ζs(ω) := ν(ω; {s} × E) ∈ [0, 1].
Note that we can choose a predictable version of ∆C that is [0,∞)-valued, and agrees
with the jump process of C up to a P–null set. Indeed, we define

∆Ct := ∆C ′t1{0≤∆C
′
t<∞}

, where ∆C ′t(ω) := lim sup
n↑↑∞

(
Ct − C(t−1/n)∨0

)
.

With this construction of the jump process of C, the map

Ω× [0,∞) 3 (ω, s) 7−→ |||Us(ω; ·)|||s(ω) ∈ [0,∞]

becomes predictable. Conversely, if we start with a P̃-measurable function U such that
‖U‖2

H2(µ)
:= E[

∫
(0,∞)

|||Us(·)|||2sdCs] < ∞, then U ∈ H2(µ) and thus U ? µ̃ ∈ H2 (see [77,

Theorem II.1.33]). Note that for (U, V ) ∈ H2(µ)×H2(µ) satisfying ‖U − V ‖H2(µ) = 0, we
have U ? µ̃ = V ? µ̃. We therefore identify U und V in H2(µ) in this case, which turns
H2(µ) into a normed space. The space of compensated stochastic integrals K2(µ) :=

{U ? µ̃ : U ∈ H2(µ)} is a stable subspace of H2 by [76, Proposition 3.71 and Theorem
4.46] and thus closed in H2. We end up with the following result, whose proof we defer
to Appendix A.

Proposition 2.5. The space H2(µ) endowed with the norm ‖ · ‖H2(µ) is a Banach space.
Moreover, for each U ∈ H2(µ),

‖U‖2H2(µ) = E

[ ∫
(0,∞)

(
|||Us(·)|||s

)2
dCs

]
= E

[
〈U ? µ̃〉∞

]
= E

[
[U ? µ̃]∞

]
.

For (ω, t) ∈ Ω× [0,∞), let Hω,t denote the collection of E-measurable maps U : E −→
R satisfying |||U(·)|||t(ω) < ∞. Define H as the collection of P̃-measurable functions

U : Ω̃ −→ R such that Ut(ω; ·) ∈ Hω,t for each (ω, t) ∈ Ω× [0,∞). Since for U ∈ H2(µ), we
have |||Ut(ω; ·)|||t(ω) < ∞ for dP × dC–a.e. (ω, t) ∈ Ω × [0,∞), we can define U ′t(ω;x) :=

Ut(ω;x)1N c(ω, t), where N = {(ω, t) ∈ Ω× [0,∞) : |||Ut(ω; ·)|||t(ω) =∞} ∈ P, which yields
a version of U in H2(µ) which is also in H. We thus always choose a version of U ∈ H2(µ)

that is also in H. The space H will be fundamental in our formulation of reflected BSDEs
in Section 2.5.

Let us close this part by a agreeing on a convention similar to the one we made about
vector stochastic integrals. Note first that since U ? µ̃ ∈ H2 for U ∈ H2(X), there’s a
well-defined limit at infinity U ? µ∞. In the sequel, we will denote the process U ? µ̃ by∫ t

0

∫
E
Us(x)dµ̃(ds,dx) := U ? µ̃t, t ∈ [0,∞], and for two stopping times S and T , we write∫ T

S

∫
E

Us(x)dµ̃(ds,dx) :=

∫ T

0

∫
E

Us(x)dµ̃(ds,dx)−
∫ S∧T

0

∫
E

Us(x)dµ̃(ds,dx)

=U ? µ̃T − U ? µ̃S∧T .
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2.3 Orthogonal decomposition

Let X be the Rm-valued process with components in H2
loc from Section 2.2.2 and µ

be the integer-valued random measure from Section 2.2.3. We are not working under
the assumption of martingale representation, and thus want to find conditions on X

and µ that allow us to decompose a square-integrable martingale uniquely along X,
µ and another square-integrable martingale N appropriately orthogonal to X and µ.
We mentioned in Section 2.2.2 and Section 2.2.3 that the spaces L2(X) and K2(µ) of
stochastic integrals with respect to X and µ−ν, respectively, are stable (and thus closed)
subspaces of H2. We give sufficient conditions on X and µ under which L2(X)∩K2(µ) is
the null space in H2. This allows us to write

H2 = L2(X)⊕K2(µ)⊕H2,⊥(X,µ) with H2,⊥(X,µ) :=
(
L2(X)⊕K2(µ)

)⊥
.

This part is based on [113] and we borrow notations from [77]. Let Mµ be the Doléans
measure defined by

Mµ[W ] :=

∫
W (ω, s, x)Mµ(dω,ds,dx) := E[W ? µ∞],

for each G ⊗ B
(
[0,∞)

)
⊗ E-measurable function W : Ω̃ −→ [0,∞]. Recall that there

exists a P̃ measurable function V > 0 with E[V ? µ∞] < ∞. Thus the restriction
of Mµ to P̃ is a σ-finite measure. By the Radon–Nikodým theorem, there exists for

every G ⊗ B([0,∞)) ⊗ E-measurable function W : Ω̃ −→ [0,∞], a Mµ–a.e. unique, P̃-

measurable function Mµ[W |P̃] := W ′ : Ω̃ −→ [0,∞] satisfying Mµ[W ′U ] = Mµ[WU ],

for each P̃-measurable function U : Ω̃ −→ [0,∞]. For a general measurable function
W : Ω̃ −→ [−∞,∞], we use the same convention as in [77] to define Mµ[W |P̃], namely

Mµ

[
W
∣∣P̃] :=

{
Mµ

[
max{W, 0}

∣∣P̃]−Mµ

[
max{−W, 0}

∣∣P̃], on {Mµ

[
|W |

∣∣P̃] <∞},
∞, otherwise.

The following is the main result about orthogonal decompositions along X and µ, whose
proof we defer to Appendix A.

Proposition 2.6. Suppose that Mµ[∆Xi|P̃] = 0 for every i ∈ {1, . . . ,m}. For each M ∈
H2, there exists a unique pair (Z,U) ∈ H2(X) ×H2(µ) such that N = (Nt)t∈[0,∞) ∈ H2

defined by

Nt := Mt −
∫ t

0

ZsdXs −
∫ t

0

∫
E

Us(x)µ̃(ds,dx),

satisfies 〈N,Xi〉 = 0 for each i ∈ {1, . . . ,m} and Mµ[∆N |P̃] = 0.

Corollary 2.7. Under the assumptions of Proposition 2.6, we haveH2 = L2(X)⊕K2(µ)⊕
H2,⊥(X,µ), where H2,⊥(X,µ) :=

(
L2(X) ⊕ K2(µ)

)⊥
. In particular, H2,⊥(X,µ) =

{
N ∈

H2 : Mµ[∆N |P̃] = 0, 〈N,Xi〉 = 0 for i ∈ {1, . . . ,m}
}

.

2.4 Data and the corresponding weighted spaces

In this section we fix the data of the reflected BSDE and the weighted spaces in
which we will construct its solution. The obstacle and terminal condition are described
by a single optional process ξ as in [60; 62]. From Remark 2.10, this is without loss
of generality. Throughout this work, we fix once and for all the data (X,µ,G, T, ξ, f, C),
where

(D1) G is the filtration in the stochastic basis;
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(D2) X = (Xt)t∈[0,∞) is an Rm-valued process whose components are in H2
loc with

X0 = 0, P–a.s., µ is an integer-valued random measure on R+ × E, where (E, E) is
some Blackwell space, and Mµ[∆Xi|P̃] = 0 for each i ∈ {1, . . . ,m};

(D3) C = (Ct)t∈[0,∞) is a real-valued, predictable process with P–a.s. right-continuous
and non-decreasing paths starting from zero that satisfies

d〈Xi, Xj〉s(ω) = ci,js dCs(ω), and ν(ω; ds,dx) = Ks(ω,dx)dCs(ω),

for P–a.e. ω ∈ Ω, for each (i, j) ∈ {1, . . . , d}2, where each ci,j = (ci,jt )t∈[0,∞) is a
predictable process with values in the set of positive, semi-definite, symmetric
matrices, and K is a transition kernel from (Ω× [0,∞),P) into (E, E);

(D4) T is a G–stopping time;

(D5) ξ = (ξt)t∈[0,∞] is a [−∞,∞)-valued, optional process satisfying4

E[|ξT |2] + E

[
sup

s∈[0,T )

|ξ+
s |2
]
<∞;

(D6) f :
⊔

(ω,t)∈Ω×[0,∞)

(
R × R × Rm × Hω,t

)
−→ R is such that for each (y, y, z, u) ∈

R×R×Rm × H, the map5

Ω× [0,∞) 3 (ω, t) 7−→ ft(ω, y, y, z, ut(ω; ·)) ∈ R,

is optional and f is (r, θX , θµ)–Lipschitz continuous on J0, T K := {(ω, t) ∈ Ω× [0,∞) :

t ≤ T (ω)} in the sense that∣∣ft(ω, y, y, z, ut(ω; ·))− ft(ω, y′, y′, z′, u′t(ω; ·))
∣∣2

≤ rt(ω)|y − y′|2 + rt(ω)|y − y′|2 + θXt (ω)‖c1/2t (ω)(z − z′)‖2

+ θµt (ω)
(
|||ut(ω; ·)− u′t(ω; ·)|||t(ω)

)2

,

for P⊗dC–a.e. (ω, t) ∈ J0, T K, where r = (rt)t∈[0,∞), r = (rt)t∈[0,∞), θ
X = (θXt )t∈[0,∞)

and θµ = (θµt )t∈[0,∞) are [0,∞)-valued, predictable processes, and c1/2 is the unique
square-root matrix-valued process of c;6

(D7) the optional process f·(0, 0, 0,0) satisfies7

E

[(∫ T

0

|fs(0, 0, 0,0)|dCs
)2]

<∞;

(D8) the non-negative, predictable process α = (αt)t∈[0,∞) defined through

α2
t = max{

√
rt,
√

rt, θ
X
t , θ

µ
t }

satisfies αt(ω) > 0 for P ⊗ dC–a.e. (ω, t) ∈ J0, T K, and the predictable process

A = (At)t∈[0,∞) defined by At :=
∫ t∧T

0
α2
sdCs is real-valued and satisfies ∆A ≤ Φ,

up to P-evanescence, for some Φ ∈ [0,∞).

4Recall from Remark 2.1 that the expectation is well-defined as sups∈[0,T ) ξ
+
s = sups∈[0,∞] ξ

+
s 1{s<T}.

5The symbol
⊔

denotes the disjoint union, and therefore each ft(ω, ·, ·, ·, ·) is a map from R×R×Rm×Hω,t
into R.

6See Horn and Johnson [73, page 439].
7Here 0 denotes the zero element of the space H2(µ).
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Remark 2.8. (i) If we start with a process ξ̃ that is only defined on {(ω, t) ∈ Ω ×
[0,∞] : t ≤ T (ω)}, then we ask here that the process ξ = (ξt)t∈[0,∞] defined by ξt(ω) :=

ξ̃t(ω)1[0,T (ω)](t) + ξ̃T (ω)(ω)1(T (ω),∞](t) is optional. The process ξ̃ is still the lower barrier

and ξ̃T is the terminal condition of the reflected BSDE.
(ii) Note that (D2) allows us to decompose each M ∈ H2 uniquely into

Mt = M0 +

∫ t

0

ZsdXs +

∫ t

0

∫
E

Us(x)µ(ds,dx) +Nt, t ∈ [0,∞), P–a.s.,

for (Z,U,N) ∈ H2(X)×H2(µ)×H2,⊥(X,µ) by Proposition 2.6.

The process E(βA) denotes the stochastic exponential of βA, that is, E(βA) =(
E(βA)t

)
t∈[0,∞)

is the unique right-continuous, adapted process satisfying

E(βA)t = 1 +

∫ t

0

E(βA)s−βdAs, t ∈ [0,∞), P–a.s.

As A is P–a.s. non-decreasing, it follows from [77, Theorem I.4.61] that

E(βA)t = eβAt

∏
s∈(0,t]

(1 + γ∆As)e
−γ∆As , t ∈ [0,∞), P–a.s.

Therefore E(βA) is P–a.s. non-decreasing as well and satisfies 1 ≤ E(βA) ≤ eβA up to
P–indistinguishability. We now introduce the (weighted) classical spaces in which we will
construct the solution to the reflected BSDE. Although these spaces depend on (α,C, T ),
we will suppress the dependence on (α,C) to ease the notation. For β ∈ [0,∞)

• L
p
β(F), for p ∈ [1,∞) and a sub–σ-algebra F ⊆ G, denotes the space of real-valued,
F -measurable random variables ζ satisfying

‖ζ‖2L2
β

:= E
[∣∣E(βA)

1/2
T ζ

∣∣2] <∞;

• H2
T,β denotes the Banach space of real-valued martingales M = (Mt)t∈[0,∞) in H2

satisfying M = M·∧T and

‖M‖2H2
T ,β

:= E[M2
0 ] +E

[ ∫
(0,∞)

E(βA)sd〈MT 〉s
]

= E[M2
0 ] +E

[ ∫ T

0

E(βA)sd〈M〉s
]
<∞;

• S2
T,β denotes the Banach space8 of real-valued, optional processes Y = (Yt)t∈[0,∞]

satisfying Y = Y·∧T and

‖Y ‖2S2
T ,β

:= E

[
sup

s∈[0,T ]

∣∣E(βA)1/2
s Ys

∣∣2] <∞;

• H2
T,β denotes the Banach space of real-valued, optional processes φ = (φt)t∈[0,∞]

satisfying φ = φ·∧T and

‖φ‖2H2
T ,β

:= E

[ ∫
(0,∞)

E(βA)s|φs|2dCTs

]
= E

[ ∫ T

0

E(βA)s|φs|2dCs

]
<∞;

• H2
T,β(X) denotes the Banach space of Rm-valued, predictable processes Z in H2(X)

satisfying Z = Z1J0,T K and

‖Z‖2H2
T ,β(X) :=

∥∥E(βA)1/2Z1J0,T K
∥∥2

H2(X)
= E

[ ∫ T

0

E(βA)s

m∑
i=1

m∑
j=1

Zisc
i,j
s Z

j
sdCs

]
<∞;

8That S2
T,β is a Banach space follows with the arguments described in [41, IV.21, pp. 82–83].
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• H2
T,β(µ) denotes the Banach space of real-valued, P̃-predictable processes U in H2(µ)

satisfying U = U1J0,T K and

‖U‖2H2
T ,β(µ) :=

∥∥E(βA)1/2U1J0,T K
∥∥2

H2(µ)
= E

[ ∫ T

0

E(βA)sd〈U ? µ̃〉s
]
<∞;

• H2,⊥
0,T,β(X,µ) denotes the closed subspace of real-valued martingales N = (Nt)t∈[0,∞)

in H2
T,β with N ∈ H2

0 ∩H2,⊥(X,µ);

• I2
T,β denotes the space of [0,∞)-valued, optional processes K = (Kt)t∈[0,∞] whose

paths are P–a.s. right-continuous and non-decreasing, satisfying K = K·∧T , E[K2
T ] <

∞ and

‖K‖2I2
T ,β

:= E

[(∫
[0,∞)

E(βA)1/2
s dKT

s

)2]
= E

[(∫ T

0

E(βA)1/2
s dKs

)2]
<∞,

with convention K0− := 0.

Finally, for β = 0, we simply write Lp := L
p
0(G), Lp(F) := L

p
0(F), H2

T := H2
T,0, S2

T := S2
T,0,

H2
T := H2

T,0, H2
T (X) := H2

T,0(X), H2
T (µ) := H2

T,0(µ), H2,⊥
0,T (X,µ) := H2,⊥

0,T,0(X,µ) and
I2
T := I2

T,0.

2.5 Formulation of the reflected BSDE

In this work, we consider reflected BSDEs driven by càdlàg martingales and integer-
valued random measures on a possibly unbounded time horizon. It turns out that for the
analysis that follows, it is convenient to construct the solution directly on [0,∞], although
the driving martingales and integer-valued random measures are only defined on [0,∞).
As we have seen before, we can and will assign a value to the (stochastic) integrals at
infinity by taking the limit t ↑↑ ∞, whenever this makes sense. Inspired by the work
of Grigorova, Imkeller, Ouknine, and Quenez [62], we will not suppose any regularity
on the paths of the obstacle process ξ. We thus have to consider its left-limit process
ξ = (ξt)t∈[0,∞] defined by

ξt := ξ01{t=0} + lim sup
s↑↑t

ξs1{t∈(0,∞]},

which is (GUt )t∈[0,∞]-predictable by Proposition C.6. Note that this process is P–indistin-
guishable from a (Gt)t∈[0,∞]-predictable process by Lemma 2.2 or [76, Proposition 1.1].
The solution to the reflected BSDE with generator f and obstacle process ξ is a collection
of processes (Y,Z, U,N,Kr,K`) satisfying the following conditions

(R1) (Z,U,N) ∈ H2
T (X)×H2

T (µ)×H2,⊥
0,T (X,µ), and Y = (Yt)t∈[0,∞] is optional with P–a.s.

làdlàg paths;

(R2) (Kr,K`) ∈ I2
T × I2

T with Kr
0 = 0, P–a.s.;

(R3) (Y, Z, U,N,Kr,K`) satisfies9

E

[ ∫ T

0

∣∣fs(Ys, Ys−, Zs, Us(·))∣∣dCs] <∞,
and P–a.s., for each t ∈ [0,∞],

9We use a predictable version Y− of the left-limit process of Y here (see for example Equation 2.3.3 and
Lemma 6.1.3 in [141]).
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Yt = ξT +

∫ T

t

fs
(
Ys, Ys−, Zs, Us(·)

)
dCs −

∫ T

t

ZsdXs

−
∫ T

t

∫
E

Us(x)µ̃(ds,dx)−
∫ T

t

dNs +Kr
T −Kr

t +K`
T− −K`

t−;

(R4) YT = ξT , and Y = Y·∧T ;

(R5) Y·∧T ≥ ξ·∧T ;

(R6) Kr is predictable, K` satisfies K`
T = K`

T−, P–a.s., and is purely discontinuous,
that is, K`

t = K`
0 +

∑
s∈(0,t] ∆K`

s, t ∈ [0,∞], P–a.s., and the following Skorokhod

condition holds, with K`
0− := 0,

(
YT− − ξT

)
∆Kr

T +

∫
(0,T )

(
Ys− − ξs

)
dKr

s +

∫
[0,T )

(Ys − ξs)dK`
s = 0, P–a.s.;

(R7) YS = ess sup
τ∈TS,T

GSE

[
ξτ +

∫ τ

S

fs
(
Ys, Ys−, Zs, Us(·)

)
dCs

∣∣∣∣GS], P–a.s., S ∈ T0,T .

Let us comment on the form of the generator.

Remark 2.9. To the best of our knowledge, and except in [113], the literature only
considers the case where the generator depends on Ys− and not on Ys. When the
integrator C does not jump and is thus continuous, the dependence on Ys or Ys− does
not matter as {s : Ys 6= Ys−} will be at most countable and thus of dCs-measure zero.
When the process C can jump, the dependence matters, and we include both cases for
the following reasons:

(i) a dependence on Ys− in the generator has been considered in numerical schemes,
see among others Briand, Delyon, and Mémin [22], Briand, Delyon, and Mémin
[23], Briand, Geiss, Geiss, and Labart [24], Cheridito and Stadje [27], Madan,
Pistorius, and Stadje [107], Possamaï and Tan [127], and Papapantoleon, Possamaï,
and Saplaouras [114; 115];

(ii) a linear BSDE only seems to allow for an explicit representation of its Y -component
as a conditional expectation if the linearity of the generator depends not on Ys−
but on Ys. To see this, one can adapt the techniques of [26, Lemma 2.2] to our
setup. Similarly, in the reflected BSDE case, a Ys-dependence in the generator
already appears in the following seemingly simple example. Consider the optimal
stopping problem supτ∈T0,T

E[ξτ/Dτ ], where the discounting process is given by

D = E(
∫ ·

0
rsdCs) for some predictable process r = (rs)s∈[0,∞) that is C-integrable.

The value process Vt = ess supτ∈Tt,T E[ξτDt/Dτ ] of this optimal stopping problem,
after applying some standard transformations and then Mertens’s decomposition,
is the Y -component of a reflected BSDE with obstacle ξ and generator of the form

fs(Ys) =
rsYs

1 + rs∆Cs
.

As our main motivation is to develop (reflected) BSDEs to analyse certain discrete-
and continuous-time problems in a unified manner, we stress that the dependence
on Ys in the generator is thus crucial.

We now comment on the formulation of the reflected BSDE.
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Remark 2.10. (i) That ξ plays the role of the lower barrier and terminal condition
is without loss of generality since for any lower barrier L = (Lt)t∈[0,∞) and terminal
condition ζ, we can define the obstacle ξ as ξt := Lt1[0,T )(t) + ζ1[T,∞](t), t ≥ 0. With
our formulation, it is clear that on [0, T ), ξ is the lower barrier L and ξT is the terminal
condition ζ.

(ii) With the conventions we agreed upon in Section 2.2, the integral processes
appearing in (R3) and (R7) never include the points 0 or∞ in the domain of integration.

(iii) Note that the forward dynamics of Y are, P –a.s.,

Yt = Y0 −
∫ t∧T

0

fs
(
Ys, Ys−, Zs, Us(·)

)
dCs +

∫ t∧T

0

ZsdXs

+

∫ t∧T

0

∫
E

Us(x)µ̃(ds,dx) +Nt∧T −Kr
t∧T −K`

(t∧T )−, t ∈ [0,∞].

In particular, Y is a P –a.s. làdlàg optional semimartingale.
(iv) Conditions (R4), (R5) and (R7) are equivalent to

YS = ess sup
τ∈TS,∞

GSE

[
ξτ∧T +

∫ τ∧T

S

fs
(
Ys−, Ys, Zs, Us(·)

)
dCs

∣∣∣∣GS], P–a.s., S ∈ T0,∞.

(v) We will see in Lemma 6.2 that if (αY, αY−, Z, U,N) ∈ H2
T,β̂
× H2

T,β̂
× H2

T,β̂
(X) ×

H2
T,β̂

(µ), then (R1) up to (R6) imply (R7).

(vi) If ξ is P–a.s. left–upper semicontinuous along stopping times, then Kr is continu-
ous. This is similar to [62, Remark 2.4].

(vii) If ξ is P –a.s. right-continuous, then so is Y . Indeed, let Y (+) be the right-
continuous, optional process that P–a.s. agrees with the process of right-hand side
limits of Y (see [41, Appendix I, Remark 5(b)]). For τ ∈ T0,T , we have Yτ+ − Yτ =

−(K`
τ∧T −K`

τ∧T−) ≤ 0, P–a.s., since K` is P–a.s. non-decreasing, and therefore Yτ+ ≤ Yτ
up to a P–null set. This then also implies Yτ ≥ Yτ+ ≥ ξτ+ = ξτ up to a P–null set.
Following [60, Remark 3.3], we then find with (R5) and (R6) that

1 = P[Yτ ≥ ξτ ] = P[Yτ > ξτ ] + P[Yτ = ξτ ]

= P[∆K`
τ = 0, Yτ > ξτ ] + P[Yτ = Yτ+, Yτ = ξτ ]

= P[Yτ+ = Yτ , Yτ > ξτ ] + P[Yτ+ = Yτ , Yτ = ξτ ] = P[Yτ = Yτ+].

Hence Yτ = Yτ+ = Y
(+)
τ , P –a.s., which implies that Y = Y·∧T is P–indistinguishable

from Y
(+)
·∧T by the optional cross-section theorem in [40, Theorem IV.84, p. 137] (or

see Proposition C.3). Incidentally, since K` is purely discontinuous and the source of
right-hand side jumps of Y , this implies K` = 0 up to a P–null set.

(viii) Instead of considering two predictable processes (Kr,K`) in the above formu-
lation of the reflected BSDE, we could simply consider a single P–a.s. non-decreasing,
predictable process K satisfying K0 = 0 and K = K·∧T , P–a.s., defined by K = Kr +K`

−
up to P–indistinguishability. The processes (K,Kr,K`) are then related to each other as
follows

Kr
t = Kt −K`

t−, where K`
t =

∑
s∈[0,t]

(Ks+ −Ks), t ∈ [0,∞], P–a.s., with K`
0− = 0.

3 Main results

This section contains the main results of our work. We present them first in the
reflected BSDE and then in the (non-reflected) BSDE setting. Although the formulation
we chose for reflected BSDEs includes BSDEs as special cases, it turns out that the a
priori estimates in Section 5 can be improved. We therefore report the results separately.
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3.1 Existence and uniqueness for reflected BSDEs

Before stating our main well-posedness result for reflected BSDEs, we introduce
some notation to ease the presentation. For (Ψ, β) ∈ [0,∞)× (0,∞), let

fΨ(β) := inf
γ∈(0,β)

{
(1 + βΨ)

γ(β − γ)

}
=

4(1 + βΨ)

β2
,

gΨ(β) := inf
γ∈(0,β)

{
(1 + γΨ)

γ(β − γ)

}
=

4

β2
1{Ψ=0} +

Ψ2
√

1 + βΨ(
1 + βΨ−

√
1 + βΨ

)(√
1 + βΨ− 1

)1{Ψ>0}.

Here the equalities follow from Lemma B.1. We define

MΨ
1 (β) := fΨ(β) +

4

β
+ max

{
1,

(1 + βΨ)

β

}(
5

β
+

4

β
(1 + βΨ)1/2 + βgΨ(β)

)
,

MΨ
2 (β) := fΨ(β) +

(
5

β
+

4

β
(1 + βΨ)1/2 + βgΨ(β)

)
,

MΨ
3 (β) :=

4

β
+ max

{
1,

(1 + βΨ)

β

}(
5

β
+

4

β
(1 + βΨ)1/2 + βgΨ(β)

)
, β ∈ (0,∞).

The constants MΦ
1 (β), MΦ

2 (β) and MΦ
3 (β) will appear when we construct the contrac-

tion mappings on the weighted solution spaces of the reflected BSDE. Being able to
keep them strictly less than one will allow us to use a fixed-point argument to deduce
well-posedness. We now turn to the integrability conditions we need to impose on the
obstacle ξ and the generator f to make our method of proof work, in particular, to ensure
that the contraction mappings will be well-defined. Let ∗ξ = (∗ξt)t∈[0,∞] be the process
defined by

∗ξ0 := 0, and ∗ξt := lim
t′↑↑t

{
sup

s∈[t′,∞]

|ξ+
s 1{s<T}|

}
, t ∈ (0,∞], (3.1)

which is GU∞ ⊗ B([0,∞])-measurable by [52, Proposition 2.21]. Although this process
depends on the stopping time T , we suppress this to ease the notation. The following
definition contains the main integrability condition that we impose.

Definition 3.1. The collection (X,µ,G, T, ξ, f, C) is standard data for β̂ ∈ [0,∞), if the
pair (ξ, f) satisfies

‖ξT ‖L2

β̂
+ ‖α ∗ξ‖H2

T ,β̂
+

∥∥∥∥f(0, 0, 0,0)

α

∥∥∥∥
H2

T ,β̂

<∞.

Remark 3.2. Our integrability assumption on ξ is slightly different than the one imposed
in [60; 62], which reads

E

[
ess sup
τ∈T0,T

GT |ξτ |2
]
<∞,

in a bounded horizon, Brownian–Poisson framework. Our assumption is not stronger
than the one above, if we set ourselves into their framework. On the contrary, we actually
only need to consider the positive part of ξ on [0, T ), which is more general than the
integrability condition in [60; 62]. We will have a more thorough comparison with the
literature in Section 3.3.

Let us mention here a sufficient condition to have ‖α ∗ξ‖H2

T ,β̂
finite. We defer the proof

to Appendix A.

Lemma 3.3. Let (β̂, β?) ∈ [0,∞)2 with β̂ < β?. Then

‖α ∗ξ‖2H2

T ,β̂

≤ (1 + β?Φ)(1 + β̂Φ)

(β? − β̂)
‖ξ+
· 1{·<T}‖2S2

T ,β?
.

In particular, if ‖ξ+
· 1{·<T}‖S2

T ,β?
is finite, then so is ‖α ∗ξ‖H2

T ,β̂
.
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We now turn to our main well-posedness result for reflected BSDEs. It covers the
case where the generator depends, additionally to Z and U(·), on both Ys and Ys−, just
on Ys or just on Ys−. The proof is deferred to Section 6 as it is based on the optimal
stopping and Snell envelope theory we revisit in Section 4 and the a priori estimates we
establish in Section 5.

Theorem 3.4. Suppose that (X,G, T, ξ, f, C) is standard data for some β̂ ∈ (0,∞).

(i) If MΦ
1 (β̂) < 1, there exists a solution (Y,Z, U,N,Kr,K`) to the reflected BSDE

satisfying (R1) up to (R6) such that (Y, αY, αY−, Z, U,N) is in S2
T ×H2

T,β̂
×H2

T,β̂
×

H2
T,β̂

(X)×H2
T,β̂

(µ)×H2,⊥
0,T,β̂

(X,µ).

(ii) If MΦ
2 (β̂) < 1 and f does not depend on the component Ys−, then there exists a

solution (Y,Z, U,N,Kr,K`) to the reflected BSDE satisfying (R1) up to (R6) such
that (αY,Z, U,N) is in H2

T,β̂
×H2

T,β̂
(X)×H2

T,β̂
(µ)×H2,⊥

0,T,β̂
(X,µ). Moreover, Y is in

S2
T .

(iii) If MΦ
3 (β̂) < 1 and f does not depend on the component Ys, then there exists a

solution (Y,Z, U,N,Kr,K`) to the reflected BSDE satisfying (R1) up to (R6) such
that (Y, αY−, Z, U,N) is in S2

T ×H2
T,β̂
×H2

T,β̂
(X)×H2

T,β̂
(µ)×H2,⊥

0,T,β̂
(X,µ).

In all three cases, the triple (Y,Kr,K`) is unique up to P–indistinguishability and
(Z,U,N) is unique in H2

T,β̂
(X) × H2

T,β̂
(µ) × H2,⊥

0,T,β̂
(X,µ). Furthermore, (R7) holds. If,

additionally, ξ+1[0,T ) ∈ S2
T,β for some β ∈ (0, β̂), then (Kr,K`) ∈ I2

T,β × I2
T,β .

Remark 3.5. The fixed-point argument used in the proof of Theorem 3.4 relies on
the usage of the S2

T –norm in cases (i) and (iii). However, one can use the following
alternative norm10

‖Y ‖2T 2
T

:= sup
τ∈T0,T

E
[
|Yτ |2

]
(3.2)

in the contraction argument. The statements of Theorem 3.4 and Corollary 3.6 remain
unchanged, except that we would be able to replace the constants MΦ

1 (β̂) and MΦ
3 (β̂) by

MΦ
1 (β̂) = fΦ(β̂) +

1

β̂
+ max

{
1,

(1 + β̂Φ)

β̂

}(
5

β̂
+

4

β̂
(1 + β̂Φ)1/2 + β̂gΦ(β̂)

)
and

MΦ
3 (β̂) =

1

β̂
+ max

{
1,

(1 + β̂Φ)

β̂

}(
5

β̂
+

4

β̂
(1 + β̂Φ)1/2 + β̂gΦ(β̂)

)
,

respectively. For the BSDE case, see Remark 3.8. We refer to Remark 5.5 and 6.4 for
more details.

Theorem 3.4 and the analysis of the contraction constants in Lemma B.2 yield the
following immediate result.

Corollary 3.6. Suppose that Φ < 1. For each i ∈ {1, 2, 3}, there exists β?i ∈ (0,∞) such
that MΦ

i (β̂) < 1 for every β̂ ∈ (β?i ,∞). Moreover

(i) if (X,G, T, ξ, f, C) is standard data for β̂ ∈ (β?1 ,∞), then Theorem 3.4. (i) holds;

(ii) if (X,G, T, ξ, f, C) is standard data for β̂ ∈ (β?2 ,∞), then Theorem 3.4. (ii) holds;

(iii) if (X,G, T, ξ, f, C) is standard data for β̂ ∈ (β?3 ,∞), then Theorem 3.4. (iii) holds.

10For more details on this norm, see [41, IV.21, pp. 82–83].
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3.2 Existence and uniqueness for BSDEs

We now discuss the existence and uniqueness of the non-reflected BSDE with gen-
erator f and terminal condition ξT . More precisely, we look for a unique quadruple
(Y,Z, U,N) within a class of processes satisfying

(B1) (Z,U,N) ∈ H2
T (X)×H2

T (µ)×H2,⊥
0,T (X,µ);

(B2) Y = (Yt)t∈[0,∞] is optional with P–a.s. làdlàg paths,11

E

[ ∫ T

0

∣∣fs(Ys, Ys−, Zs, Us(·))∣∣dCs] <∞,
and

Yt = ξT +

∫ T

t

fs
(
Ys, Ys−, Zs, Us(·)

)
dCs −

∫ T

t

ZsdXs

−
∫ T

t

∫
E

Us(x)µ̃(ds,dx)−
∫ T

t

dNs, t ∈ [0,∞], P–a.s.

To deduce existence and uniqueness within a class of processes of the BSDE above, one
could just redefine the obstacle ξ to be −∞ on [0, T ), note that then Kr = 0 and K`

− = 0,
the representation (R7) turns into

YS = E

[
ζ +

∫ T

S

fs
(
Ys, Ys−, Zs, Us(·)

)
dCs

∣∣∣∣GS], P–a.s., S ∈ T0,∞,

and then refer to Theorem 3.4 for the conditions that provide existence and uniqueness
in case there exists β̂ ∈ (0,∞) with

‖ξT ‖L2

β̂
+

∥∥∥∥f(0, 0, 0,0)

α

∥∥∥∥
H2

T ,β̂

<∞. (3.3)

However, it is worthwhile to redo the a priori estimates in Section 5 in this case
as the contraction constants improve significantly. Let us also emphasise here that
the techniques we employ to establish well-posedness for BSDEs do not depend on
Itô’s formula, and extending them to BSDEs with a multi-dimensional generator and
terminal condition is straightforward. The constants we want to control in the contraction
argument to prove well-posedness of (B1)–(B2) become

M̃Ψ
1 (β) := fΨ(β) +

4

β
+ max

{
1,

(1 + βΨ)

β

}(
1

β
+ βgΨ(β)

)
,

M̃Ψ
2 (β) := fΨ(β) +

(
1

β
+ βgΨ(β)

)
,

M̃Ψ
3 (β) :=

4

β
+ max

{
1,

(1 + βΨ)

β

}(
1

β
+ βgΨ(β)

)
.

The following is our main well-posedness result for BSDEs. We defer its proof to the
end of Section 6.

Theorem 3.7. Suppose that (X,G, T, ξ, f, C) is standard data for some β̂ ∈ (0,∞) and
ξ = −∞ on [0, T ).

11Note that Y is then a fortiori P–a.s. càdlàg.
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(i) If M̃Φ
1 (β̂) < 1, then there exists a solution (Y, Z, U,N) to the BSDE (B1)–(B2) such

that (Y, αY, αY−, Z, U,N) is in S2
T ×H2

T,β̂
×H2

T,β̂
×H2

T,β̂
(X)×H2

T,β̂
(µ)×H2,⊥

0,T,β̂
(X,µ).

(ii) If M̃Φ
2 (β̂) < 1 and the generator f does not depend on Ys−, then there exists a

solution (Y,Z, U,N) to the BSDE (B1)–(B2) such that (αY,Z, U,N) is in H2
T,β̂
×

H2
T,β̂

(X)×H2
T,β̂

(µ)×H2,⊥
0,T,β̂

(X,µ).

(iii) If M̃Φ
3 (β̂) < 1 and the generator f does not depend on Ys, then there exists

a solution (Y,Z, U,N) to the BSDE (B1)–(B2) such that (Y, αY−, Z, U,N) is in
S2
T ×H2

T,β̂
×H2

T,β̂
(X)×H2

T,β̂
(µ)×H2,⊥

0,T,β̂
(X,µ).

In all three cases, Y is in S2
T,β̂

and unique up to P–indistinguishability, and (Z,U,N)

is unique in H2
T,β̂

(X)×H2
T,β̂

(µ)×H2,⊥
0,T,β̂

(X,µ).

Remark 3.8. Similar to the discussion in Remark 3.5, we can also replace here in the
contraction argument the norm ‖ · ‖S2

T
by the norm ‖ · ‖T 2

T
introduced in (3.2). Inciden-

tally, we would be able to replace the constants M̃Φ
1 (β̂) and M̃Φ

3 (β̂) in the statement
of Theorem 3.7 and Corollary 3.9 by

M̃Φ
1 (β̂) = fΦ(β̂) +

1

β̂
+ max

{
1,

(1 + β̂Φ)

β̂

}(
1

β̂
+ β̂gΦ(β̂)

)
and

M̃Φ
3 (β̂) =

1

β̂
+ max

{
1,

(1 + β̂Φ)

β̂

}(
1

β̂
+ β̂gΦ(β̂)

)
,

respectively. We refer to Remark 5.5 and 6.4 for more details.

Combining Theorem 3.7 with the analysis of the contraction constants in Lemma B.3,
we find the following.

Corollary 3.9. Suppose that Φ < 1 and that ξ = −∞ on [0, T ). For each i ∈ {1, 2, 3},
there exists β?i ∈ (0,∞) such that M̃Φ

i (β̂) < 1 for every β̂ ∈ (β?i ,∞). Moreover

(i) if (X,G, T, ξ, f, C) is standard data for β̂ ∈ (β?1 ,∞), then Theorem 3.7. (i) holds;

(ii) if (X,G, T, ξ, f, C) is standard data for β̂ ∈ (β?2 ,∞), then Theorem 3.7. (ii) holds;

(iii) if (X,G, T, ξ, f, C) is standard data for β̂ ∈ (β?3 ,∞), then Theorem 3.7. (iii) holds.

Remark 3.10. (i) Here, the condition we need to impose on Φ to get well-posedness for
sufficiently integrable data is weaker than the claimed condition Φ < 1/(18e) in [113,
Corollary 3.6] in case the generator depends on

(
Ys, Zs, Us(·)

)
. There is actually a slight

issue that occurs when deriving the a priori estimates in [113]. By correcting the issue
appearing in the derivation of the a priori estimates, it turns out that the constant Φ

needs to be even lower than 1/(18e) for the contraction argument to go through. We will
come back to this in Remark 5.6.

(ii) The second well-posedness result in [113, Theorem 3.23] relies on the generator
depending on

(
Ys−, Zs, Us(·)

)
. The proof is also based on a fixed-point argument, but the

a priori estimates are derived by an application of Itô’s formula and not by the more
direct approach as in the first part of [113]. Although the integrability condition (H4)
imposed on f in [113] under which well-posedness is established is not comparable to
our integrability condition (3.3), their result relies on the more restrictive conditions
(H5) and (H6) imposed on the integrator C and the driving martingale X in [113].

(iii) It turns out that within the framework we are working in, the condition Φ < 1 to
establish well-posedness of BSDEs with jumps is not only sufficient, but also necessary
in the following sense: if we ask ourselves whether a condition of the form Φ < a for
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some a ∈ (1,∞) would still allow us to have a general well-posedness result, then the
is answer is no as can be seen by the counterexamples to existence and uniqueness
established in Confortola, Fuhrman, and Jacod [33, Section 4.3]. See also the discussion
in Papapantoleon, Possamaï, and Saplaouras [113, Section 3.3.1].

(iv) An extension to d-dimensional BSDEs, for d ∈ N, is straightforward as we will
never use Itô’s formula to derive the a priori estimates in the BSDE case. In this case,
the generator f = (f1, . . . , fd) is Rd-valued and the system of BSDEs will then take the
form

Y it = ξiT +

∫ T

t

f is
(
Ys, Ys−, Zs, Us(·)

)
dCs −

∫ T

t

ZisdXs

−
∫ T

t

∫
E

U is(x)(µ− µp)(ds,dx)−
∫ T

t

N i
s, i ∈ {1, . . . , d},

where Y = (Y 1, . . . , Y d)>, Z = (Z1, . . . , Zd)>, U = (U1, . . . , Ud)> and N = (N1, . . . , Nd)>.
To adapt our method of proof, we need to replace in (D6), in the definition of the
weighted norms of Section 2.4, and in the proof of Theorem 3.7 the absolute value | · | by
the Euclidean norm ‖ · ‖Rd . All computations that we will carry out in Section 5 in the
BSDE case and in the proof of Theorem 3.7 will still go through.

3.3 Comparison with the literature and some consequences

In this part we compare our well-posedness results with other results in the literature.
We are mostly interested in a comparison of the integrability conditions imposed on
the data, and, in case the integrator C jumps, whether some a condition similar to our
condition α∆C ≤ Φ ∈ [0, 1) is needed to ensure well-posedness. However, we restrict
ourselves to works which are closest to ours, although there are far more well-posedness
results out there. In particular, all well-posedness results we mention in this part, except
one, consider L2-data and Lipschitz-continuous generators.

3.3.1 When the obstacle is predictable

The case of a predictable obstacle process ξ together with a notion of ‘predictable re-
flected BSDE’ was studied by Bouhadou and Ouknine [17]. While we do allow, of course,
for an obstacle ξ that is merely predictable, the solution to the reflected BSDE in [17] con-
sists of predictable processes. Specifically, the processes Y in [17] is predictable. Their
study closely relies on the theory of predictable strong supermartingales by Meyer [110,
page 388] and the corresponding predictable Snell envelopes by El Karoui [46]. Although
we do not cover the well-posedness result of [17] by simply taking predictable projections
of our solution processes, it would be intriguing to explore whether this can be achieved
by our techniques in this work in combination with the results in [46] and [110].

3.3.2 When Wiener meets Poisson

We start with comparing our results in the reflected BSDE case to Grigorova, Imkeller,
Offen, Ouknine, and Quenez [60] and Grigorova, Imkeller, Ouknine, and Quenez [62],
in which they show well-posedness of bounded horizon reflected BSDEs in a Brownian–
Poisson framework whose obstacle, as in our case, is merely an optional process. Let
us translate their setup into ours to see that we cover their well-posedness result. Let
dCs = ds, let T be a deterministic and finite time horizon, let X be a Brownian motion
and let µ be a Poisson random measure, that is, the predictable compensator ν of µ
disintegrates as ν(ds,dx) = F (dx)ds for some σ-finite measure F : (E, E) −→ [0,∞], see
also [76; 77]. Since C is continuous, the dependence on Ys or Ys− in the generator does
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not matter, so we drop one of the arguments in the generator that involves Y . Suppose
that f has a universal and deterministic Lipschitz coefficient α ∈ (0,∞). The integrability
condition on the obstacle ξ and the generator f in [60; 62] that ensures well-posedness is

E

[
ess sup
τ∈T0,T

GT |ξτ |2
]

+ E

[ ∫ T

0

|fs(0, 0,0)|2ds

]
<∞.

We now show that our integrability condition in Definition 3.1 is satisfied for any
β̂ ∈ (0,∞), although it looks rather different at first sight. Note that we can choose

Φ = 0 since the integrator C, and thus A, never jumps. Moreover, E(β̂A) = eβ̂A, and

since 1 ≤ eβ̂A ≤ eβ̂α
2T , we immediately find

E

[ ∫ T

0

eβ̂As
|fs(0, 0,0)|2

α2
s

dCs

]
≤ eβ̂α

2T

α2
E

[ ∫ T

0

|fs(0, 0,0)|2ds

]
<∞,

E

[ ∫ T

0

eβ̂As |∗ξs|2dAs

]
≤ α2eβ̂α

2TE

[ ∫ T

0

sup
u∈[s,T ]

|ξu|2ds

]
≤ α2T eβ̂α

2TE

[
sup

u∈[0,T ]

|ξu|2
]
≤ 4α2T eβ̂α

2TE

[
ess sup
τ∈T0,T

GT |ξτ |2
]
<∞,

for any β̂ ∈ (0,∞). The last inequality follows from an application of Proposition C.7. Fur-
thermore, H2

T = H2
T,β̂

, H2
T (X) = H2

T,β̂
(X), H2

T (µ) = H2
T,β̂

(µ) and H2
T (X,µ) = H2,⊥

0,T,β̂
(X,µ)

since eβ̂A is bounded. For β̂ large enough, we have MΦ
i (β̂) < 1 for i ∈ {1, 2, 3}, and thus

our Theorem 3.4 provides well-posedness of the reflected BSDE considered in [60; 62].
However, we want to mention that the class of processes in which uniqueness holds in
[62] is not completely clear, at least to us. We will discuss this further in Remark 6.3.

3.3.3 When the random measure is a marked point process

We would like to draw attention to the recent work of Foresta [58] on reflected BSDEs
driven by Brownian motionX and a marked point process µ, that is, µ is an integer-valued
measure such that

µ(ω; dt,dx) =
∑
n∈N

1{Tn<∞}(ω)δ(Tn(ω),%Tn(ω)(ω))(dt, dx),

for a sequence of stopping times (Tn)n∈N that satisfies Tn ≤ Tn+1, P–a.s., and Tn < Tn+1,
P–a.s. on {Tn < ∞}. The well-posedness result of the reflected BSDE considered in
[58, Theorem 4.1] can be covered by our Theorem 3.4 in case of sufficiently integrable
data. We start by translating their setup into our notation. Let Ct = t + C ′t, where C ′

is some continuous process for which we can write the predictable compensator ν of µ
as ν(ds,dx) = K ′s(ω; dx)dC ′s. Since A is continuous, we can choose Φ = 0, which then
implies that MΦ(β) −→ 0 for β −→ ∞. Moreover, the stochastic exponential weight

E(β̂A) reduces to eβ̂A. Suppose that the generator is of the form

fs
(
ω, y, y, z, us(ω; ·)

)
= f1

s (ω, y, z) + f2
s

(
ω, y, us(ω; ·)

)(
1− ds

dCs

)
,

with deterministic and time-independent Lipschitz coefficients, so α ∈ (0,∞). The
integrability condition in [58] reads

E

[
eβC

′
T |ξT |2

]
+ E

[
sup

s∈[0,T )

e(β+δ)C′s |ξs|2
]
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+ E

[ ∫ T

0

eβC
′
s |f1

s (0, 0)|2ds

]
+ E

[ ∫ T

0

eβC
′
s |f2

s (0,0)|2dC ′s

]
<∞. (3.4)

It is then straightforward to check that for β̂ = β/α2, which then also satisfies β̂A =

β̂α2C = βC, we have ‖ξT ‖L2

β̂
+
∥∥ f(0,0,0,0)

α

∥∥
H2

T ,β̂

< ∞. That ‖α ∗ξ‖H2

T ,β̂
is finite follows

from Lemma 3.3. We thus conclude that if (3.4) holds for β, our Theorem 3.4 provides
well-posedness of the reflected BSDE considered in [58].

3.3.4 When the horizon is finite but random

Inspired by applications to random horizon principal–agent problems, Lin, Ren, Touzi,
and Yang [106] proved well-posedness of random horizon BSDEs, 2BSDEs and reflected
BSDEs. Although we cannot cover their results in general as they work with Lp-data
for p > 1 and the novel norms they use do not fit with our setup, we can compare to
some extent their well-posedness result in the reflected BSDE case for p = 2. In our
notation, the setup studied in [106] is the following: there is no integer-valued random
measure µ, the process X is a Brownian motion, the obstacle process ξ is optional and
càdlàg, the stopping time T is finite, the integrator C satisfies dCs = ds, the Lipschitz-
continuous generator f has deterministic and time-independent Lipschitz coefficients,
thus α ∈ (0,∞), and moreover, f is monotone in the y-variable, see [106, Assumption
3.1. (ii)]. As before, we drop one of the arguments in the generator that depends on Y .
Note that we can choose Φ = 0, so that MΦ

2 (β) −→ 0 as β −→∞. This ensures that we
can provide well-posedness for data that is sufficiently integrable. We now turn to the
integrability condition in [106] that provides well-posedness in an L2-setting. Let Qα(P)

be the collection of probability measures Qλ on (Ω,G) that satisfies

dQλ|Gt
dP|Gt

= E
(∫ ·

0

λsdXs

)
t

, t ∈ [0,∞),

for some predictable process λ = (λs)s∈[0,∞) with |λs| ≤ α. Suppose now that there

exists ε ∈ (0,∞) and β̂ ∈ (0,∞) sufficiently large such that

sup
Q∈Qα(P)

EQ
[
|eβ̂α

2T/2ξT |2+ε
]

+ sup
Q∈Qα(P)

EQ
[

sup
s∈[0,∞)

|eβ̂α
2T/2ξ+

s∧T |
2+ε

]

+ sup
Q∈Qα(P)

EQ
[(∫ T

0

eβ̂α
2s |fs(0, 0)|2

α2
ds

)(2+ε)/2]
<∞.

An argument similar to the one in the previous paragraph shows that ‖α ∗ξ‖H2

T ,β̂
<∞ as

P ∈ Qα(P). Suppose now that β̂ is large enough, so that the conditions in [106, Theorem
3.9] and in our Theorem 3.7. (ii) are satisfied. Fix β < β̂ such that the difference
β̂ − β is small. By Theorem 3.7. (ii), there exists a unique solution (Y, Z,N,Kr,K`)

to (R1)–(R7) such that (αY,Z,N) ∈ H2
T,β ×H2

T,β(X)×H2,⊥
T,β(X). Recall here that due to

the obstacle ξ having càdlàg paths, the process K` vanishes, see Remark 2.10. (vii), we
thus write K := Kr. Let us now compare our solution to the one constructed in [106].
The solution (Y ′, Z ′, N ′,K ′) constructed using Theorem 3.4 in [106] satisfies (R1)–(R6).
Moreover, we also have (Y ′, Z ′, N ′) ∈ S2

T ×H2
T,β(X)×H2,⊥

T,β(X), and also Y ′ ∈ S2
T,β† for

each β† ∈ (β, β̂). The latter property implies that αY ′ ∈ H2
T,β since

‖αY ′‖2T,β = E

[ ∫ T

0

eβAs |Y ′s |2dAs

]
= E

[
sup

s∈[0,T ]

|eβ
†As/2Y ′s |2

∫ T

0

e(β−β†)AsdAs

]
≤ E

[
sup

s∈[0,T ]

|eβ
†As/2Y ′s |2

∫ ∞
0

e(β−β†)sds

]
=

1

(β − β†)
‖Y ′‖2S2

T ,β†
.
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With our uniqueness statement in Theorem 3.4. (ii), we conclude that (Y,K) = (Y ′,K ′),
up to P–indistinguishability, and that (Z,N) = (Z ′, N ′) in H2

T,β(X)×H2,⊥
T,β(X). Since each

Q ∈ Qα(P) is locally absolutely continuous with respect to P, it is straightforward to
check that our solution (Y, Z,N,K) also coincides with (Y ′, Z ′, N ′,K ′) with respect to
the norm used in [106]. We thus conclude that our solution is in their solution space.

3.3.5 When the generator has stochastic Lipschitz coefficients

Perninge [122] also studies reflected BSDEs in a Brownian setting on an infinite horizon,
and with stochastic Lipschitz coefficients, where the Y -component will converge to
zero at infinity. The stochasticity in the Lipschitz coefficient actually only appears in
Z-component of the generator. Here the integrability conditions imposed on the data are
not comparable to ours. However, the range of applications seem to be more restrictive
than in our setup for the following reason: in our notation, the process X is a Brownian
motion, and the stochastic Lipschitz coefficient θX in [122] is supposed to be an adapted
and continuous process and should satisfy E[E(

∫ ·
0
ζsdXs)t] = 1 for each t ∈ [0,∞) and

optional process ζ satisfying |ζ|2 ≤ θX . In particular, the process
√
θX itself should satisfy

this condition a fortiori. Thus the well-posedness result in [122] is not for arbitrary
Lipschitz generators with stochastic Lipschitz coefficients.

3.3.6 When the non-reflected BSDE is driven by arbitrary martingales

Let us close this section by a comparison of our BSDE results to the works of Bandini
[10], Cohen and Elliott [31] and Papapantoleon, Possamaï, and Saplaouras [113], as we
feel that these works are closest to the BSDE formulation we chose here. In [10], the
integrability condition imposed on the data is not comparable to ours. We can thus not
cover the well-posedness result in [10] in general. What is surprising nonetheless is that
by translating [10] into our notation, we see that the condition

√
rs∆Cs ≤ Φ ∈ [0, 1/

√
2),

which only involves the Lipschitz coefficient of f with respect to the Y -component, is
sufficient for the contraction argument to go through in case of sufficiently integrable
data, see [10, Theorem 4.1]. However, the setup in [10] is simpler than the one we study
here, as the only driving force in the BSDE is a random measure µ with finite activity,
that is, {t ∈ [0, t′] : µ(ω; {t} × E) = 1} is finite for each (ω, t′) ∈ Ω× [0,∞).

The BSDE considered in [31] is rather different from ours. We initially fix a driving
martingale X and an integrator C so that d〈X〉s is absolutely continuous with respect
to dCs. Contrary to our case, in [31] the integrator C is fixed in the beginning, and
the driving martingales of the BSDE are a sequence of orthogonal martingales that are
constructed from a general martingale representation theorem relying on the assumption
that the underlying probability space is separable. In [31], the integrator C may have
no relation at all to the the predictable quadratic variations of the driving martingales.
We are thus not able to link our well-posedness result to theirs. However, they suppose
that C is deterministic and strictly increasing, which immediately excludes piecewise
constant integrators. The condition ensuring well-posedness in case of sufficiently
integrable data is similar to [10], namely, in our notation,

√
rs∆Cs ≤ Φ ∈ [0, 1) is enough

for the arguments to go through, see [31, Lemma 5.5 and Theorem 6.1]. This again only
involves the Lipschitz coefficient with respect to the Y -component of the generator.

Lastly, the formulation of BSDEs we chose in this work already appeared in [113],
with the slight difference that we allow our driving martingale X to have components
in H2

loc and not in H2, thus enabling us to apply our results in case X is a Brownian
motion, and the random measure µ in this work is a general integer-valued random
measure in the sense of [76; 77], which is not necessarily induced by the jump measure
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of a process in H2 as in [113]. Moreover, we allow the generator to depend on both Ys
and its left-limit Ys−. Our integrability condition on the data is also weaker, as we use
stochastic exponential weights E(βA), while the well-posedness result in [113] relies
on exponential weights eβA. Interestingly, this change of the weights allows us to build
a contraction map under the condition α2

s∆Cs ≤ Φ ∈ [0, 1), while in [113] the more
restrictive condition α2

s∆Cs ≤ Φ < 1/(18e) is needed. We thus cover [113, Theorem 3.5].
As already mentioned in Remark 3.10. (i), there is a small issue in the proof of the a
priori estimates in [113] to which we will come back in Remark 5.6.

4 Optimal stopping and Mertens’ decomposition

In this section, we solve the reflected BSDE in case the generator does not depend
on (y, y, z, u), which we assume throughout. We imposed the following integrability
condition on f and ξ12

E[|ξT |2] + E

[
sup

u∈[0,T )

|ξ+
u |2
]

+ E

[(∫ T

0

|fu|dCu
)2
]
<∞. (4.1)

From (R7), it is clear that the first component of the solution is related to the optimal
stopping problem

V (S) := ess sup
τ∈TS,∞

GSE

[
ξτ∧T +

∫ τ∧T

0

fudCu

∣∣∣∣GS], P–a.s., S ∈ T0,∞. (4.2)

Note that the conditional expectations are well-defined in [−∞,∞). The fact that we
can actually find a solution to (R1)–(R7) is a priori not clear, since we cannot directly
employ the classical results of optimal stopping and the Snell envelope theory, as the
gains process is not necessarily non-negative (see [47; 108]) or in S2

T (see [60; 62]). We
thus need to go through a series of technical lemmata to modify our optimal stopping
problem first. Since we do not need their proofs for the analysis that follows, we defer
them to Appendix B.

For the following lemma, we fix a martingale M = (Mt)t∈[0,∞] satisfying

MS = E

[
ξT +

∫ T

0

fsdCs

∣∣∣∣GS], P–a.s., S ∈ T0,∞.

Note that V (S) ≥ MS , P–a.s., S ∈ T0,∞. Let J = (Jt)t∈[0,∞] and L = (Lt)t∈[0,∞] be the
optional processes defined by

Jt := ξt∧T +

∫ t∧T

0

fsdCs, and Lt = Jt ∨
(
Mt − 1{t<T}

)
, t ∈ [0,∞].

We now rewrite the optimal stopping problem (4.2) using the auxiliary process L.
This idea stems from the proof of [142, Proposition 6.3.2].

Lemma 4.1. The process L is in S2
T , satisfies L· = L·∧T , up to P–indistinguishability, and

V (S) = ess sup
τ∈TS,∞

GSE[Lτ |GS ], P–a.s., S ∈ T0,∞.

The previous lemma now allows us to deduce the following.

Lemma 4.2. The family (V (S))S∈T0,∞ satisfies the following properties

(i) V (S) ∈ L2(GS) and V (S) ≥ E[V (U)|GS ], P –a.s., for all (S,U) ∈ T0,∞ × T0,∞ with
P[S ≤ U ] = 1.

12Recall that ξ+ = max{ξ, 0}.
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(ii) V (S) = V (U), P –a.s. on {U = S}, for all (S,U) ∈ T0,∞ × T0,∞.

The next result shows that we can aggregate the family (V (S))S∈T
0,∞

into a process.

Lemma 4.3. There exists a, up to P–indistinguishability, unique optional process V =

(Vt)t∈[0,∞] ∈ S2
T satisfying VS = V (S), P–a.s., for each S ∈ T0,∞. Moreover, V· = V·∧T , up

to P–indistinguishability.

By Lemma 4.2, the process V = (Vt)t∈[0,∞] constructed in Lemma 4.3 is a strong
optional supermartingale in the sense of [41, Appendix I], and thus P–almost all its paths
are làdlàg (see [41, Appendix I, Theorem 4]). The next lemma allows us to deduce the
Skorokhod condition using our modified optimal stopping problem.

Lemma 4.4. (i) For each S ∈ T0,∞, we have 1{VS=LS} = 1{VS=JS}, P –a.s.
(ii) For each S ∈ T p0,∞, we have 1{VS−=L̄S} = 1{VS−=J̄S}, P –a.s.13

We have now established the necessary technical results that allow us to apply
the arguments laid out in [62] to construct the solution to the reflected BSDE for
the generator f that does not depend on (y, z, u). First, define Y = (Yt)t∈[0,∞] by

Yt := Vt −
∫ t∧T

0
fsdCs t ≥ 0. Then Y· = Y·∧T , up to P-indistinguishability, and

YS = VS −
∫ S∧T

0

fsdCs = ess sup
τ∈TS,∞

GSE

[
ξτ∧T +

∫ τ∧T

S

fsdCs

∣∣∣∣GS], P–a.s., S ∈ T0,∞.

We know by now that V is a strong optional supermartingale in the sense of [41,
Appendix I]. We can therefore apply Mertens’ decomposition to construct the solution to
the reflected BSDE.

Proposition 4.5. There exists a unique triple (Z,U,N) ∈ H2
T (X)×H2

T (µ)×H2,⊥
0,T (X,µ)

and a, up to P–indistinguishability, unique pair (Kr,K`) ∈ I2
T × I2

T such that Kr is
predictable and starts P–a.s. from zero, K` has P–a.s. purely discontinuous paths and
satisfies K`

T = K`
T−, P–a.s., and

Yt = ξT +

∫ T

t

fsdCs −
∫ T

t

ZsdXs −
∫ T

t

∫
E

Us(x)µ̃(ds,dx)

−
∫ T

t

dNs +Kr
T −Kr

t +K`
T− −K`

t−, t ∈ [0,∞], P –a.s.,

holds with convention K`
0− := 0. Moreover,

(
YT− − ξT

)
∆Kr

T +

∫
(0,T )

(
Ys− − ξs

)
dKr

s +

∫
[0,T )

(Ys − ξs)dK`
s = 0, P–a.s.

Proof. We use V· = V·∧T , up to P–indistinguishability, and [62, Lemma 3.2]14 (which
is based on Mertens’ unique decomposition of a strong supermartingale) to find a
martingale M = (Mt)t∈[0,∞] with M = M·∧T , MT ∈ L2(GT ) and M0 = 0, P–a.s., and two
processes (Kr,K`) ∈ I2

T ×I2
T such that Kr is predictable and satisfies Kr

0 = 0, P–a.s., K`

has P–a.s. purely discontinuous paths and satisfies K`
T = K`

T−, P–a.s., with convention
K`

0− := 0,

Yt +

∫ t∧T

0

fsdCs = Vt = V0 +Mt −Kr
t −K`

t−, t ∈ [0,∞], P–a.s.,

13Recall that T p0,∞ is the collection of predictable stopping times and L is defined by L0 := L0 and

Lt := lim sups↑↑∞ Ls for t ∈ (0,∞]. The process J is defined analogously.
14Their results still applies to our infinite, but right-closed, horizon [0,∞].
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and ∆K`
τ = 1{Vτ=Lτ}∆K

`
τ , P–a.s., for each τ ∈ T0,∞, and ∆Kr

τ = 1{Vτ−=Lτ}∆K
r
τ , P–a.s.,

for each τ ∈ T p0,∞. Moreover, [62, Lemma 3.3] implies∫
(0,T )

1{Vs−>Ls}dK
r,c
s = 0, P–a.s., where Kr,c = Kr −

∑
s∈(0,·]

∆Kr
s .

Therefore, by Lemma 4.4,

(YT− − ξT )∆Kr
T +

∫
(0,T )

(Ys− − ξs)dKr
s +

∫
[0,T )

(Ys − ξs)dK`
s = 0, P–a.s.

Since M∞ is G∞-measurable, and because G∞ = G∞− = σ(∪t∈[0,∞)Gt), the martingale M
is P–a.s. left-continuous at infinity. We can therefore decompose (Mt)t∈[0,∞) as

Mt =

∫ t

0

ZsdXs +

∫ t

0

∫
E

Us(x)µ̃(ds,dx) +Nt, t ∈ [0,∞), P–a.s., (4.3)

for unique (Z,U,N) ∈ H2
T (X) ×H2

T (µ) ×H2,⊥
0,T (X,µ) with N0 = 0, P–a.s., such that the

value M∞ is the P–a.s. limit at infinity of the processes on the right-hand-side of (4.3),
that is,

M∞ =

∫ ∞
0

ZsdXs +

∫ ∞
0

∫
E

Us(x)µ̃(ds,dx) +N∞, P–a.s.

It remains to write the dynamics of Y in backward form.
We now present the argument that implies uniqueness separately as it might seem

odd that we do not impose K`
0 = 0, P–almost surely. Suppose that (M ′,Kr,′,K`,′) is a

triplet satisfying the same properties as (M,Kr,K`), and such that

Yt +

∫ t∧T

0

fsdCs = Vt = V0 +M ′t −K
r,′
t −K

`,′
t−, t ∈ [0,∞], P–a.s.

It follows that Mt −Kr
t −K`

t− = M ′t −K
r,′
t −K

`,′
t−, t ∈ [0,∞], P–a.s., hence M −M ′ is

a martingale that is P–indistinguishable from a predictable process with P–a.s. locally
finite variation paths. Thus Mt = M ′t, t ∈ [0,∞], P–a.s., by [77, Corollary I.3.16], and
therefore

Kr
t +K`

t− = Kr,′
t +K`,′

t−, t ∈ [0,∞], P–a.s.

Since K` and K`,′ are P–a.s. purely discontinuous, we can write

Kr
t −K

r,′
t = K`

t− −K
`,′
t− = K`

0 −K
`,′
0 +

∑
s∈(0,t)

(∆K`
s −∆K`,′

s ), t ∈ (0,∞], P–a.s.

As Kr −Kr,′ is P–a.s. right-continuous, it follows by taking limits from the right that

Kr
t −K

r,′
t = K`

0 −K
`,′
0 +

∑
s∈(0,t]

(∆K`
s −∆K`,′

s ), t ∈ [0,∞], P–a.s.

Hence, 0 = Kr
0 − Kr,′

0 = K`
0 − K`,′

0 and ∆K`
s = ∆K`,′

s , s ∈ (0,∞], P–a.s., which
implies K` = K`,′, up to P–indistinguishability, and thus also Kr = Kr,′, up to P–
indistinguishability. This completes the proof.

5 A priori estimates

We now devote ourselves to a priori estimates, which will allow us to construct a con-
traction mapping on the weighted normed spaces introduced in Section 2.4. Classically,
these sort of estimates are derived by an application of Itô’s formula to the square of the
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(weighted) difference of two solutions to the (reflected) BSDE (see [16; 60; 62]). In our
generality, we were not able to deduce appropriate estimates solely using this tool, and
thus we will approach the estimates differently. We first derive bounds on conditional
expectations of the martingale processes using both Itô’s formula and a pathwise version
of Doob’s martingale inequality (Lemma C.4). Then we employ the ideas of [50, page
27] to get the desired weighted norm estimates. For i ∈ {1, 2}, let f i = (f iu)u∈[0,∞) be an
optional processes satisfying

E

[(∫ T

0

|f iu|dCu
)2]

<∞,

and suppose that we are given an optional process yi = (yit)t∈[0,∞] satisfying

yit = ξT +

∫ T

t

f isdCs −
∫ T

t

dηis + kr,iT − k
r,i
t + k`,iT− − k

`,i
t−, t ∈ [0,∞], P–a.s.,(5.1a)

yi = yi·∧T ≥ ξ·∧T , P–a.s., (5.1b)

yiS = ess sup
τ∈TS,∞

GSE

[
ξτ∧T +

∫ τ∧T

S

f iudCu

∣∣∣∣GS], P–a.s., S ∈ T0,∞, (5.1c)

(
yiT− − ξT

)
∆kr,iT +

∫
(0,T )

(
yis− − ξs

)
dkr,is +

∫
[0,T )

(yis − ξs)dk`,is = 0, P–a.s., (5.1d)

for some ηi ∈ H2
T and (kr,i, k`,i) ∈ I2

T × I2
T with kr,i predictable and starting P–a.s. from

zero, and k`,iT = k`,iT− up to a P–null set. Here we use the convention k`,i0− := 0. Let

δy := y1 − y2, δη := η1 − η2, δkr := kr,1 − kr,2, δk` := k`,1 − k`,2, and δf := f1 − f2.

To ease the notation, we denote by L the infimum of the function ` defined on
{(ε, κ) ∈ (0,∞)2 : 0 < 1− 4κ ≤ 1} by

`(ε, κ) :=
max{1 + ε+ 4κ+ 12/ε, 12/ε+ 2/κ}

1− 4κ
.

Recall from (D5) that the obstacle ξ satisfies E[|ξT |2] + E
[

sups∈[0,T ) |ξ+
s |2
]
<∞. The

following is the main result of this section.

Proposition 5.1. Let β ∈ (0,∞). Then15

‖δy‖2S2
T
≤ 4

β

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

, ‖αδy‖2H2
T ,β
≤ fΦ(β)

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

, ‖αδy−‖2H2
T ,β
≤ (1 + βΦ)gΦ(β)

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

,

E
[
(δy0)2

]
+

β

(1 + βΦ)
‖αδy−‖2H2

T ,β
+ ‖δη‖2H2

T ,β
+ E

[ ∫ T

0

E(βA)sd[δkr]s

]
+ E

[ ∫ T

0

E(βA)sd[δk`]s

]
≤
(

5

β
+

4

β
(1 + βΦ)1/2 + βgΦ(β)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

,

and

‖δy‖2S2
T

+ ‖αδy‖2H2
T,β

+ ‖αδy−‖2H2
T,β

+ ‖δη‖2H2
T,β
≤MΦ

1 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

,

‖αδy‖2H2
T,β

+ ‖δη‖2H2
T,β
≤MΦ

2 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

,

15Recall the definition of fΦ, gΦ, MΦ
1 , MΦ

2 and MΦ
3 at the beginning of Section 3.1.
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‖δy‖2S2
T

+ ‖αδy−‖2H2
T,β

+ ‖δη‖2H2
T,β
≤MΦ

3 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

.

Moreover, for each i ∈ {1, 2},

‖yi‖2S2
T
≤ 12

(
‖ξT ‖2L2 +

∥∥∥ sup
u∈[0,T )

ξ+
u

∥∥∥2

L2

+
1

β

∥∥∥∥f iα
∥∥∥∥2

H2
T,β

)
,

‖αyi‖2H2
T,β
≤ 3

(
(1 + βΦ)

β
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T,β
+ fΦ(β)

∥∥∥∥f iα
∥∥∥∥2

H2
T,β

)
,

‖αyi−‖2H2
T,β
≤ 3

(
(1 + βΦ)

β
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T,β
+ (1 + βΦ)gΦ(β)

∥∥∥∥f iα
∥∥∥∥2

H2
T,β

)
,

and

E
[
|yi0|2

]
+

β

(1 + βΦ)
‖αyi−‖2H2

T ,β
+ ‖ηi‖2H2

T ,β

+ E

[ ∫ T

0

E(βA)sd[kr,i]s

]
+ E

[ ∫ T

0

E(βA)sd[k`,i]s

]
≤ L

(
‖ξT ‖2L2 + ‖ξ+1J0,T M‖2S2

T
+

1

β

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

+ β

(
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T ,β
+ gΦ(β)

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

))
.

The proof of the preceding proposition will be based on the two following lemmata
whose proofs we defer to Section 5.1. Here we use the convention ζ0− := 0 for a process
ζ = (ζt)t∈[0,∞], and we recall from Section 2.2.1 that we never include the point∞ in the
domain of integration.

Lemma 5.2. The following inequalities hold:

|δyS | ≤ E
[ ∫ T

S

|δfu|dCu
∣∣∣∣GS], |yiS | ≤ E[|ξT |+ sup

u∈[S,∞]

|ξ+
u 1{u<T}|+

∫ T

S

|f iu|dCu
∣∣∣∣GS], (5.2)

P–a.s., for S ∈ T0,∞ and i ∈ {1, 2}, and

|δyS−| ≤ E
[ ∫ T

S−
|δfu|dCu

∣∣∣∣GS−], |yiS−| ≤ E[|ξT |+ ∗ξS +

∫ T

S−
|f iu|dCu

∣∣∣∣GS−], (5.3)

P–a.s., for S ∈ T p0,∞ and i ∈ {1, 2}.16 Moreover,

‖δy‖2S2
T
≤ 4E

[(∫ T

0

|δfu|dCu
)2]

<∞,

‖yi‖2S2
T
≤ 12E

[
|ξT |2 + sup

u∈[0,T )

|ξ+
u |2 +

(∫ T

0

|f iu|dCu
)2]

<∞, i ∈ {1, 2}. (5.4)

Lemma 5.3. The following inequalities hold:

|δyS |2 + E

[ ∫ T

S

d〈δη〉u
∣∣∣∣GS]+ E

[ ∫ T

S

d[δkr]u

∣∣∣∣GS]+ E

[ ∫ T

S−
d[δk`]u

∣∣∣∣GS]
16Recall from Section 2.1 that T p0,∞ denotes the collection of predictable stopping times.
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≤ 2E

[ ∫ T

S

δyuδfudCu

∣∣∣∣GS]+ E

[ ∫ T

S

(δfu)2d[C]u

∣∣∣∣GS], P–a.s., S ∈ T0,∞, (5.5)

|δyS−|2 + E

[ ∫ T

S−
d〈δη〉u

∣∣∣∣GS−]+ E

[ ∫ T

S−
d[δkr]u

∣∣∣∣GS−]+ E

[ ∫ T

S−
d[δk`]u

∣∣∣∣GS−]
≤ 2E

[ ∫ T

S−
δyuδfudCu

∣∣∣∣GS−]+ E

[ ∫ T

S−
(δfu)2d[C]u

∣∣∣∣GS−], P–a.s., S ∈ T p0,∞. (5.6)

Moreover, for each i ∈ {1, 2},

|yiS |2 + E

[ ∫ T

S

d〈ηi〉u
∣∣∣∣GS]+ E

[ ∫ T

S

d[kr,i]u

∣∣∣∣GS]+ E

[ ∫ T

S−
d[k`,i]u

∣∣∣∣GS]
≤ LE

[
|ξT |2 + sup

u∈[S,∞]

|ξ+
u 1{u<T}|2 +

(∫ T

S

|f iu|dCu
)2∣∣∣∣GS], P–a.s., S ∈ T0,∞, (5.7)

|yiS−|2 + E

[ ∫ T

S−
d〈ηi〉u

∣∣∣∣GS−]+ E

[ ∫ T

S−
d[kr,i]u

∣∣∣∣GS−]+ E

[ ∫ T

S−
d[k`,i]u

∣∣∣∣GS−]
≤ LE

[
|ξT |2 + | ∗ξS |2 +

(∫ T

S−
|f iu|dCu

)2∣∣∣∣GS−], P–a.s., S ∈ T p0,∞. (5.8)

We turn to the proof of the a priori estimates.

Proof of Proposition 5.1. To ease the presentation, let us abuse notation sligthly in this
proof and denote by E[W·|G·] and E[W·|G·−] the optional and predictable projections,
respectively, of a non-negative, product-measurable process W = (Wt)t∈[0,∞]. We refer
to [41, Section VI.2 and Appendix I] for their existence and properties.

We suppose, without loss of generality, that ‖ f
1

α ‖H2
T ,β

, ‖ f
2

α ‖H2
T ,β

and ‖ δfα ‖H2
T ,β

are all
finite; otherwise the stated inequalities trivially hold. We start with some introductory
calculations. First, let (γ, β) ∈ (0,∞)2 with γ < β, and recall that the stochastic
exponential E(γA) of the non-decreasing, predictable process γA satisfies

E(γA)t = 1 +

∫ t

0

E(γA)s−d(γA)s = 1 +

∫ t

0

E(γA)s−γdAs, t ∈ [0,∞), P–a.s. (5.9)

In particular, E(γA) is predictable and (see [77, page 134])

E(γA)t = eγAt

∏
s∈(0,t]

(1 + γ∆As)e
−γ∆As , t ∈ [0,∞), P–a.s. (5.10)

Since A is P–a.s. non-decreasing, so is E(γA) by (5.9) and (5.10). Note also that

E(γA)t = E(γA)t− + ∆E(γA)t

= E(γA)t− + E(γA)t−γ∆At = E(γA)t−(1 + γ∆At), t ∈ (0,∞), P–a.s. (5.11)

By [31, Lemma 4.4] or Lemma C.1. (i), we have E(γA)−1 = E(−γA), P–a.s., where γA is
the predictable process satisfying

γA = γA−
∑
s∈(0,·]

(γ∆As)
2

1 + γ∆As
, P–a.s.,

(γA)c = (γA)c = γAc, ∆γA = γ∆A− (γ∆A)2

1 + γ∆A
=

γ∆A

1 + γ∆A
, P–a.s. (5.12)
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In particular, γA is P–a.s. non-decreasing. Let F =
(
F (t)

)
t∈[0,∞]

be the process defined
by

F (t) :=

∫ T

t

|δfs|dCs

:=

∫ T

0

|δfs|dCs −
∫ t∧T

0

|δfs|dCs =

∫
(0,∞)

|δfs|1(t,T ](s)dCs, P–a.s. (5.13)

For t ∈ (0,∞], we have F (t−) =
∫

(0,∞)
|δfs|1[t,T ](s)dCs, P–a.s., and

|F (t−)|2 ≤
∫

(0,∞)

1

E(γA)s
1[t,T ](s)dAs

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

1[t,T ](s)dCs, P–a.s., (5.14)

by the Cauchy–Schwarz inequality. The first integral on the right-hand side above can be
bounded as follows∫

(0,∞)

1

E(γA)s
1[t,T ](s)dAs = lim

t′↑↑∞

∫
(0,∞)

1

E(γA)s
1[t,t′∧T ](s)dAs

= lim
t′↑↑∞

∫
(0,∞)

1

E(γA)s−

1

(1 + γ∆As)
1[t,t′∧T ](s)dAs

= lim
t′↑↑∞

∫
(0,∞)

E(−γA)s−
1

(1 + γ∆As)
1[t,t′∧T ](s)dAs

= lim
t′↑↑∞

∫
(0,∞)

E(−γA)s−
1

(1 + γ∆As)
1[t,t′∧T ](s)dA

c
s

+
∑

s∈[t,∞)

E(−γA)s−1{s≤t′∧T}
∆As

(1 + γ∆As)

= lim
t′↑↑∞

1

γ

∫
(0,∞)

E(−γA)s−1[t,t′∧T ](s)d(γA)cs

+
1

γ

∑
s∈[t,∞)

E(−γA)s−1{s≤t′∧T}∆γAs

= lim
t′↑↑∞

1

γ

∫
(0,∞)

E(−γA)s−1[t,t′∧T ](s)dγAs

= − 1

γ
lim
t′↑↑∞

(
E(−γA)t′∧T − E(−γA)t∧T−

)
≤ 1

γ

1

E(γA)t∧T−
. (5.15)

Here, the fourth line follows from (5.12) and

1

(1 + γ∆A)
dAc = dAc (5.16)

since Ac is continuous, and thus dAc does not charge any points on (0,∞). Thus

|F (t−)|2 ≤ 1

γ

1

E(γA)t∧T−

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

1[t,T ](s)dCs, t ∈ (0,∞), P–a.s.,

and therefore∫ T

0

E(βA)t−|F (t−)|2dAt

=

∫
(0,∞)

1(0,T ](t)E(βA)t−|F (t−)|2dAt
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≤ 1

γ

∫
(0,∞)

1(0,T ](t)E(βA)t−
1

E(γA)t−

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

1[t,T ](s)dCsdAt

=
1

γ

∫
(0,∞)

∫
(0,∞)

1{0<t≤s≤T}E(βA)t−
1

E(γA)t−
E(γA)s

|δfs|2

α2
s

dCsdAt

=
1

γ

∫
(0,∞)

∫
(0,∞)

1{0<t≤s≤T}E(βA)t−
1

E(γA)t−
E(γA)s

|δfs|2

α2
s

dAtdCs

=
1

γ

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

∫
(0,∞)

1{0<t≤s≤T}E(βA)t−
1

E(γA)t−
dAtdCs

=
1

γ

∫ T

0

E(γA)s
|δfs|2

α2
s

∫ s

0

E(βA)t−
1

E(γA)t−
dAtdCs, P–a.s. (5.17)

Here, the fifth line follows from Tonelli’s theorem. Lemma C.1. (ii) yields∫ s

0

E(βA)t−
1

E(γA)t−
dAt =

∫ s

0

E(Âβ,γ)t−dAt, s ∈ [0,∞), P–a.s.,

where Âβ,γ = (Âβ,γt )t∈[0,∞) is the predictable process satisfying

Âβ,γ = (β − γ)Ac +
∑
s∈(0,·]

(β − γ)
∆As

1 + γ∆As
, P–a.s. (5.18)

Since β − γ > 0, the process Âβ,γ is P–a.s. non-decreasing. Similar to the derivation
of (5.15), we find∫ s

0

E
(
Âβ,γ

)
t−dAt =

∫
(0,s]

E
(
Âβ,γ

)
t−dAct +

∑
t∈(0,s]

E
(
Âβ,γ

)
t−∆At

=
1

(β − γ)

∫
(0,s]

E
(
Âβ,γ

)
t−(1 + γ∆At)d

(
Âβ,γ

)c
t

+
1

(β − γ)

∑
t∈(0,s]

E
(
Âβ,γ

)
t−(1 + γ∆At)∆Â

β,γ
t

=
1

(β − γ)

∫
(0,s]

E
(
Âβ,γ

)
t−(1 + γ∆At)dÂ

β,γ
t

≤ (1 + γΦ)

(β − γ)

∫
(0,s]

E
(
Âβ,γ

)
t−dÂβ,γt

=
(1 + γΦ)

(β − γ)

(
E
(
Âβ,γ

)
s
− 1
)

≤ (1 + γΦ)

(β − γ)
E
(
Âβ,γ

)
s

=
(1 + γΦ)

(β − γ)
E(βA)s

1

E(γA)s
, s ∈ (0,∞), P–a.s. (5.19)

Here, we used (1 + γ∆A)dAc = dAc and (5.18) in the second line, and the definition of
Âβ,γ in the last equality. By substituting (5.19) into (5.17), we obtain∫ T

0

E(βA)t−|F (t−)|2dAt ≤
(1 + γΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs, P–a.s.

Consequently, this implies∫ T

0

E(βA)t|F (t−)|2dAt =

∫ T

0

E(βA)t−(1 + β∆At)|F (t−)|2dAt

≤ (1 + βΦ)

∫ T

0

E(βA)t−|F (t−)|2dAt
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≤ (1 + βΦ)(1 + γΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs, P–a.s.

Next, we note that we also have

|F (t)|2 ≤
∫

(0,∞)

1

E(γA)s
1(t,T ](s)dAs

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

1(t,T ](s)dCs, t ∈ [0,∞), P–a.s.,

(5.20)

and similarly to (5.15), we find∫
(0,∞)

1

E(γA)s
1(t,T ](s)dAs ≤

1

γ

1

E(γA)t∧T
, t ∈ [0,∞), P–a.s. (5.21)

This also follows by taking right-hand limits along t in (5.15). We insert (5.21) into (5.20)
and find

|F (t)|2 ≤ 1

γ

1

E(γA)t∧T

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

1(t,T ](s)dCs, t ∈ [0,∞), P–a.s. (5.22)

This yields∫ T

0

E(βA)t|F (t)|2dAt

=

∫
(0,∞)

E(βA)t|F (t)|21(0,T ](t)dAt

≤ 1

γ

∫
(0,∞)

E(βA)t
1

E(γA)t
1(0,T ](t)

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

1(t,T ](s)dCsdAt

=
1

γ

∫
(0,∞)

∫
(0,∞)

1{0<t<s≤T}E(βA)t
1

E(γA)t
E(γA)s

|δfs|2

α2
s

dCsdAt

=
1

γ

∫
(0,∞)

∫
(0,∞)

1{0<t<s≤T}E(βA)t
1

E(γA)t
E(γA)s

|δfs|2

α2
s

dAtdCs

=
1

γ

∫
(0,∞)

E(γA)s
|δfs|2

α2
s

∫
(0,∞)

1{0<t<s≤T}E(βA)t
1

E(γA)t
dAtdCs

=
1

γ

∫ T

0

E(γA)s
|δfs|2

α2
s

∫ s−

0

E(βA)t
1

E(γA)t
dAtdCs

=
1

γ

∫ T

0

E(γA)s
|δfs|2

α2
s

∫ s−

0

E(βA)t−
E(γA)t−

(1 + β∆At)

(1 + γ∆At)
dAtdCs

≤ 1

γ

(1 + βΦ)

(1 + γΦ)

∫ T

0

E(γA)s
|δfs|2

α2
s

∫ s−

0

E(βA)t−
E(γA)t−

dAtdCs

=
1

γ

(1 + βΦ)

(1 + γΦ)

∫ T

0

E(γA)s
|δfs|2

α2
s

∫ s−

0

E
(
Âβ,γ

)
t−dAtdCs

≤ (1 + βΦ)

γ(β − γ)

∫ T

0

E(γA)s
|δfs|2

α2
s

E(βA)s−
1

E(γA)s−
dCs

=
(1 + βΦ)

γ(β − γ)

∫ T

0

E(βA)s−
|δfs|2

α2
s

E(γA)s−(1 + γ∆As)

E(γA)s−
dCs

≤ (1 + βΦ)

γ(β − γ)

∫ T

0

E(βA)s−(1 + β∆As)
|δfs|2

α2
s

dCs

=
(1 + βΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs, P–a.s.
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Here, we used Tonelli’s theorem in the fourth line, (5.11) in the seventh line, the fact
that (1 +β∆A)/(1 +γ∆A) ≤ (1 +βΦ)/(1 +γΦ) since x 7−→ (1 +βx)/(1 +γx) is increasing
on [0,Φ] in the eighth line, Equation (5.19) in the tenth line, and Equation (5.11) again in
the third-to-last and last line. Consequently, this implies∫ T

0

E(βA)t−|F (t)|2dAt ≤
∫ T

0

E(βA)t−|F (t−)|2dAt

≤ (1 + γΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs, P–a.s.,

since F (t) ≤ F (t−) for t ∈ (0,∞]. To summarise, we found∫ T

0

E(βA)t|F (t)|2dAt ≤
(1 + βΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs,

∫ T

0

E(βA)t−|F (t)|2dAt ≤
(1 + γΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs,

∫ T

0

E(βA)t|F (t−)|2dAt ≤
(1 + βΦ)(1 + γΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs,

∫ T

0

E(βA)t−|F (t−)|2dAt ≤
(1 + γΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs, P–a.s. (5.23)

We turn to the stated bounds. The S2
T -bounds

‖δy‖2S2
T
≤ 4

β

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

and ‖yi‖2S2
T
≤ 12

(
‖ξT ‖2L2 +

∥∥∥ sup
u∈[0,T )

ξ+
u

∥∥∥2

L2
+

1

β

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

)
(5.24)

follow from Lemma 5.2 together with

E

[(∫ T

0

|δfs|dCs
)2]
≤ E

[(∫ T

0

1

E(βA)s
dAs

)(∫ T

0

E(βA)s
|δfs|2

α2
s

dCs

)]
≤ 1

β

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

, (5.25)

E

[(∫ T

0

|f is|dCs
)2]
≤ E

[(∫ T

0

1

E(βA)s
dAs

)(∫ T

0

E(βA)s
|f is|2

α2
s

dCs

)]
≤ 1

β

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

. (5.26)

Here we first use the Cauchy–Schwarz inequality and then (5.21). The H2-bound for δy
follows from

‖αδy‖2H2
T ,β

= E

[ ∫ T

0

E(βA)t|δyt|2α2
tdCt

]
= E

[ ∫ T

0

E(βA)t|δyt|2dAt

]
≤ E

[ ∫ T

0

E
[
E(βA)t|F (t)|2

∣∣Gt]dAt] = E

[ ∫ T

0

E(βA)t|F (t)|2dAt

]
≤ (1 + βΦ)

γ(β − γ)

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

,
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where the first inequality follows from optional projection together with Lemma 5.2,
the step from the first to the second line follows from [41, Theorem VI.57], and the last
inequality follows from (5.23). Hence,

‖αδy‖2H2
T ,β
≤ inf
γ∈(0,β)

{
(1 + βΦ)

γ(β − γ)

}∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

=
4(1 + βΦ)

β2

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

= fΦ(β)

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

. (5.27)

We similarly find

‖αδy−‖2H2
T ,β

= E

[ ∫ T

0

E(βA)t|δyt−|2dAt

]
≤ (1 + βΦ)E

[ ∫ T

0

E(βA)t−|δyt−|2dAt

]
= (1 + βΦ)E

[ ∫ T

0

E(βA)t−|F (t−)|2dAt

]
≤ (1 + βΦ) inf

γ∈(0,β)

{
(1 + γΦ)

γ(β − γ)

}∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

= (1 + βΦ)gΦ(β)

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

, (5.28)

where we now use the predictable projection together with Lemma 5.2 and [41, Theorem
VI.57]. Assuming for the moment that f2 = 0, we find analogously

‖αy1‖2H2
T ,β

= E

[ ∫ T

0

E(βA)t|y1
t |2α2

tdCt

]
= E

[ ∫ T

0

E(βA)t|y1
t |2dAt

]
≤ 3E

[ ∫ T

0

E

[
E(βA)t|ξT |2 + E(βA)t sup

u∈[t,∞]

|ξ+
u 1{u<T}|2 + E(βA)t|F (t)|2

∣∣∣∣Gt]dAt]

= 3

(
E

[ ∫ T

0

E(βA)t|ξT |2dAt

]
+ E

[ ∫ T

0

E(βA)t sup
u∈[t,∞]

|ξ+
u 1{u<T}|2dAt

]

+ E

[ ∫ T

0

E(βA)t|F (t)|2dAt

])

=
3

β
E

[
|ξT |2

∫ T

0

E(βA)t−(1 + β∆At)d(βA)t

]
+ 3

(
E

[ ∫ T

0

E(βA)t sup
u∈[t,∞]

|ξ+
u 1{u<T}|2dAt

]
+ E

[ ∫ T

0

E(βA)t|F (t)|2dAt

])

≤ 3
(1 + βΦ)

β
E

[
|ξT |2

∫ T

0

E(βA)t−d(βA)t

]
+ 3

(
E

[ ∫ T

0

E(βA)t sup
u∈[t,∞]

|ξ+
u 1{u<T}|2dAt

]
+ E

[ ∫ T

0

E(βA)t|F (t)|2dAt

])

≤ 3

(
(1 + βΦ)

β
E
[
E(βA)T |ξT |2

]
+ E

[ ∫ T

0

E(βA)t sup
u∈[t,∞]

|ξ+
u 1{u<T}|2dAt

]

+ E

[ ∫ T

0

E(βA)t|F (t)|2dAt

])

≤ 3

(
(1 + βΦ)

β
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T ,β
+ inf
γ∈(0,β)

{
(1 + βΦ)

γ(β − γ)

}∥∥∥∥f1

α

∥∥∥∥2

H2
T ,β

)

= 3

(
(1 + βΦ)

β
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T ,β
+ fΦ(β)

∥∥∥∥f1

α

∥∥∥∥2

H2
T ,β

)
,
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where the second line follows from the optional projection together with Lemma 5.2 and
(a2 + b2 + c3) ≤ 3(a2 + b2 + c2), the third line follows from [41, Theorem VI.57], and the
last line follows from (5.23). An analogous argument leads to the H2-bound on y2. By
using predictable projection, we find

‖αy1
−‖2H2

T ,β
= E

[ ∫ T

0

E(βA)t|y1
t−|2α2

tdCt

]
= E

[ ∫ T

0

E(βA)t|y1
t−|2dAt

]
≤ 3E

[ ∫ T

0

E

[
E(βA)t

(
|ξT |2 + lim

t′↑↑t
sup

u∈[t′,∞]

|ξ+
u 1{u<T}|2 + |F (t−)|2

)∣∣∣∣Gt−]dAt]

= 3

(
E

[ ∫ T

0

E(βA)t|ξT |2dAt

]
+ E

[ ∫ T

0

E(βA)t lim
t′↑↑t

sup
u∈[t′,∞]

|ξ+
u 1{u<T}|2dAt

]

+ E

[ ∫ T

0

E(βA)t|F (t−)|2dAt

])

≤ 3

(
(1 + βΦ)

β
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T ,β
+ (1 + βΦ) inf

γ∈(0,β)

{
(1 + γΦ)

γ(β − γ)

}∥∥∥∥f1

α

∥∥∥∥2

H2
T ,β

)

= 3

(
(1 + βΦ)

β
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T ,β
+ (1 + βΦ)gΦ(β)

∥∥∥∥f1

α

∥∥∥∥2

H2
T ,β

)
.

An analogous argument leads to the H2-bound on y2
−.

We turn to the bounds on the martingale δη and first note that for a P–a.s. càdlàg
process V = (Vt)t∈[0,∞) with P–a.s. non-decreasing paths starting from zero, we have∫ T

0

E(βA)sdVs =

∫ T

0

(
1 +

∫ s

0

E(βA)t−d(βA)t

)
dVs

= VT +

∫ T

0

∫ s

0

E(βA)t−βdAtdVs

= VT + β

∫
(0,∞)

∫
(0,∞)

1{0<t≤s≤T}E(βA)t−dAtdVs

= VT + β

∫
(0,∞)

∫
(0,∞)

1{0<t≤s≤T}E(βA)t−dVsdAt

= VT + β

∫
(0,∞)

1{0<t≤T}E(βA)t−

∫
(0,∞)

1{t≤s≤T}dVsdAt

= VT + β

∫ T

0

E(βA)t−

∫ T

t−
dVsdAt

= VT + β

∫ T

0

E(βA)t−

∫ T

t−
dVsdAt, P–a.s. (5.29)

Here the fourth line follows from Tonelli’s theorem. Thus, by letting V := 〈δη〉+ [δkr] +

[δk`], we get

‖δη‖2H2
T ,β

+ E

[ ∫ T

0

E(βA)sd[δkr]s

]
+ E

[ ∫ T

0

E(βA)sd[δk`]s

]
= E

[ ∫ T

0

E(βA)sd〈δη〉s
]

+ E

[ ∫ T

0

E(βA)sd[δkr]s

]
+ E

[ ∫ T

0

E(βA)sd[δk`]s

]
= E

[
〈δη〉T + [δkr]T + [δk`]T

]
+ βE

[ ∫ T

0

E(βA)t−

∫ T

t−
d(〈δη〉+ [δkr] + [δk`])sdAt

]
.

(5.30)
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We now apply [41, Theorem VI.57], the predictable projection together with Lemma 5.3,
and find

E

[ ∫ T

0

E(βA)t−

∫ T

t−
d(〈δη〉+ [δkr] + [δk`])sdAt

]
≤ 2E

[ ∫ T

0

E(βA)t−

∫ T

t−
|δysδfs|dCsdAt

]
+ E

[ ∫ T

0

E(βA)t−

∫ T

t−
(δfs)

2d[C]sdAt

]
− E

[ ∫ T

0

E(βA)t−|δyt−|2dAt

]
.

We insert this inequality into (5.30) and find, after a rearrangement of the terms, that

βE

[ ∫ T

0

E(βA)t−|δyt−|2dAt

]
+ ‖δη‖2H2

T ,β
+ E

[ ∫ T

0

E(βA)sd[δkr]s

]
+ E

[ ∫ T

0

E(βA)sd[δk`]s

]
≤ E

[
〈δη〉T + [δkr]T + [δk`]T

]
+ 2βE

[ ∫ T

0

E(βA)t−

∫ T

t−
|δysδfs|dCsdAt

]
+ βE

[ ∫ T

0

E(βA)t−

∫ T

t−
(δfs)

2d[C]sdAt

]
. (5.31)

We now bound the second expectation on the second line. By the Cauchy–Schwartz-
inequality and since A =

∫ ·
0
α2
sdCs, we find∫ T

t−
|δysδfs|dCs =

∫ T

t−

(
E(γA)−1/2

s |δys|αs
)(
E(γA)1/2

s

|δfs|
αs

)
dCs

≤
(∫ T

t−
E(γA)−1

s |δys|2dAs

)1/2(∫ T

t−
E(γA)s

|δfs|2

α2
s

dCs

)1/2

.

Therefore, for γ ∈ (0, β), we find

E

[ ∫ T

0

E(βA)t−

∫ T

t−
|δysδfs|dCsdAt

]
≤ E

[ ∫ T

0

E(βA)
1/2
t− E(γA)

1/2
t−

(∫ T

t−
E(γA)−1

s |δys|2dAs

)1/2

E(βA)
1/2
t−

1

E(γA)
1/2
t−

(∫ T

t−
E(γA)s

|δfs|2

α2
s

dCs

)1/2

dAt

]

≤ E
[ ∫ T

0

E(βA)t−E(γA)t−

∫ T

t−
E(γA)−1

s |δys|2dAsdAt

]1/2

E

[
γ

1

γ

∫ T

0

E(βA)t−
1

E(γA)t−

∫ T

t−
E(γA)s

|δfs|2

α2
s

dCsdAt

]1/2

≤ E
[ ∫ T

0

E(βA)t−E(γA)t−

∫ T

t−
E(γA)−1

s |δys|2dAsdAt

]1/2

E

[
γ

(1 + γΦ)

γ(β − γ)

∫ T

0

E(βA)s
|δfs|2

α2
s

dCs

]1/2

= E

[ ∫ T

0

E(βA)t−E(γA)t−

∫ T

t−
E(γA)−1

s |δys|2dAsdAt

]1/2(
(1 + γΦ)

(β − γ)

)1/2∥∥∥∥δfα
∥∥∥∥
H2
T ,β

.

(5.32)

EJP 29 (2024), paper 66.
Page 38/82

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1123
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Reflections on BSDEs

Here, the second inequality follows from the Cauchy–Schwarz inequality, and the third in-
equality follows from the equalities starting on the third line of (5.17) together with (5.19).
Next, note that

∫ T

0

E(βA)t−E(γA)t−

∫ T

t−
E(γA)−1

s |δys|2dAsdAt

=

∫
(0,∞)

∫
(0,∞)

1{t≤s≤T}E(βA)t−E(γA)t−E(γA)−1
s |δys|2dAsdAt

=

∫
(0,∞)

∫
(0,∞)

1{t≤s≤T}E(βA)t−E(γA)t−E(γA)−1
s |δys|2dAtdAs

=

∫ T

0

E(γA)−1
s |δys|2

∫ s

0

E(βA)t−E(γA)t−dAtdAs

=

∫ T

0

E(γA)−1
s |δys|2

∫ s

0

E
(

(β + γ)A+ βγ[A]︸ ︷︷ ︸
A :=

)
t−dAtdAs

=

∫ T

0

E(γA)−1
s |δys|2

(∫ s

0

E(A)t−dAct +
∑

0<t≤s

E(A)t−∆At

)
dAs

=

∫ T

0

E(γA)−1
s |δys|2

(∫ s

0

E(A)t−
1

(β + γ)
dA

c

t

+
∑

0<t≤s

E(A)t−
1

(β + γ + βγ∆At)
∆At

)
dAs

=

∫ T

0

E(γA)−1
s |δys|2

(∫ s

0

E(A)t−
1

(β + γ + βγ∆At)
dA

c

t

+
∑

0<t≤s

E(A)t−
1

(β + γ + βγ∆At)
∆At

)
dAs

=

∫ T

0

E(γA)−1
s |δys|2

∫ s

0

E(A)t−
1

(β + γ + βγ∆At)
dAtdAs

≤
∫ T

0

E(γA)−1
s |δys|2

1

(β + γ)

∫ s

0

E(A)t−dAtdAs

≤ 1

β + γ

∫ T

0

E(γA)−1
s |δys|2E(A)sdAs

=
1

β + γ

∫ T

0

E(γA)−1
s |δys|2E(βA)sE(γA)sdAs

=
1

β + γ

∫ T

0

E(βA)s|δys|2dAs. (5.33)

Here the seventh line follows from A
c

= (β + γ)Ac and ∆A = (β + γ)∆A + βγ(∆A)2 =

(β + γ + βγ∆A)∆A, the eigth line follows from the fact that dA
c

puts no mass on the
points s ∈ (0,∞) where ∆As 6= 0, and the tenth line follows from β + γ ≤ β + γ + βγ∆A.
This then yields

E

[ ∫ T

0

E(βA)t−E(γA)t−

∫ T

t−
E(γA)−1

s |δys|2dAsdAt

]1/2

≤
(

1

β + γ

)1/2

E

[ ∫ T

0

E(βA)s|δys|2dAs

]1/2

=

(
1

β + γ

)1/2

‖αδy‖H2
T ,β
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≤
(

1

β + γ

)1/2(
fΦ(β)

)1/2∥∥∥∥δfα
∥∥∥∥
H2
T ,β

=

(
1

β + γ

)1/2(
4(1 + βΦ)

β2

)1/2∥∥∥∥δfα
∥∥∥∥
H2
T ,β

. (5.34)

Here the inequality on the third line follows from (5.27). We now combine Equation (5.32)
and Equation (5.34) and find that

E

[ ∫ T

0

E(βA)t−

∫ T

t−
|δysδfs|dCsdAt

]
≤
(

1

β + γ

)1/2(
4(1 + βΦ)

β2

)1/2(
(1 + γΦ)

(β − γ)

)1/2∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

.

Since γ ∈ (0, β) was arbitrary, we find

E

[ ∫ T

0

E(βA)t−

∫ T

t−
|δysδfs|dCsdAt

]
≤

(
inf

γ∈(0,β)

{
(1 + γΦ)

(β2 − γ2)

}
4(1 + βΦ)

β2

)1/2∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

=

(
1

β2

4(1 + βΦ)

β2

)1/2∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

=
2

β2
(1 + βΦ)1/2

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

. (5.35)

We now bound the last summand in (5.31). Since∫ T

t−
(δfs)

2d[C]s =
∑

t≤s≤T

1{s<∞}(δfs)
2(∆Cs)

2 =
∑

t≤s≤T

1{s<∞}(|δfs|∆Cs)2

≤
( ∑
t≤s≤T

1{s<∞}|δfs|∆Cs
)2

≤
(∫ T

t−
|δfs|dCs

)2

= |F (t−)|2,

it follows from (5.23) that

E

[ ∫ T

0

E(βA)t−

∫ T

t−
(δfs)

2d[C]sdAt

]
≤ E

[ ∫ T

0

E(βA)t−|F (t−)|2dAt

]
≤ inf
γ∈(0,β)

{
(1 + γΦ)

γ(β − γ)

}∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

(5.36)

by arbitrariness of γ ∈ (0, β). We now turn to the first expectation on the second line
in (5.31). We find

E
[
〈δη〉T + [δkr]T + [δk`]T

]
≤ −E

[
(δy0)2

]
+ 2E

[ ∫ T

0

δysδfsdCs

]
+ E

[ ∫ T

0

(δfs)
2d[C]s

]
≤ −E

[
(δy0)2

]
+ 2E

[
sup

s∈[0,T ]

|δys|
∫ T

0

|δfs|dCs
]

+ E

[(∫ T

0

|δfs|dCs
)2]

≤ −E
[
(δy0)2

]
+ 2E

[
sup

s∈[0,T ]

|δys|2
]1/2

E

[(∫ T

0

|δfs|dCs
)2]1/2

+ E

[(∫ T

0

|δfs|dCs
)2]

≤ −E
[
(δy0)2

]
+ 2

2

β1/2

∥∥∥∥δfα
∥∥∥∥
H2
T ,β

1

β1/2

∥∥∥∥δfα
∥∥∥∥
H2
T ,β

+
1

β

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

= −E
[
(δy0)2

]
+

5

β

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

(5.37)

EJP 29 (2024), paper 66.
Page 40/82

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1123
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Reflections on BSDEs

Here, the second-to-last line follows from (5.24). We substitute (5.37), (5.36) and (5.35)
into (5.31) and find

E
[
(δy0)2

]
+

β

(1 + βΦ)
‖αδy−‖2H2

T ,β
+ ‖δη‖2H2

T ,β

+ E

[ ∫ T

0

E(βA)sd[δkr]s

]
+ E

[ ∫ T

0

E(βA)sd[δk`]s

]
≤ E

[
(δy0)2

]
+ βE

[ ∫ T

0

E(βA)s−|δys−|2dAs

]
+ ‖δη‖2H2

T ,β

+ E

[ ∫ T

0

E(βA)sd[δkr]s

]
+ E

[ ∫ T

0

E(βA)sd[δk`]s

]
≤
(

5

β
+ (2β)

2

β2
(1 + βΦ)1/2 + β inf

γ∈(0,β)

{
(1 + γΦ)

γ(β − γ)

})∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

=

(
5

β
+

4

β
(1 + βΦ)1/2 + βgΦ(β)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

.

In particular, this implies

min

{
1,

β

(1 + βΦ)

}(
‖αδy−‖2H2

T ,β
+ ‖δη‖2H2

T ,β

)
≤ β

(1 + βΦ)
‖αδy−‖2H2

T ,β
+ ‖δη‖2H2

T ,β
≤
(

5

β
+

4

β
(1 + βΦ)1/2 + βgΦ(β)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

,

and therefore

‖δy‖2S2
T

+ ‖αδy−‖2H2
T ,β

+ ‖δη‖2H2
T ,β

≤

(
4

β
+ max

{
1,

(1 + βΦ)

β

}(
5

β
+

4

β
(1 + βΦ)1/2 + βgΦ(β)

))∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

= MΦ
3 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

.

The inequalities involving MΦ
1 (β) or MΦ

2 (β) follow immediately.

Finally, we turn to the inequality involving ηi. Similar to before, we choose V =

〈δηi〉+ [kr,i] + [kr,`] in (5.29) and find

‖ηi‖2H2
T ,β

+ E

[ ∫ T

0

E(βA)sd[kr,i]s

]
+ E

[ ∫ T

0

E(βA)sd[k`,i]s

]
= E

[
〈ηi〉T + [kr,i]T + [k`,i]T

]
+ βE

[ ∫ T

0

E(βA)t−

∫ T

t−
d(〈ηi〉+ [kr,i] + [k`,i])sdAt

]
. (5.38)

To bound the first expectation on the last line, we apply (5.7) and find

E
[
〈ηi〉T + [kr,i]T + [k`,i]T

]
≤ −E

[
|yi0|2

]
+ LE

[
|ξT |2 + sup

u∈[0,∞]

|ξ+
u 1{u<T}|2 +

(∫ T

0

|f iu|dCu
)2]

≤ −E
[
|yi0|2

]
+ L‖ξT ‖2L2 + L‖ξ+1J0,T M‖2S2

T
+
L

β

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

,

EJP 29 (2024), paper 66.
Page 41/82

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1123
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Reflections on BSDEs

where the last inequality follows from (5.26). To bound the second expectation on the
last line of (5.38), we apply (5.8) and then (5.23) and find

E

[ ∫ T

0

E(βA)t−

∫ T

t−
d(〈ηi〉+ [kr,i] + [k`,i])sdAt

]
≤ −E

[ ∫ T

0

E(βA)t−|yit−|2dAt

]
+ LE

[ ∫ T

0

E(βA)t−

(
|ξT |2 + | ∗ξt|2 +

(∫ T

t−
|f is|dCs

)2)
dAt

]
≤ −E

[ ∫ T

0

E(βA)t−|yit−|2dAt

]
+ L‖ξT ‖2L2

β
+ L‖α ∗ξ‖2H2

T ,β
+ L inf

γ∈(0,∞)

{
(1 + γΦ)

γ(β − γ)

}∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

.

We now substitute this back into (5.38) and find after a rearrangement of the terms that

E
[
|yi0|2

]
+

β

(1 + βΦ)
‖αyi−‖2H2

T ,β
+ ‖ηi‖2H2

T ,β

+ E

[ ∫ T

0

E(βA)sd[kr,i]s

]
+ E

[ ∫ T

0

E(βA)sd[k`,i]s

]
≤ E

[
|yi0|2

]
+ βE

[ ∫ T

0

E(βA)s−|yis−|2dAs

]
+ ‖ηi‖2H2

T ,β

+ E

[ ∫ T

0

E(βA)sd[kr,i]s

]
+ E

[ ∫ T

0

E(βA)sd[k`,i]s

]
≤ L

(
‖ξT ‖2L2 + ‖ξ+1J0,T M‖2S2

T
+

1

β

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

+ β

(
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T ,β
+ inf
γ∈(0,∞)

{
(1 + γΦ)

γ(β − γ)

}∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

))

= L

(
‖ξT ‖2L2 + ‖ξ+1J0,T M‖2S2

T
+

1

β

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

+ β

(
‖ξT ‖2L2

β
+ ‖α ∗ξ‖2H2

T ,β
+ gΦ(β)

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

))
.

This completes the proof.

Although the a priori estimates in Proposition 5.1 also hold for non-reflected BSDEs,
we obtain sharper bounds by redoing them in this special case. Furthermore, as previ-
ously indicated in Remark 3.10. (iv), the techniques we employ below do not rely on
Itô’s formula, and an extension to BSDEs with multi-dimensional generator and terminal
condition is straightforward. As before, we use the convention ζ0− := 0 for a process
ζ = (ζt)t∈[0,∞].

Proposition 5.4. Suppose that ξ = −∞ on [0, T ). Then

|δyS |2 + E

[ ∫ T

S

d〈δη〉u
∣∣∣∣GS] = E

[(∫ T

S

|δfu|dCu
)2∣∣∣∣GS], P–a.s., S ∈ T0,∞,

|δyS−|2 + E

[ ∫ T

S−
d〈δη〉u

∣∣∣∣GS−] = E

[(∫ T

S−
|δfu|dCu

)2∣∣∣∣GS−], P–a.s., S ∈ T p0,∞.
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Moreover, for β ∈ (0,∞),

β

(1 + βΦ)
‖αδy−‖2H2

T ,β
+ ‖δη‖2H2

T ,β
≤
(

1

β
+ βgΦ(β)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

,

and thus17

‖δy‖2S2
T

+ ‖αδy‖2H2
T,β

+ ‖αδy−‖2H2
T,β

+ ‖δη‖2H2
T,β
≤ M̃Φ

1 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

,

‖αδy‖2H2
T,β

+ ‖δη‖2H2
T,β
≤ M̃Φ

2 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

‖δy‖2S2
T

+ ‖αδy−‖2H2
T,β

+ ‖δη‖2H2
T,β
≤ M̃Φ

3 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

.

Proof. As in the proof of Proposition 5.1, we slightly abuse notation and denote by
E[W·|G·] and E[W·|G·−] the optional and predictable projection, respectively, of a non-
negative, measurable process W = (Wt)t∈[0,∞].

Note first that
∫ T
t

d(δη)s = −δyt+
∫ T
t
δfsdCs = −E

[ ∫ T
t
δfsdCs

∣∣Gt]+∫ Tt δfsdCs, which
implies

E

[ ∫ T

t

d〈δη〉s
∣∣∣∣Gt] = E

[(∫ T

t

d(δη)s

)2∣∣∣∣Gt]
= E

[(∫ T

t

δfsdCs

)2∣∣∣∣Gt]− (E[ ∫ T

t

δfsdCs

∣∣∣∣Gt])2

= E

[(∫ T

t

δfsdCs

)2∣∣∣∣Gt]− (δyt)
2, t ∈ [0,∞], P–a.s. (5.39)

A similar argument, but now using the predictable projection, implies

(δyt−)2 + E

[ ∫ T

t−
d〈δη〉s

∣∣∣∣Gt−] = E

[(∫ T

t−
|δfs|dCs

)2∣∣∣∣Gt−], t ∈ [0,∞], P–a.s. (5.40)

As in the proof of Proposition 5.1, we have

E

[ ∫ T

0

E(βA)sd〈δη〉s
]

= E[〈δη〉T ] + βE

[ ∫ T

0

E(βA)s−

∫ T

t−
d〈δη〉sdAt

]
= E[〈δη〉T ] + βE

[ ∫ T

0

E(βA)s−

(∫ T

t−
|δfs|dCs

)2

dAt

]
− βE

[ ∫ T

0

E(βA)s−|δyt−|2dAt

]
.

We now rearrange the terms and find for γ ∈ (0, β) arbitrary that

βE

[ ∫ T

0

E(βA)s−|δys−|2dAs

]
+ E

[ ∫ T

0

E(βA)sd〈δη〉s
]

= E[〈δη〉T ] + βE

[ ∫ T

0

E(βA)s−

(∫ T

t−
|δfs|dCs

)2

dAt

]
≤
(

1

β
+ β

(1 + γΦ)

γ(β − γ)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

.

17Recall the definition of M̃Φ
1 , M̃Φ

2 and M̃Φ
3 from Section 3.2.
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Here the inequality follows from (5.22), (5.23), (5.39) and (5.40). Hence

βE

[ ∫ T

0

E(βA)s−|δys−|2dAs

]
+ E

[ ∫ T

0

E(βA)sd〈δη〉s
]
≤
(

1

β
+ βgΦ(β)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

.

Since

β

(1 + βΦ)
‖αδy−‖2H2

T ,β
=

β

(1 + βΦ)
E

[ ∫ T

0

E(βA)s|δyt−|2dAt

]
=

β

(1 + βΦ)
E

[ ∫ T

0

E(βA)s−(1 + β∆As)|δyt−|2dAt

]
≤ βE

[ ∫ T

0

E(βA)s−|δyt−|2dAt

]
,

we thus have

min

{
1,

β

(1 + βΦ)

}(
‖αδy−‖2H2

T ,β
+ ‖δη‖2H2

T ,β

)
≤ β

(1 + βΦ)
‖αδy−‖2H2

T ,β
+ ‖δη‖2H2

T ,β

≤
(

1

β
+ βgΦ(β)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

,

which implies

‖αδy−‖2H2
T ,β

+ ‖δη‖2H2
T ,β
≤ max

{
1,

(1 + βΦ)

β

}(
1

β
+ βgΦ(β)

)∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

Together with ‖δy‖2S2
T
≤ 4

β

∥∥ δf
α

∥∥2

H2
T ,β

from Proposition 5.1, we find

‖δy‖2S2
T

+ ‖αδy−‖2H2
T ,β

+ ‖δη‖2H2
T ,β
≤
(

4

β
+ max

{
1,

(1 + βΦ)

β

}(
1

β
+ βgΦ(β)

))∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

= M̃Φ
3 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

.

Finally, since by Proposition 5.1 ‖αδy‖2H2
T ,β
≤ fΦ(β)

∥∥ δf
α

∥∥2

H2
T ,β

, we find the remaining two

bounds

‖δy‖2S2
T

+ ‖αδy‖2H2
T,β

+ ‖αδy−‖2H2
T,β

+ ‖δη‖2H2
T,β
≤ M̃Φ

1 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

,

‖αδy‖2H2
T,β

+ ‖δη‖2H2
T,β
≤ M̃Φ

2 (β)

∥∥∥∥δfα
∥∥∥∥2

H2
T,β

.

This completes the proof.

Remark 5.5. We note here that with (5.2), (5.25) and (5.26), we find

‖δy‖2T 2
T
≤ 1

β

∥∥∥∥δfα
∥∥∥∥2

H2
T ,β

and ‖yi‖2T 2
T
≤ 3

(
‖ξT ‖2L2 +

∥∥∥ sup
u∈[0,T )

ξ+
u

∥∥∥2

L2

+
1

β

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

)
, i ∈ {1, 2}.

Hence, we could substitute the S2
T –norm ‖ · ‖S2

T
with the T 2

T –norm18 ‖ · ‖T 2
T

in both Propo-

sition 5.1 and 5.4. This would involve adjusting the constants MΦ
1 (β), MΦ

3 (β), M̃Φ
1 (β)

and M̃Φ
3 (β) in a similar manner as discussed in Remark 3.5 and 3.8.

18We refer to Remark 3.5 for the definition of ‖ · ‖T 2
T

.
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Remark 5.6. Since our existence and uniqueness result is in spirit similar to the one
presented in [113], we want to comment here on the constant appearing in their con-
traction argument. Note that the weights used in [113] are exponential functions and
not stochastic exponentials as in our setting. Inequality (3.24) in [113] reads

‖δη‖2H2
T ,β
≤ βE

[ ∫ T

0

eβAt

∫ T

t

d〈δη〉sdAt
]

+ E[〈δη〉T ].

This differs from our Inequality (5.30) since {t} is not included in the domain of inte-
gration of the innermost integral. However, the above inequality is derived by applying
Tonelli’s theorem to∫ T

0

eβAsd〈δη〉s ≤ β
∫ T

0

∫ s

0

eβAtdAtd〈δη〉s + 〈δη〉T ,

and as we saw in the proofs of this section, changing the order of integration necessitates
including {t} in the domain of integration of the innermost integral. Consequently, a
weighted bound on F (t−) rather than on F (t) (see (5.13)) is required. Hence, an
additional term of the form e(γ∨β)Φ should appear in the contraction constant MΦ(β̂) in
[113]. It now seems that no closed-form expression for this contraction constant can be
derived. Therefore, one naturally has to resort to employing numerical schemes.

For the sake completeness, we close this section with the following weighted bound
on the increasing processes (kr, k`). We have refrained from including this estimate
in Proposition 5.4 as we will not need it in the contraction argument. To state the bound,
we define the function j : [0,∞)3 −→ [0,∞) by the formula

j(γ, β,Ψ) := max

{
γ

β − γ
,

(
√

1 + γΨ− 1)
√

1 + βΨ√
1 + βΨ−

√
1 + γΨ

}

= max

{
γ

β − γ
,

(
√

1 + γΨ− 1)
√

1 + βΨ
(√

1 + βΨ +
√

1 + γΨ
)

(β − γ)Ψ

}
.

Here we use the convention 0 := 0/0.

Proposition 5.7. Let (γ, β) ∈ (0,∞)2 with γ < β. For each i ∈ {1, 2},

‖kr,i‖2I2
T ,γ

+ ‖k`,i‖2I2
T ,γ
≤ 3

(
‖ηi‖2H2

T ,γ
+ 108 max{1, j(γ, β,Φ)}2

(
‖ξT ‖2L2

γ
+ ‖ξ+

· 1{·<T}‖2S2
T ,γ

)
+
(
108 max{1, j(γ, β,Φ)}2 + 1

) (1 + γΦ)

β − γ

∥∥∥∥f iα
∥∥∥∥2

H2
T ,β

)
. (5.41)

Remark 5.8. To formulate a bound on ‖kr,i‖I2
T ,γ

and ‖k`,i‖I2
T ,γ

solely by terms involv-
ing f i and ξi, one can combine the previous result with the bound on ‖ηi‖H2

T ,γ
from

Proposition 5.1.

Proof. We fix i ∈ {1, 2} and thus drop the superscript i for ease of notation. Moreover,
we suppose without loss of generality that the right side of (5.41) is finite. In a first step,
we fix t ∈ [0,∞) and apply Itô’s formula for optional semi-martingales to the function
f(x, z) = xz for (x, z) ∈ R2, see [60, Theorem A.3] or [95, page 538], and find

E(γA)
1/2
t yt

= E(γA)
1/2
0 y0 +

∫
(0,t]

ys−dE(γA)1/2
s −

∫
(0,t]

E(γA)
1/2
s− fsdCs
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+

∫
(0,t]

E(γA)s−dηs −
∫

(0,t]

E(γA)
1/2
s− dkrs −

∫
[0,t)

E(γA)1/2
s dk`s

+
∑
s∈(0,t]

(
E(γA)1/2

s ys − E(γA)
1/2
s− ys− − ys−∆(E(γA)1/2)s − E(γA)

1/2
s− ∆ys

)
+
∑
s∈[0,t)

(
E(γA)

1/2
s+ ys+ − E(γA)1/2

s ys − ys
(
E(γA)

1/2
s+ − E(γA)1/2

s

)
− E(γA)1/2

s (ys+ − ys)
)

= E(γA)
1/2
0 y0 +

∫
(0,t]

ys−dE(γA)1/2
s −

∫
(0,t]

E(γA)
1/2
s− fsdCs

+

∫
(0,t]

E(γA)s−dηs −
∫

(0,t]

E(γA)
1/2
s− dkrs −

∫
[0,t)

E(γA)1/2
s dk`s

+
∑
s∈(0,t]

(
ys(E(γA)1/2

s − E(γA)
1/2
s− )− ys−(E(γA)1/2

s − E(γA)
1/2
s− )

)
= E(γA)

1/2
0 y0 +

∫
(0,t]

ys−dE(γA)1/2
s −

∫
(0,t]

E(γA)
1/2
s− fsdCs

+

∫
(0,t]

E(γA)s−dηs −
∫

(0,t]

E(γA)
1/2
s− dkrs −

∫
[0,t)

E(γA)1/2
s dk`s

+
∑
s∈(0,t]

(
(ys − ys−)(E(γA)1/2

s − E(γA)
1/2
s− )

)
= E(γA)

1/2
0 y0 +

∫
(0,t]

ys−dE(γA)1/2
s −

∫
(0,t]

E(γA)
1/2
s− fsdCs

+

∫
(0,t]

E(γA)s−dηs −
∫

(0,t]

E(γA)
1/2
s− dkrs −

∫
[0,t)

E(γA)1/2
s dk`s

+
∑
s∈(0,t]

(
− fs∆E(γA)1/2

s ∆Cs + ∆E(γA)1/2
s ∆ηs −∆E(γA)1/2

s ∆krs

)
= E(γA)

1/2
0 y0 +

∫
(0,t]

ys−dE(γA)1/2
s −

∫
(0,t]

E(γA)1/2
s fsdCs

+

∫
(0,t]

E(γA)1/2
s dηs −

∫
(0,t]

E(γA)1/2
s dkrs −

∫
[0,t)

E(γA)1/2
s dk`s, t ∈ [0,∞), P–a.s.

(5.42)

Here we used the fact that E(γA)1/2 is predictable and non-decreasing, thus locally
bounded. We now analyze the terms in (5.42) one by one. First, Lemma C.1. (iii)

implies that E(γA)1/2 = E(Dγ), and E(βA)1/2 = E(Dβ), where Dγ = (Dγ)t∈[0,∞) and
Dβ = (Dβ)t∈[0,∞) are the predictable processes satisfying

Dγ
t =

γ

2
Act +

∑
s∈(0,t]

(√
1 + γ∆As − 1

)
, t ∈ [0,∞), P–a.s.,

and

Dβ
t =

β

2
Act +

∑
s∈(0,t]

(√
1 + β∆As − 1

)
, t ∈ [0,∞), P–a.s.

Recall that Ac denotes the continuous part of the process A. We bound the second term
on the right of (5.42) as follows∫

(0,t]

ys−dE(γA)1/2
s =

∫
(0,t]

E(βA)
1/2
s− ys−

1

E(βA)
1/2
s−

dE(γA)1/2
s

≤ sup
s∈(0,t)

{
E(βA)1/2

s |ys|
}∫

(0,t]

1

E(βA)
1/2
s−

dE(γA)1/2
s
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≤ sup
s∈(0,t)

{
E(βA)1/2

s |ys|
}∫

(0,t]

1

E(Dβ)s−
dE(Dγ)s

= sup
s∈(0,t)

{
E(βA)1/2

s |ys|
}∫

(0,t]

1

E(Dβ)s−
E(Dγ)s−dDγ

s , P–a.s. (5.43)

By Lemma C.1. (ii), we can write E(Dβ)−1E(Dγ) = E(D̂γ,β), where D̂γ,β = (D̂γ,β
t )t∈[0,∞)

is the predictable process satisfying

D̂γ,β
t = Dγ,c

t −D
β,c
t +

∑
s∈(0,t]

∆Dγ
s −∆Dβ

s

1 + ∆Dβ
s

= − (β − γ)

2
Act −

∑
s∈(0,t]

√
1 + β∆As −

√
1 + γ∆As√

1 + β∆As
, t ∈ [0,∞), P–a.s.

Note that ∆D̂γ,β ≥ −1 although D̂γ,β is non-increasing. Then∫
(0,t]

E(D̂γ,β)s−dDγ
s =

∫
(0,t]

E(D̂γ,β)s−dDγ,c
s +

∑
s∈(0,t]

E(D̂γ,β)s−∆Dγ
s

=
γ

2

∫
(0,t]

E(D̂γ,β)s−dAcs +
∑
s∈(0,t]

E(D̂γ,β)s−
(√

1 + γ∆As − 1
)

=
γ

β − γ

∫
(0,t]

E(D̂γ,β)s−
(β − γ)

2
dAcs

+
∑
s∈(0,t]

E(D̂γ,β)s−
(
√

1 + γ∆As − 1)
√

1 + β∆As√
1 + β∆As −

√
1 + γ∆As

∆(−D̂γ,β)s

=
γ

β − γ

∫
(0,t]

E(D̂γ,β)s−d(−D̂γ,c)s

+
∑
s∈(0,t]

E(D̂γ,β)s−
(
√

1 + γ∆As − 1)
√

1 + β∆As√
1 + β∆As −

√
1 + γ∆As

∆(−D̂γ,β)s

≤ l(γ, β)

∫
(0,t]

E(D̂γ,β)s−d(−D̂γ)s

= l(γ, β)

(
1− E(Dγ)t
E(Dβ)t

)
≤ l(γ, β), P–a.s., (5.44)

where the last inequality follows from 1 ≤ E(Dγ) ≤ E(Dβ), and where

l(γ, β) := max

{
γ

β − γ
, sup
s∈[0,∞)

(
√

1 + γ∆As − 1)
√

1 + β∆As√
1 + β∆As −

√
1 + γ∆As

}
.

Let [0,∞) 3 x 7−→ k(γ, β, x) ∈ [0,∞) be defined by

k(γ, β, x) :=
(
√

1 + γx− 1)
√

1 + βx√
1 + βx−

√
1 + γx

=
(
√

1 + γx− 1)
√

1 + βx(
√

1 + βx+
√

1 + γx)

(β − γ)x
.

Then

∂

∂x
k(γ, β, x) =

βγx2(
√

1 + βx+
√

1 + γx)

2x2(β − γ)
√

1 + βx
√

1 + γx

+
x(β + γ − β

√
1 + γx− γ

√
1 + βx) + 2(

√
1 + βx− 1)(

√
1 + γx− 1)

2x2(β − γ)
√

1 + βx
√

1 + γx
,
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and by using
√

1 + x ≤ 1 + x/2, for x ≥ −1, we deduce ∂
∂x k(γ, β, x) ≥ 0. This implies that

x 7−→ k(γ, β, x) is non-decreasing, and therefore

l(γ, β) ≤ max

{
γ

β − γ
,

(
√

1 + γΦ− 1)
√

1 + βΦ√
1 + βΦ−

√
1 + γΦ

}
= j(γ, β,Φ), P–a.s. (5.45)

We deduce from (5.45), (5.44) and (5.43) that∫
(0,t]

ys−dE(γA)1/2
s ≤ j(γ, β,Φ) sup

s∈(0,t)

{
E(βA)1/2

s |ys|
}
, P–a.s. (5.46)

We turn to the third term on the right of (5.42). Cauchy–Schwarz’s inequality
and Lemma C.1. (ii) yields(∫

(0,t]

E(γA)1/2
s |fs|dCs

)2

(5.47)

≤
(∫

(0,t]

1

E(βA)s
E(γA)sdAs

)(∫
(0,t]

E(βA)s
|fs|2

α2
s

dCs

)
=

(∫
(0,t]

E(Âγ,β)sdAs

)(∫
(0,t]

E(βA)s
|fs|2

α2
s

dCs

)
, P–a.s., (5.48)

where Âγ,β is the predictable process satisfying

Âγ,βt = −(β − γ)Act −
∑
s∈(0,t]

(β − γ)
∆As

1 + β∆As
, t ∈ [0,∞), P–a.s.

We now explicitly bound the integral∫
(0,t]

E(Âγ,β)sdAs =

∫
(0,t]

E(Âγ,β)sdA
c
s +

∑
s∈(0,t]

E(Âγ,β)s∆As

=
1

(γ − β)

∫
(0,t]

E(Âγ,β)s(1 + β∆As)(γ − β)dAcs

+
1

(γ − β)

∑
s∈(0,t]

E(Âγ,β)s(1 + β∆As)(γ − β)
∆As

1 + β∆As

=
1

(γ − β)

∫
(0,t]

E(Âγ,β)s(1 + β∆As)d
(
Âγ,β

)c
s

+
1

(γ − β)

∑
s∈(0,t]

E(Âγ,β)s(1 + β∆As)∆Â
γ,β
s

=
1

(γ − β)

∫
(0,t]

E(Âγ,β)s(1 + β∆As)dÂ
γ,β
s

=
1

(γ − β)

∫
(0,t]

E(Âγ,β)s−(1 + ∆Âγ,βs )(1 + β∆As)dÂ
γ,β
s

=
1

(γ − β)

∫
(0,t]

E(Âγ,β)s−(1 + γ∆As)dÂ
γ,β
s

≤ (1 + γΦ)

(γ − β)

∫
(0,t]

E(Âγ,β)s−dÂγ,βs

=
(1 + γΦ)

(γ − β)

(
E(Âγ,β)t − 1

)
=

(1 + γΦ)

(β − γ)

(
1− E(γA)t

1

E(βA)t

)
≤ (1 + γΦ)

(β − γ)
, P–a.s. (5.49)
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Here the third-to-last line follows from E(Âγ,β) = E(γA)/E(βA) > 0 and from the fact
that Âγ,β/(γ − β) is non-decreasing since γ − β < 0 and since Âγ,β is non-increasing, and
the last inequality follows from 0 < E(γA) ≤ E(βA). Combining (5.49) and (5.47) yields(∫

(0,t]

E(γA)1/2
s |fs|dCs

)2

≤ (1 + γΦ)

(β − γ)

(∫
(0,t]

E(βA)s
|fs|2

α2
s

dCs

)
, P–a.s. (5.50)

Combining (5.46) and (5.42), then rearranging the terms and applying (a + b + c)2 ≤
3(a2 + b2 + c2) yields(∫

(0,t]

E(γA)1/2
s dkrs +

∫
[0,t)

E(γA)1/2
s dk`s

)2

≤ 3

(
9 max{1, j(γ, β,Φ)}2 sup

s∈[0,t]

{E(γA)|yt|2}

+

(∫ t

0

E(γA)1/2
s |fs|dCs

)2

+

(∫ t

0

E(γA)1/2
s dηs

)2
)
, P–a.s. (5.51)

We now plug Equation (5.50) into Equation (5.51), let t ↑↑ ∞ in the resulting inequality
and then take the expectation and find19

‖kr‖2I2
T ,γ

+ ‖k`‖2I2
T ,γ
≤ E

[(∫ T

0

E(γA)1/2
s dkrs +

∫ T

0

E(γA)1/2
s dk`s

)2]
≤ 3

(
9 max{1, j(γ, β,Φ)}2‖y‖2S2

T ,γ
+ ‖η‖2H2

T ,γ
+

(1 + γΦ)

(β − γ)

∥∥∥∥fα
∥∥∥∥2

H2
T ,β

)
.

It remains to bound ‖y‖2S2
T ,γ

by terms involving f and ξ. Lemma 5.2 implies

E(γA)
1/2
S |yS |

≤ E
[
|E(γA)

1/2
T ξT |+ sup

u∈[0,∞]

|E(γA)1/2
u ξ+

u 1{u<T}|+
∫ T

0

E(γA)1/2
u |fu|dCu

∣∣∣∣GS]

≤
√

3E

[√√√√|E(γA)
1/2
T ξT |2 + sup

u∈[0,∞]

|E(γA)
1/2
u ξ+

u 1{u<T}|2 +

(∫ T

0

E(γA)
1/2
u |fu|dCu

)2
∣∣∣∣∣GS
]
,

P–a.s., for S ∈ T0,T , and Doob’s L2-inequality for martingales leads to

‖y‖2S2
T ,γ
≤ 12

(
‖ξT ‖2L2

γ
+ ‖ξ+

· 1{·<T}‖2S2
T ,γ

+
(1 + γΦ)

(β − γ)

∥∥∥∥fα
∥∥∥∥2

H2
T ,β

)
.

This yields

‖kr‖2I2
T ,γ

+ ‖k`‖2I2
T ,γ
≤ 3

(
‖η‖2H2

T ,γ
+ 108 max{1, j(γ, β,Φ)}2

(
‖ξT ‖2L2

γ
+ ‖ξ+

· 1{·<T}‖2S2
T ,γ

)
+
(
1 + 108 max{1, j(γ, β,Φ)}2

) (1 + γΦ)

β − γ

∥∥∥∥fα
∥∥∥∥2

H2
T ,β

)
,

which completes the proof.

19We refer to Section 2.5 for the conventions we agreed upon when writing an integral of the form
∫ T
0 .
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5.1 Proof of Lemma 5.2 and Lemma 5.3

Proof of Lemma 5.2. Let us first discuss how to deduce (5.3) from (5.2) and (5.4). Sup-
pose that V = (Vt)t∈[0,∞] and V ′ = (V ′t )t∈[0,∞] are two product-measurable processes
whose P–almost all paths admit limits from the left on (0,∞], such that E[supu∈[0,∞] |Vu|]+
E[supu∈[0,∞] |V ′u|] < ∞ and E[Vt|Gt] ≤ E[V ′t |Gt], P–a.s., t ∈ [0,∞]. An application
of Lemma C.5 yields E[Vt−|Gt−] ≤ E[V ′t−|Gt−], P–a.s., t ∈ [0,∞]. Here we use the
conventions V0− := 0, V ′0− := 0 and G0− := G0. Let us denote by W = (Wt)t∈[0,∞] and
W ′ = (W ′t )t∈[0,∞] the processes Wt := Vt− and W ′t := V ′t−, respectively. We write pW and
p
W ′ for the predictable projections of W and W ′. Since the predictable projection of a

process with P–a.s. left-continuous paths also has P–a.s. left-continuous paths (see [41,
Theorem VI.47 and Remark VI.50.(f)]), we find from

pWt = E[Vt−|Gt−] ≤ E[V ′t−|Gt−] =
p
W ′t , P–a.s., t ∈ [0,∞],

that pWt ≤ p
W ′t , t ∈ [0,∞], P–almost surely. Sampling pW and p

W ′ at a predictable
stopping time S ∈ T0,∞ thus yields

E[VS−|GS−] = E[WS |GS−] = pWS ≤
p
W ′S = E[W ′S |GS−] = E[V ′S−|GS−], P–a.s.

We now turn to the proof of (5.2) and (5.4). Note first that

y1
S = ess sup

τ∈TS,∞

GSE

[
ξτ∧T +

∫ τ∧T

S

f2
s dCs +

∫ τ∧T

S

δfudCu

∣∣∣∣GS]
≤ ess sup

τ∈TS,∞

GSE

[
ξτ∧T +

∫ τ∧T

S

f2
s dCs

∣∣∣∣GS]+ ess sup
τ∈TS,∞

GSE

[ ∫ τ∧T

S

|δfu|dCu
∣∣∣∣GS]

≤ y2
S + ess sup

τ∈TS,∞

GSE

[ ∫ τ∧T

S

|δfu|dCu
∣∣∣∣GS], P–a.s., S ∈ T0,∞,

which, since yiS ∈ L2 by Lemma 4.2 and Lemma 4.3, leads by symmetry to

|δyS | = |y1
S − y2

S | ≤ ess sup
τ∈TS,∞

GSE

[ ∫ τ∧T

S

|δfu|dCu
∣∣∣∣GS]

≤ E
[ ∫ T

S

|δfu|dCu
∣∣∣∣GS], P–a.s., S ∈ T0,∞.

We now have |δyS | ≤ MS , P–a.s., S ∈ T0,∞, where M = (Mt)t∈[0,∞] is the martingale
satisfying

MS = E

[ ∫ T

0

|δfu|dCu
∣∣∣∣GS], P–a.s., S ∈ T0,∞.

By Proposition C.3, we find

E

[
sup

s∈[0,∞]

|δy|2
]
≤ E

[
sup

s∈[0,∞]

|Ms|2
]
≤ 4E[|M∞|2] = 4E

[(∫ T

0

|δfu|dCu
)2]

.

We turn to the inequalities containing only yi for i ∈ {1, 2}, and drop the superscripts
from now on due to the symmetry of the problem. As in the proof of Lemma 4.2, we find

− E
[
|ξT |

∣∣GS]− E[ ∫ T

S

|fu|dCu
∣∣∣∣GS]

≤ yS ≤ E
[

sup
u∈[S,∞]

|ξ+
u∧T |+

∫ T

S

|fu|dCu
∣∣∣∣GS], P–a.s., S ∈ T0,∞,
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and thus

|yS | ≤ E
[
|ξT |+ sup

u∈[S,∞]

|ξ+
u 1{u<T}|+

∫ T

S

|fu|dCu

∣∣∣∣∣GS
]
, P–a.s., S ∈ T0,∞.

By abusing notation, let M = (Mt)t∈[0,∞] now be the martingale satisfying

MS = E

[
|ξT |+ sup

u∈[0,T )

|ξ+
u |+

∫ T

0

|fu|dCu
∣∣∣∣GS], P–a.s., S ∈ T0,∞.

We derive similarly to before that

E

[
sup

s∈[0,∞]

|ys|2
]
≤ E

[
sup

s∈[0,∞]

|Ms|2
]
≤ 4E[|M∞|2]

= 4E

[(
|ξT |+ sup

u∈[0,T )

|ξ+
u |+

∫ T

0

|fu|dCu
)2]

≤ 12E

[
|ξT |2 + sup

u∈[0,T )

|ξ+
u |2 +

(∫ T

0

|fu|dCu
)2]

,

where in the last inequality we used (a + b + c)2 ≤ 3(a2 + b2 + c2). This completes the
proof.

Proof of Lemma 5.3. As in the proof of Lemma 5.2, it suffices to prove (5.5) and (5.7).
We start with (5.5). Although we fix (t, t′) ∈ [0,∞) with t ≤ t′ to ease the notation, the
equalities and inequalities that follow should be read as holding, up to a P–null set, for
each pair (t, t′) ∈ [0,∞) with t ≤ t′ unless stated otherwise. Note that the processes
under consideration are all constant after time T apart from C and f . From (5.1a), we
see that δy satisfies

δyt = δy0 −
∫ t

0

δfs1[0,T ](s)dCs + δηt − δkrt − δk`t−, t ∈ [0,∞], P–a.s.

To ease the notation and without loss of generality, we suppose that δfs = δfs1[0,T ](s) and
ξs = ξs∧T . By an application of the Gal’chouk–Itô–Lenglart formula (see [60, Theorem A.3
and Corollary A.2] or [59, Theorem 8.2]) on (t, t′], we find the (optional) semimartingale
decomposition of |δy|2 to be

|δyt|2 = |δyt′ |2 + 2

∫
(t,t′]

δys−δfsdCs + 2

∫
(t,t′]

δys−d(δkr)s

− 2

∫
(t,t′]

δys−d(δη)s −
∫

(t,t′]

d[δηc]s −
∑

s∈(t,t′]

(δys − δys−)2

+ 2

∫
[t,t′)

δysd(δk`)s −
∑

s∈[t,t′)

(δys+ − δys)2. (5.52)

We decided here to write the integral bounds more clearly, as it is crucial whether
one takes left-open or right-open intervals. Let us analyse the terms in the above
decomposition one by one. First, note that the last term

∑
s∈[t,t′)(δys+ − δys)2 is non-

negative, and by adding zero to the last term, we find

−
∑

s∈(t,t′]

(δys − δys−)2

= −
∑

s∈(t,t′]

(δys − δys−)2 − 2
∑

s∈(t,t′]

(δys − δys−)(δfs∆Cs)−
∑

s∈(t,t′]

(δfs∆Cs)
2
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+ 2
∑

s∈(t,t′]

(δys − δys−)(δfs∆Cs) +
∑

s∈(t,t′]

(δfs∆Cs)
2

= −
∑

s∈(t,t′]

(
δys − δys− + δfs∆Cs

)2
+ 2

∑
s∈(t,t′]

(δys − δys−)(δfs∆Cs) +
∑

s∈(t,t′]

(δfs∆Cs)
2

= −
∑

s∈(t,t′]

(
∆δηs −∆δkrs

)2
+ 2

∑
s∈(t,t′]

(δys − δys−)(δfs∆Cs) +
∑

s∈(t,t′]

(δfs∆Cs)
2

= −
∑

s∈(t,t′]

(
∆δηs −∆δkrs

)2
+ 2

∫
(t,t′]

(δys − δys−)δfsdCs +
∑

s∈(t,t′]

(δfs∆Cs)
2. (5.53)

By substituting this back into (5.52), rearranging the terms, and using δys+ − δys =

−(δk`s − δk`s−) and∫
(t,t′]

d[δη]s − 2

∫
(t,t′]

d[δη, δkr]s +

∫
(t,t′]

d[δkr]s =

∫
(t,t′]

d[δη − δkr]s

=

∫
(t,t′]

d[δηc]s +
∑

s∈(t,t′]

(
∆δηs −∆δkrs

)2
,

we find

|δyt|2 +

∫
(t,t′]

d[δη]s +

∫
(t,t′]

d[δkr]s +

∫
[t,t′)

d[δk`]s − 2

∫
(t,t′]

d[δη, δkr]s

= |δyt′ |2 + 2

∫
(t,t′]

δysδfsdCs − 2

∫
(t,t′]

δys−d(δη)s

+
∑

s∈(t,t′]

(δfs∆Cs)
2 + 2

∫
(t,t′]

δys−d(δkr)s + 2

∫
[t,t′)

δysd(δk`)s. (5.54)

The Skorokhod condition (5.1d) implies∫
(t,t′]

δys−dδkrs ≤ 0, and

∫
[t,t′)

δysdδk
`
s ≤ 0, (5.55)

which then yields

|δyt|2 +

∫
(t,t′]

d[δη]s +

∫
(t,t′]

d[δkr]s +

∫
[t,t′)

d[δk`]s − 2

∫
(t,t′]

d[δη, δkr]s

≤ |δyt′ |2 + 2

∫
(t,t′]

δysδfsdCs − 2

∫
(t,t′]

δys−d(δη)s +
∑

s∈(t,t′]

(δfs∆Cs)
2. (5.56)

Note that
∫

(0,·] δys−d(δη)s and
∫

(0,·] d[δη, δkr] are uniformly integrable martingales

since δy ∈ S2
T by Lemma 5.2, δη ∈ H2

T by assumption, |δkr| ≤ kr,1T + kr,2T ∈ L2, and
[δη, δkr] =

∫
(0,·] ∆(δkr)sd(δη)s by [77, Proposition I.4.49]. Indeed, since (kr,1, kr,2) ∈

I2
T × I2

T and δη ∈ H2
T , and thus√〈∫

(0,·]
∆(δkr)sdδηs

〉
∞−

=

√∫
(0,∞)

(
∆(δkr)s

)2
d〈δη〉s

≤
√

2
((
kr,1T

)2
+
(
kr,2T

)2)∫
(0,∞)

d〈δη〉s

≤ 1√
2

((
kr,1T

)2
+
(
kr,2T

)2
+

∫
(0,∞)

d〈δη〉s
)
,
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with an integrable right-hand side, the Burkholder–Davis–Gundy inequality implies
that

∫
(0,·] ∆(δkr)sd(δη)s is bounded by an integrable random variable, and thus it is a

uniformly integrable martingale. A similar argument, together with Lemma 5.2, implies
that

∫
(0,·] δys−d(δη)s is a uniformly integrable martingale. Since by Lemma 5.2

|δyt′ | ≤ E
[ ∫ T

t′
|δfs|dCs

∣∣∣∣Gt′] = E

[ ∫ T

0

|δfs|dCs
∣∣∣∣Gt′]− ∫ t′∧T

0

|δfs|dCs,

and since the right-hand side converges P–a.s. to zero as t′ tends to infinity, we deduce
from (5.56) that

|δyt|2 +

∫
(t,∞)

d[δη]s +

∫
(t,∞)

d[δkr]s +

∫
[t,∞)

d[δk`]s − 2

∫
(t,∞)

d[δη, δkr]s

≤ 2

∫
(t,∞)

δysδfsdCs − 2

∫
(t,∞)

δys−d(δη)s +
∑

s∈(t,∞)

(δfs∆Cs)
2, t ∈ [0,∞], P–a.s. (5.57)

Since ∑
s∈(t,∞)

(δfs∆Cs)
2 =

∫
(t,∞)

|δfs|2d[C]s, t ∈ [0,∞], P–a.s.,

we find for any stopping time S ∈ T0,∞ and by taking conditional expectation in (5.57)
that

|δyS |2 + E

[ ∫ T

S

d[δη]s

∣∣∣∣GS]+ E

[ ∫ T

S

d[δkr]s

∣∣∣∣GS]+ E

[ ∫ T

S−
d[δk`]s

∣∣∣∣GS]
≤ 2E

[ ∫ T

S

δysδfsdCs

∣∣∣∣GS]+ E

[ ∫ T

S

(δfs)
2d[C]s

∣∣∣∣GS], P–a.s.

Analogously, in case S ∈ T p0,∞, we find by taking left-hand limits in (5.57) that

|δyS−|2 + E

[ ∫ T

S−
d[δη]s

∣∣∣∣GS−]+ E

[ ∫ T

S−
d[δkr]s

∣∣∣∣GS−]+ E

[ ∫ T

S−
d[δk`]s

∣∣∣∣GS−]
≤ 2E

[ ∫ T

S−
δysδfsdCs

∣∣∣∣GS−]+ E

[ ∫ T

S−
(δfs)

2d[C]s

∣∣∣∣GS−], P–a.s.

This yields (5.5) and (5.6) since

E

[ ∫ T

S

d〈δη〉u
∣∣∣∣GS] = E

[ ∫ T

S

d[δη]u

∣∣∣∣GS], P–a.s.,

and

E

[ ∫ T

S−
d〈δη〉u

∣∣∣∣GS−] = E

[ ∫ T

S−
d[δη]u

∣∣∣∣GS−], P–a.s.

Before turning to the remaining inequalities, it is worth noting the following.
With Lemma 5.2 and Lemma C.4, we find that

E

[
sup

u∈[t′,∞]

|yu|2
∣∣∣∣Gt′]

≤ 12E

[
|ξT |2 + sup

s∈[t′,∞]

|ξ+
s 1{s<T}|2 +

(∫
(t′,∞)

|fs|dCs
)2∣∣∣∣Gt′], P–a.s., t′ ∈ (0,∞).
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By taking the conditional expectation with respect to Gt for t ∈ [0, t′), and then letting t′

tend to t, we find

E

[
sup

u∈(t,∞]

|yu|2
∣∣∣∣Gt]

≤ 12E

[
|ξT |2 + sup

s∈(t,∞]

|ξ+
s 1{s<T}|2 +

(∫
(t,∞)

|fs|dCs
)2∣∣∣∣Gt], P–a.s., t ∈ [0,∞].

As before, the processes within the conditional expectations are P–a.s. right-continuous,
and therefore, by the P–a.s. right-continuity of their respective optional projections, we
even have

E

[
sup

u∈(S,∞]

|yu|2
∣∣∣∣GS]

≤ 12E

[
|ξT |2 + sup

u∈(S,∞]

|ξ+
u 1{u<T}|2 +

(∫
(S,∞)

|fu|dCu
)2∣∣∣∣GS], P–a.s., S ∈ T0,∞.

(5.58)

We now turn to (5.7). It is enough to show the bound for i = 1, and we thus also drop
the superscript in what follows. An analogous argument to the one which lead to (5.54)
yields by letting t′ tend to infinity that

|yt|2 +

∫
(t,∞)

d[η]s +

∫
(t,∞)

d[kr]s +

∫
[t,∞)

d[k`]s − 2

∫
(t,∞)

d[η, kr]s

= |y∞−|2 + 2

∫
(t,∞)

ysfsdCs − 2

∫
(t,∞)

ys−dηs

+
∑

s∈(t,∞)

(fs∆Cs)
2 + 2

∫
(t,∞)

ys−dkrs + 2

∫
[t,∞)

ysdk
`
s

≤ |ξT |2 + 2

∫
(t,∞)

ysfsdCs − 2

∫
(t,∞)

ys−dηs

+
∑

s∈(t,∞)

(fs∆Cs)
2 + 2

∫
(t,∞)

ys−dkrs + 2

∫
[t,∞)

ysdk
`
s, t ∈ [0,∞], P–a.s. (5.59)

Here the inequality follows from (5.3). Now the Skorokhod condition implies that∫
(t,∞)

ys−dkrs =

∫
(t,∞)

ys−1{ys−=ξs}1{s≤T}dk
r
s

=

∫
(t,∞)

ξs1{ys−=ξs}1{s≤T}dk
r
s =

∫
(t,∞)

ξs1{s≤T}dk
r
s

and ∫
[t,∞)

ysdk
`
s =

∫
[t,∞)

ys1{ys=ξs}1{s<T}dk
`
s

=

∫
[t,∞)

ξs1{ys=ξs}1{s<T}dk
`
s =

∫
[t,∞)

ξs1{s<T}dk
`
s.

Thus

2

∫
(t,∞)

ys−dkrs = 2

∫
(t,∞)

ξs1{s≤T}dk
r
s

≤ 2 sup
s∈(t,∞)

{
ξ+
s 1{s<T}

}∫
(t,∞)

dkrs ≤
1

κ
sup

s∈(t,∞)

|ξ+
s 1{s<T}|2 + κ

(∫
(t,∞)

dkrs

)2

, (5.60)
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2

∫
[t,∞)

ysdk
`
s = 2

∫
[t,∞)

ξs1{s<T}dk
`
s

≤ 2 sup
s∈[t,∞)

{
ξ+
s 1{s<T}

}∫
[t,∞)

dk`s ≤
1

κ
sup

s∈[t,∞)

|ξ+
s 1{s<T}|2 + κ

(∫
[t,∞)

dk`s

)2

, (5.61)

for every κ ∈ (0,∞). Similarly, we find

2

∫
(t,∞)

ysfsdCs ≤
1

ε
sup

s∈(t,∞)

|ys|2 + ε

(∫
(t,∞)

|fs|dCs
)2

, (5.62)

for every ε ∈ (0,∞). Since∫
(t,∞)

dkrs +

∫
[t,∞)

dk`s = yt − y∞− −
∫

(t,∞)

fsdCs +

∫
(t,∞)

dηs, t ∈ [0,∞), P–a.s.,

we also have(∫
(t,∞)

dkrs +

∫
[t,∞)

dk`s

)2

≤ 4

(
|yt|2 + |y∞−|2 +

(∫
(t,∞)

fsdCs

)2

+

(∫
(t,∞)

dηs

)2)
, t ∈ [0,∞), P–a.s. (5.63)

Combining (5.59) with Equations (5.60) to (5.63) yields

|yt|2 +

∫
(t,∞)

d[η]s +

∫
(t,∞)

d[kr]s +

∫
[t,∞)

d[k`]s − 2

∫
(t,∞)

d[η, kr]s

≤ |ξT |2 +
1

ε
sup

s∈(t,∞)

|ys|2 + ε

(∫
(t,∞)

|fs|dCs
)2

− 2

∫
(t,∞)

ys−dηs +
∑

s∈(t,∞)

(fs∆Cs)
2

+
1

κ
sup

s∈(t,∞)

|ξ+
s 1{s<T}|2 + κ

(∫
(t,∞)

dkrs

)2

+
1

κ
sup

s∈[t,∞)

|ξ+
s 1{s<T}|2 + κ

(∫
[t,∞)

dk`s

)2

≤ |ξT |2 +
1

ε
sup

s∈(t,∞)

|ys|2 + (ε+ 4κ)

(∫
(t,∞)

|fs|dCs
)2

− 2

∫
(t,∞)

ys−dηs +
∑

s∈(t,∞)

(fs∆Cs)
2

+
2

κ
sup

s∈[t,∞)

|ξ+
s 1{s<T}|2 + 4κ

(
|yt|2 + |y∞−|2 +

(∫
(t,∞)

dηs

)2)
≤ |ξT |2 +

1

ε
sup

s∈(t,∞)

|ys|2 + (ε+ 4κ)

(∫
(t,∞)

|fs|dCs
)2

− 2

∫
(t,∞)

ys−dηs +
∑

s∈(t,∞)

(fs∆Cs)
2

+
2

κ
sup

s∈[t,∞)

|ξ+
s 1{s<T}|2 + 4κ

(
|yt|2 + |ξT |2 +

(∫
(t,∞)

dηs

)2)
≤ (1 + 4κ)|ξT |2 +

1

ε
sup

s∈(t,∞)

|ys|2 + (ε+ 4κ)

(∫
(t,∞)

|fs|dCs
)2

− 2

∫
(t,∞)

ys−dηs +
∑

s∈(t,∞)

(fs∆Cs)
2 +

2

κ
sup

s∈[t,∞)

|ξ+
s 1{s<T}|2

+ 4κ

(
|yt|2 +

(∫
(t,∞)

dηs

)2)
, t ∈ [0,∞], P–a.s. (5.64)

Let κ ∈ (0,∞) be such that 0 < 1 − 4κ ≤ 1, and let S ∈ T0,∞. By taking conditional
expectation, rearranging the terms and using E[(

∫
(S,∞)

dηu)2|GS ] = E[
∫

(S,∞)
d[η]u|GS ]
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and
∑
s∈(S,∞)(fs∆Cs)

2 ≤ (
∫ T
S
|fs|dCs)2, we find

(1− 4κ)

(
|yS |2 + E

[ ∫
(S,∞)

d[η]u

∣∣∣∣GS]
)

+ E

[ ∫
(S,∞)

d[kr]u

∣∣∣∣GS]+ E

[ ∫
[S,∞)

d[k`]u

∣∣∣∣GS]

≤ (1 + 4κ)E
[
|ξT |2

∣∣GS]+
1

ε
E

[
sup

u∈(S,∞)

|yu|2
∣∣∣∣GS]+ (1 + ε+ 4κ)E

[(∫
(S,∞)

|fu|dCu
)2∣∣∣∣GS]

+
2

κ
E

[
sup

u∈[S,∞)

|ξ+
u 1{u<T}|2

∣∣∣∣GS]
≤ (1 + 4κ+ 12/ε)E

[
|ξT |2

∣∣GS]+ (1 + ε+ 4κ+ 12/ε)E

[(∫
(S,∞)

|fu|dCu
)2∣∣∣∣GS]

+

(
12

ε
+

2

κ

)
E

[
sup

u∈[S,∞)

|ξ+
u 1{u<T}|2

∣∣∣∣GS].
Here the second inequality follows from (5.58). Since 0 < (1 − 4κ) ≤ 1, we can thus
divide both sides by (1− 4κ) and find

|yS |2 + E

[ ∫
(S,∞)

d[η]u

∣∣∣∣GS]+ E

[ ∫
(S,∞)

d[kr]u

∣∣∣∣GS]+ E

[ ∫
[S,∞)

d[k`]u

∣∣∣∣GS]
≤ max{1 + ε+ 4κ+ 12/ε, 12/ε+ 2/κ}

1− 4κ

(
E
[
|ξT |2

∣∣GS]+ E

[(∫
(S,∞)

|fu|dCu
)2∣∣∣∣GS]

+ E

[
sup

u∈[S,∞)

|ξ+
u 1{u<T}|2

∣∣∣∣GS]
)
.

Finally, as explained at the beginning of the proof of Lemma 5.2, the inequality (5.8)
follows from (5.7), which completes the proof.

6 Proofs of the main results

We are now in a position to prove Theorem 3.4 and Theorem 3.7. The proofs are based
on the optimal stopping theory we revisited in Section 4 and on the a priori estimates we
established in Section 5. The existence and uniqueness of the BSDE and the reflected
BSDE are based on defining a contraction map on the weighted spaces of Section 2.4.
Therefore, we first need to show that such a contraction map is well-defined, meaning
that it maps its domain into itself.

Proposition 6.1. Suppose that f does not depend on (y, y, z, u). There exists a unique
triple (Z,U,N) ∈ H2

T (X)×H2
T (µ)×H2,⊥

0,T (X,µ) and a, up to P–indistinguishability, unique

triple (Y,Kr,K`) such that the collection (Y,Z, U,N,Kr,K`) satisfies (R1) up to (R7).
Moreover, Y ∈ S2

T . If, in addition, (X,G, T, ξ, f, C) is standard data for some β̂ ∈ (0,∞),
then (αY, αY−, Z, U,N) ∈ H2

T,β̂
×H2

T,β̂
×H2

T,β̂
(X)×H2

T,β̂
(µ)×H2,⊥

T,β̂
(X,µ).

Proof. Let (Y,Z, U,N,K`,Kr) be the collection of processes constructed in Proposi-
tion 4.5, which clearly is the unique collection of processes satisfying (R1) up to (R7).
That Y ∈ S2

T follows from Lemma 5.2.
That (αY, αY−, Z, U,N) ∈ H2

T,β̂
× H2

T,β̂
× H2

T,β̂
(X) × H2

T,β̂
(µ) × H2,⊥

T,β̂
(X,µ) in case

(X,G, T, ξ, f, C) is standard data under some β̂ ∈ (0,∞) follows from Proposition 5.1.
This completes the proof.

Before proving the next result, recall from Remark 2.10 that the first component of
the reflected BSDE is an optional semimartingale indexed by [0,∞] since Y = Y0 +M+A,
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P–a.s., where

Mt :=

∫ t

0

ZsdXs +

∫ t

0

∫
E

Us(x)µ̃(ds,dx) +

∫ t

0

dNt, t ∈ [0,∞]

and

At := −
∫ t

0

fs
(
Ys, Ys−, Zs, Us(·)

)
dCs −Kr

t −K`
t−, t ∈ [0,∞].

The integrals above do not include∞ in their domain of integration, yet their values at
infinity are determined by letting t ↑↑ ∞.

Lemma 6.2. Let β̂ ∈ (0,∞). Suppose that (Y,Z, U,N,Kr,K`) satisfy (R1) up to (R6)
and one of the following conditions holds:

(i) (αY, αY−, Z, U,N) ∈ H2
T,β̂
×H2

T,β̂
×H2

T,β̂
(X)×H2

T,β̂
(µ);

(ii) the generator f does not depend on Ys− and (αY,Z, U,N) ∈ H2
T,β̂
×H2

T,β̂
(X) ×

H2
T,β̂

(µ);

(iii) the generator f does not depend on Ys and (αY−, Z, U,N) ∈ H2
T,β̂
×H2

T,β̂
(X)×

H2
T,β̂

(µ).

Then Y ∈ S2
T and (R7) holds.

Proof. We prove this result under the assumption that (ii) holds. The other cases follow
analogously. Note first that

E

[(∫ T

0

|fs
(
Ys, Zs,Us(·)

)
|dCs

)2]
≤ E

[(∫ T

0

1

E(β̂A)s
dAs

)(∫ T

0

E(β̂A)s
|fs
(
Ys, Zs, Us(·)

)
|2

α2
s

dCs

)]
≤ 1

β̂
E

[ ∫ T

0

E(β̂A)s
|fs
(
Ys, Zs, Us(·)

)
|2

α2
s

dCs

]
<∞.

Here we first used the Cauchy–Schwarz inequality, then (5.15), and finally that (Y,Z, U) ∈
H2
T,β̂
×H2

T,β̂
(X)×H2

T,β̂
(µ) together with the Lipschitz property of f and (D7). We now

show that Y ∈ S2
T . Let

Jt := Yt∧T − Y0 +

∫ t∧T

0

fs
(
Ys, Zs, Us(·)

)
dCs +Kr

t∧T +K`
(t∧T )−

=

∫ t∧T

0

ZsdXs +

∫ t∧T

0

∫
E

Us(x)µ̃(ds,dx) +Nt∧T , t ∈ [0,∞), P–a.s.

Then J ∈ S2
T since

E

[
sup
t∈[0,T ]

|Jt|2
]

= E

[
sup

t∈[0,∞]

|Jt|2
]

= E

[
sup

t∈[0,∞)

|Jt|2
]

≤ 4E
[
|J∞|2

]
= 4
(
‖Z‖2H2

T ,0(X) + ‖U‖2H2
T ,0(µ) + ‖N‖2H2

T ,0

)
<∞,

and

‖Y − J‖S2
T

≤ ‖Y0‖L2 + E

[(∫ T

0

|fs
(
Ys, Zs, Us(·)

)
|dCs

)2]1/2

+ ‖Kr
T +K`

T ‖L2

≤ ‖ξT − JT ‖L2 + 2E

[(∫ T

0

|fs
(
Ys, Zs, Us(·)

)
|dCs

)2]1/2

+ 2‖Kr
T +K`

T ‖L2
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≤ ‖ξT ‖L2 + ‖JT ‖L2 + 2E

[(∫ T

0

|fs
(
Ys, Zs, Us(·)

)
|dCs

)2]1/2

+ 2‖Kr
T +K`

T ‖L2 <∞.

Here we used YT = ξT in the second-to-last line. This yields

‖Y ‖S2
T
≤ ‖Y − J‖S2

T
+ ‖J‖S2

T
<∞.

We turn to the proof of (R7). Let (Ỹ , Z̃, Ũ , Ñ , K̃r, K̃`) be the solution to the reflected
BSDE satisfying (R1) up to (R7) with Ỹ ∈ S2

T and generator f(Y,Z, U) given by Proposi-
tion 6.1. Applying the Gal’chouk–Itô–Lenglart formula to |Y − Ỹ |2 yields

|Yt − Ỹt|2 = |Yt′ − Ỹt′ |2 −
∫

(t,t′]

d[M c − M̃ c]s − 2

∫
(t,t′]

(Ys− − Ỹs−)d(M − M̃)s

+ 2

∫
(t,t′]

(Ys− − Ỹs−)d(Kr − K̃r)s + 2

∫
[t,t′)

(Ys − Ỹs)d(K` − K̃`)s

−
∑

s∈(t,t′]

(
Ys − Ỹs − (Ys− − Ỹs−)

)2 − ∑
s∈[t,t′)

(
Ys+ − Ỹs+ − (Ys − Ỹs)

)2
≤ |Yt′ − Ỹt′ |2 + 2

∫
(t,t′]

(
Ys− − ξs − (Ỹs− − ξs)

)
d(Kr − K̃r)s

− 2

∫
(t,t′]

(Ys− − Ỹs−)d(M − M̃)s + 2

∫
[t,t′)

(
Ys − ξs − (Ỹs − ξs)

)
d(K` − K̃`)s

≤ |Yt′ − Ỹt′ |2 − 2

∫
(t,t′]

(Ys− − Ỹs−)d(M − M̃)s, 0 ≤ t ≤ t′ <∞, P–a.s., (6.1)

where

Mt :=

∫ t

0

ZsdXs +

∫ t

0

∫
E

Us(x)µ̃(ds,dx) +Nt, t ∈ [0,∞],

and

M̃t :=

∫ t

0

Z̃sdXs +

∫ t

0

∫
E

Ũs(x)µ̃(ds,dx) + Ñt, t ∈ [0,∞].

Note that we have M∞ = limt↑↑∞Mt and M̃∞ = limt↑↑∞Mt up to a P–null set. Since
Y − Ỹ ∈ S2

T , the local martingale∫ ·
0

(Ys− − Ỹs−)d(M − M̃)s =

∫ ·∧T
0

(Ys− − Ỹs−)d(M − M̃)s,

is a uniformly integrable martingale by the Burkholder–Davis–Gundy inequality. Taking
the conditional expectation in (6.1) yields |YS − ỸS |2 ≤ E[|YS′ − ỸS′ |2|GS ], P–a.s., for two
finite stopping times S and S′ with S ≤ S′. In particular, since (Y, Ỹ ) ∈ S2

T , and by
choosing S′ = S ∨ n and then letting n tend to infinity, this yields

|YS − ỸS |2 ≤ E[|Y∞− − Ỹ∞−|2|GS ], P–a.s.

Suppose for the moment that P[A] = 0, where A = {T =∞} ∩ {|Y∞− − Ỹ∞−| > 0}. Then
E[|Y∞− − Ỹ∞−|2|GS ] = 0, P–almost surely. Proposition C.3 together with YT = ξT = ỸT ,
P–a.s., implies that Y = Ỹ up to P–indistinguishability. Hence

YS = ỸS = ess sup
τ∈TS,∞

GSE

[ ∫ τ∧T

S

fs(Ys, Zs, Us(·))dCs + ξτ∧T

∣∣∣∣GS], P–a.s., S ∈ T0,∞.

It remains to prove P[A] = 0, and we suppose, for the sake of reaching a contradiction,
that P[A] > 0. On B := A ∩ {∆Y∞ = Y∞ − Y∞− = 0}, we have −∆Y∞ = ∆Kr

∞ =
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Kr
∞ − Kr

∞− = 0 and ξ∞ ≤ Y∞− = Y∞ = ξ∞, P–a.s. on B. This implies |Ỹ∞ − Ỹ∞−| =

|ξ∞ − Ỹ∞−| = |Y∞− − Ỹ∞−| > 0, P–a.s. on B, therefore −∆Ỹ∞ = ∆K̃r
∞ > 0, P–a.s. on B,

and thus Ỹ∞− = ξ∞, P–a.s. onB. However, this also yields |Y∞−−ξ∞| = |Y∞−−Ỹ∞−| > 0,
P–a.s. on B, which now implies Ỹ∞− = ξ∞ < Y∞− = Y∞ = ξ∞ = Ỹ∞, P–a.s. on B.
Therefore, we must have 0 > −∆K̃r

∞ = ∆Ỹ∞ > 0, P–a.s. on B, which now yields P[B] = 0.
Let B′ := A∩ {∆Y∞ 6= 0}. Then Y∞− Y∞− = ∆Y∞ = −∆Kr

∞ < 0 and thus Y∞− = ξ∞, P–
a.s. on B′. Since |ξ∞− Ỹ∞−| = |Y∞−− Ỹ∞−| > 0, P–a.s. on B′, this implies ∆K̃r

∞ = 0 and
therefore ∆Ỹ∞ = 0, P–a.s. on B′. Hence Y∞− > Y∞ = ξ∞ = Ỹ∞ = Ỹ∞− > ξ∞ = Y∞−,
P–a.s. on B′, and therefore P[B′] = 0. This now yields P[A] = P[B] + P[B′] = 0 and
completes the proof.

We now turn to the proof of our main result.

Proof of Theorem 3.4. We prove the theorem under assumption (ii). Let L(2)

T,β̂
be the

collection of processes (Y,Z, U,N) for which Y = Y·∧T is optional, (Z,U,N) ∈ H2
T (X)×

H2
T (µ)×H2,⊥

0,T (X,µ), and

‖(Y,Z, U,N)‖2L(2)

T ,β̂

:= ‖αY ‖2H2

T ,β̂

+ ‖Z‖2H2

T ,β̂
(X) + ‖U‖2H2

T ,β̂
(µ) + ‖N‖2H2

T ,β̂

<∞.

Then L(2)

T,β̂
together with the semi-norm ‖ · ‖L(2)

T ,β̂

is a Banach space after identifying

processes (Y,Z, U,N) and (Y ′, Z ′, U ′, N ′) for which ‖(Y,Z, U,N)−(Y ′, Z ′, U ′, N ′)‖L(2)

T ,β̂

= 0

holds. Let (y, z, u, n) ∈ L(2)

T,β̂
, and note that

E

[ ∫ T

0

E(β̂A)s
|fs
(
ys, zs, us(·)

)
|2

α2
s

dCs

]
≤ 2E

[ ∫ T

0

E(β̂A)s
|fs
(
ys, zs, us(·)

)
− fs(0, 0,0)|2

α2
s

dCs +

∫ T

0

E(β̂A)s
|fs(0, 0,0)|2

α2
s

dCs

]
≤ 2

(
‖αy‖2H2

T ,β̂

+ ‖z‖2H2

T ,β̂
(X) + ‖u‖2H2

T ,β̂
(µ) +

∥∥∥∥f(0, 0,0)

α

∥∥∥∥2

H2

T ,β̂

)
<∞.

We denote by (Y,Z, U,N,Kr,K`) the collection satisfying (R1) up to (R7) with gen-
erator fs

(
ys, zs, us(·)

)
constructed in Proposition 4.5 (or in Proposition 6.1). Then

(Y,Z, U,N) ∈ L(2)

T,β̂
by the bounds of Proposition 5.1. The map Υ2 : L(2)

T,β̂
−→ L(2)

T,β̂

given by Υ2(y, z, u, n) := (Y,Z, U,N) is thus well-defined.

We prove that Υ2 is a contraction. For i ∈ {1, 2}, let (yi, zi, ui, ni) ∈ L(2)

T,β̂
and let

(Y i, Zi, U i, N i) := Υ2(yi, zi, ui, ni). Let δy := y1−y2, δz = z1−z2, δu = u1−u2, and δn =

n1 − n2, and define δY , δZ, δU and δN similarly. Denote by ψ = (ψt)t∈[0,∞) the process
ψt := ft

(
y1
t , z

1
t , u

1
t (·)
)
− ft

(
y2
t , z

2
t , u

2
t (·)
)
. With Proposition 5.1, we find∥∥Υ2(y1, z1, u1, n1)−Υ2(y2, z2,u2, n2)
∥∥2

L(2)

T ,β̂

= ‖αδY ‖2H2

T ,β̂

+ ‖δZ‖2H2

T ,β̂
(X) + ‖δU‖2H2

T ,β̂
(µ) + ‖δN‖2H2

T ,β̂

≤MΦ
2 (β̂)

∥∥∥ψ
α

∥∥∥2

H2

T ,β̂

≤MΦ
2 (β̂)

(
‖αδy‖2H2

T ,β̂

+ ‖δz‖2H2

T ,β̂
(X) + ‖δu‖2H2

T ,β̂
(µ)

)
≤MΦ

2 (β̂)
∥∥(y1, z1, u1, n1)− (y2, z2, u2, n2)

∥∥2

L(2)

T ,β̂

.
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Here, we used the Lipschitz-continuity of the generator f in the fourth line. Since
MΦ

2 (β̂) < 1, the map Υ2 is indeed a contraction on L(2)

T,β̂
. By Banach’s fixed-point theo-

rem, there exists a unique fixed-point of Υ2, which we denote by (Y, Z, U,N). Denoting
by (Kr,K`) the two corresponding non-decreasing processes coming from the decompo-

sition of the Snell envelope Y· +
∫ ·∧T

0
fs(Ys, Zs, Us(·))dCs, we see that (Y, Z, U,N,Kr,K`)

satisfies (R1) up to (R7).
Suppose that (Y ′, Z ′, U ′, N ′,K ′,r,K ′,`) is a solution satisfying (R1) up to (R6) such

that (αY ′, Z ′, U ′, N ′) is in H2
T,β̂
× H2

T,β̂
(X) × H2

T,β̂
(µ) × H2,⊥

0,T,β̂
(X,µ). Then (R7) holds

by Lemma 6.2 and thus (Y ′, Z ′, U ′, N ′) is the fixed-point of Υ2. Hence (Y ′, Z ′, U ′, N ′) =

(Y,Z, U,N) in L(2)

T,β̂
, and Y = Y ′ up to P–indistinguishability by Proposition 5.1. That

(K ′,r,K ′,`) = (Kr,K`) up to indistinguishability follows from Proposition 6.1. This
implies the stated uniqueness. That Y is in S2

T follows from Lemma 5.2 since

E

[(∫ T

0

|fs
(
Ys, Zs, Us(·)

)
|dCs

)2]
≤ 1

β̂
E

[ ∫ T

0

E(β̂A)s
|fs
(
Ys, Zs, Us(·)

)
|2

α2
s

dCs

]
<∞

by the Cauchy–Schwarz inequality and (5.15). This completes the proof of (ii).

For (i) and (iii) we define L(1)

T,β̂
and L(3)

T,β̂
as the spaces of processes (Y,Z, U,N) for

which (Y, Z, U,N) ∈ S2
T ×H2

T (X)×H2
T (µ)×H2,⊥

0,T (X,µ), P–a.e. path of Y is làdlàg, and

‖(Y,Z, U,N)‖2L(1)

T ,β̂

:= ‖Y ‖2S2
T

+ ‖αY ‖2H2

T ,β̂

+ ‖αY−‖2H2

T ,β̂

+ ‖Z‖2H2

T ,β̂
(X) + ‖U‖2H2

T ,β̂
(µ) + ‖N‖2H2

T ,β̂

<∞,

‖(Y,Z, U,N)‖2L(3)

T ,β̂

:= ‖Y ‖2S2
T

+ ‖αY−‖2H2

T ,β̂

+ ‖Z‖2H2

T ,β̂
(X) + ‖U‖2H2

T ,β̂
(µ) + ‖N‖2H2

T ,β̂

<∞,

respectively. We turn both L(1)

T,β̂
and L(3)

T,β̂
into Banach spaces by identifying (Y,Z, U,N)

and (Y ′, Z ′, U ′, N ′) for which

‖(Y,Z, U,N)− (Y ′, Z ′, U ′, N ′)‖L(1)

T ,β̂

= 0, and ‖(Y,Z, U,N)− (Y ′, Z ′, U ′, N ′)‖L(3)

T ,β̂

= 0,

respectively. The approach to deduce the existence of a unique fixed-point is then
analogous to our previous argument. For (i) and (iii) we define the maps Υ1 : L(1)

T,β̂
−→

L(1)

T,β̂
and Υ3 : L(3)

T,β̂
−→ L(3)

T,β̂
analogously to Υ2, and then note that by Proposition 5.1

the maps are well-defined. By the Lipschitz property of f , the a priori estimates
of Proposition 5.1, we find∥∥Υ1(y1, z1, u1, n1)−Υ1(y2, z2, u2, n2)

∥∥2

L(1)

T ,β̂

= ‖δY ‖2S2
T

+ ‖αδY ‖2H2

T ,β̂

+ ‖δZ‖2H2

T ,β̂
(X) + ‖δU‖2H2

T ,β̂
(µ) + ‖δN‖2H2

T ,β̂

≤MΦ
1 (β̂)

∥∥∥ψ
α

∥∥∥2

H2

T ,β̂

≤MΦ
1 (β̂)

(
‖αδy‖2H2

T ,β̂

+ ‖δz‖2H2

T ,β̂
(X) + ‖δu‖2H2

T ,β̂
(µ)

)
≤MΦ

1 (β̂)
(
‖δy‖2S2

T
+ ‖αδy‖2H2

T ,β̂

+ ‖δz‖2H2

T ,β̂
(X) + ‖δu‖2H2

T ,β̂
(µ)

)
≤MΦ

1 (β̂)
∥∥(y1, z1, u1, n1)− (y2, z2, u2, n2)

∥∥2

L(1)

T ,β̂

,

and∥∥Υ3(y1, z1, u1, n1)−Υ3(y2, z2, u2, n2)
∥∥2

L(3)

T ,β̂

= ‖δY ‖2S2
T

+ ‖αδY−‖2H2

T ,β̂

+ ‖δZ‖2H2

T ,β̂
(X) + ‖δU‖2H2

T ,β̂
(µ) + ‖δN‖2H2

T ,β̂
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≤MΦ
3 (β̂)

∥∥∥ψ
α

∥∥∥2

H2

T ,β̂

≤MΦ
3 (β̂)

(
‖αδy−‖2H2

T ,β̂

+ ‖δz‖2H2

T ,β̂
(X) + ‖δu‖2H2

T ,β̂
(µ)

)
≤MΦ

3 (β̂)
(
‖δy‖2S2

T
+ ‖αδy−‖2H2

T ,β̂

+ ‖δz‖2H2

T ,β̂
(X) + ‖δu‖2H2

T ,β̂
(µ)

)
≤MΦ

3 (β̂)
∥∥(y1, z1, u1, n1)− (y2, z2, u2, n2)

∥∥2

L(3)

T ,β̂

.

Thus Υ1 (resp. Υ3) is a contraction if (i) (resp. (iii)) holds. For both (i) and (iii) the
representation (R7) is immediate by Lemma 6.2. The stated uniqueness can be deduced
similarly to before, we thus omit the details.

Finally, if, in addition, ξ+1[0,T ) ∈ S2
T,β for some β ∈ (0, β̂), then (Kr,K`) ∈ I2

T,β × I2
T,β

in (i), (ii) and (iii) by Proposition 5.7. This completes the proof.

Remark 6.3. As we saw in the previous proof, the Y -component of the unique fixed-point
of Υ2 necessarily has to satisfy (R7). So the class in which uniqueness can be deduced
from the fixed-point property of Υ2 is necessarily defined by (R7) as well. It turns out
that the proof of existence and uniqueness in [62] of their reflected BSDE overlooks this
intricate point, as an argument like our Lemma 6.2 is missing.

Proof of Theorem 3.7. The proof of this result is analogous to the proof of Theorem 3.4.
The main difference is that we do not use the a priori estimates of Proposition 5.1,
but instead use Proposition 5.4 to deduce the existence of a unique fixed-point in the
three cases (i), (ii) and (iii). Let us show that in all three cases (i), (ii) and (iii), the

component Y is in S2
T,β̂

. Note first that from YS = E
[
ξT +

∫ T
S
fs
(
Ys, Ys−, Zs, Us(·)

)
dCs

∣∣GS],
it follows that

E(β̂A)
1/2
S |YS | ≤

√
2E

[√
E(β̂A)S |ξT |2 + E(β̂A)S

(∫ T

S

∣∣fs(Ys, Ys−, Zs, Us(·))∣∣dCs)2
∣∣∣∣∣GS
]

≤
√

2E

[√√√√E(β̂A)S |ξT |2 +
1

β̂

∫ T

S

E(β̂A)s

∣∣fs(Ys, Ys−, Zs, Us(·))∣∣2
α2
s

dCs

∣∣∣∣∣GS
]

≤
√

2E

[√√√√E(β̂A)T |ξT |2 +
1

β̂

∫ T

0

E(β̂A)s

∣∣fs(Ys, Ys−, Zs, Us(·))∣∣2
α2
s

dCs

∣∣∣∣∣GS
]
.

Here the second line follows from the same arguments we used to deduce (5.22). Thus,
by Lemma C.4, it follows that

‖Y ‖2S2

T ,β̂

= E

[
sup

s∈[0,T ]

∣∣E(β̂A)1/2
s Ys

∣∣2] ≤ 8‖ξT ‖2L2

β̂

+
8

β̂

∥∥∥∥f
(
Y, Y−, Z, U(·)

)
α

∥∥∥∥2

H2

T ,β̂

.

Since ‖ξT ‖L2

β̂
<∞ and∥∥∥∥f

(
Y, Y−, Z, U(·)

)
α

∥∥∥∥
H2

T ,β̂

≤
∥∥∥∥f
(
Y, Y−, Z, U(·)

)
− f(0, 0, 0,0)

α

∥∥∥∥
H2

T ,β̂

+

∥∥∥∥f(0, 0, 0,0)

α

∥∥∥∥
H2

T ,β̂

= ‖αY ‖H2

T ,β̂
+ ‖αY−‖H2

T ,β̂
+ ‖Z‖H2

T ,β̂
(X) + ‖U‖H2

T ,β̂
(µ) +

∥∥∥∥f(0, 0, 0,0)

α

∥∥∥∥
H2

T ,β̂

<∞,

we deduce that ‖Y ‖S2

T ,β̂
<∞. This completes the proof.
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Remark 6.4. (i) In the proof of Theorem 3.4 and 3.7, we could substitute the S2
T –

norm ‖ · ‖S2
T

by the T 2
T –norm ‖ · ‖T 2

T
introduced in Remark 3.5. We merely need to

keep in mind the changes to the a priori estimates in both Proposition 5.1 and 5.4
described in Remark 5.5. Therefore, modifying the contraction constants as described
in Remark 3.5 and 3.8 would still ensure the desired well-posedness of our reflected
BSDE and BSDE, as stated in Theorem 3.4 and 3.7, respectively.

(ii) In [113, Theorem 3.5] and its corresponding proof, the claim is that a weighted
S2-type norm for the Y -component is also sufficient to construct a contraction map in
the BSDE case. This corresponds to the norm ‖ · ‖?,β̂ in their notation. It does not seem as
though this is actually possible since by the Lipschitz property of the generator, we are
forced to use an H2-type norm on Y in a fixed-point argument. Although in the classical
cases this is possible since weighted S2-norms and H2-norms on Y are comparable, in
their and our generality, the norms are not comparable.

7 A comparison principle for BSDEs

Comparison principles for BSDEs play a crucial role in the study of stochastic
control problems as they give rise to necessary conditions optimisers ought to sat-
isfy. In this section, we prove a comparison principle for our BSDEs. Given the
several counterexamples for BSDEs with jumps in Barles, Buckdahn, and Pardoux
[11], Royer [135] and Quenez and Sulem [132], we are forced to impose stronger
assumptions on the generator. The conditions we lay out in this section will allow
us to conclude that the operator which maps ξT to the first component Y (ξT ) of the
solution to the BSDE with generator f and terminal condition ξT is monotone, that
is, if ξT ≤ ξ′T , P–a.s., then Y (ξT ) ≤ Y (ξ′T ), P–a.s. The method of proof we use is
the classical linearisation and change of measure argument. Here, we suppose that
we are given another generator f ′ :

⊔
(ω,t)∈Ω×[0,∞)

(
R × R × Rm × Hω,t

)
−→ R such

that Ω × [0,∞) 3 (ω, t) 7−→ f ′t
(
Yt(ω), Yt−(ω), Zt(ω), Ut(ω; ·)

)
∈ R, is optional for each

(Y,Z, U) ∈ S2
T ×H2

T (X)×H2
T (µ). The Lipschitz property of f then allows us to write

fs
(
ω, y, y, z, us(ω; ·)

)
− f ′s

(
ω, y′, y′, z′, u′s(ω; ·)

)
≥ λy,y

′

s (ω)(y − y′) + λ̂y,y′

s (ω)(y − y′) + ηz,z
′,>

s (ω)cs(ω)(z − z′)
+ fs

(
ω, y′, y′, z′, us(ω; ·)

)
− fs

(
ω, y′, y′, z′, u′s(ω; ·)

)
+ fs

(
ω, y′, y′, z′, u′s(ω; ·)

)
− f ′s

(
ω, y′, y′, z′, u′s(ω; ·)

)
,

where

λy,y
′

s (ω) := −
√
rs(ω)sgn(y − y′), λ̂y,y′

s (ω) := −
√

rs(ω)sgn(y − y′),

ηz,z
′

s (ω) := −
√
θXs (ω)

(z − z′)∥∥c1/2s (ω)(z − z′)
∥∥1{c1/2s (z−z′) 6=0}(ω).20

The comparison result we present will be based on the following assumption.

Assumption 7.1. The following conditions hold:

(i) Φ < 1, and the non-negative random variables
∫ T

0

√
rsdCs,

∫ T
0

√
rsdCs and

∫ T
0
θXs dCs

are P–a.s. bounded;

(ii) For each P–a.s. làdlàg process Y ∈ S2
T , and (Z,Z ′, U, U ′) ∈ H2

T (X) × H2
T (X) ×

H2
T (µ)×H2

T (µ), there exists ρ = ρY,Z,U,U
′ ∈ H2

T (µ) such that21 ηZ,Z
′

t ∆Xt∧T + ∆(ρ ?

20Recall from Section 2.4 that c1/2 is the unique (predictable) square-root matrix-valued process of c.
21Here, ηZ,Z

′
= (ηZ,Z

′

t )t∈[0,∞) denotes the predictable process defined by ηZ,Z
′

t (ω) := η
Zt(ω),Z′t(ω)
t (ω).
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µ̃)t∧T > −1, P–a.s., t ∈ [0,∞), the random variable 〈ρ ? µ̃〉T is bounded, P–a.s., and

fs
(
Ys, Ys−, Zs, Us(·)

)
− fs

(
Ys, Ys−, Zs, U

′
s(·)
)
≥ d〈ρ ? µ̃, (U − U ′) ? µ̃〉s

dCs
, P× dCs–a.e.

(7.1)

Remark 7.2. (i) In the standard case, where there is only a Brownian motion X, the
stopping time T is deterministic and finite, C satisfies dCs = ds, and the Lipschitz-
coefficients of the generator f are bounded, Assumption 7.1 is clearly satisfied. However,
if additionally there is an integer-valued random measure µ such that its compensator
can be written in the form ν(ds,dx) = F (dx)dt, then (7.1) turns into

fs
(
Ys, Ys−, Zs, Us(·)

)
− fs

(
Ys, Ys−, Zs, U

′
s(·)
)

≥ d〈ρ ? µ̃, (U − U ′) ? µ̃〉s
dCs

=

∫
E

ρs(x)Us(x)F (dx), P× ds–a.e.

This is now reminiscent of the classical (Aγ)–condition in [135, Section 2.2, p. 1362] or
the assumption in [132, Theorem 4.1].

(ii) The conditions in Assumption 7.1 are simple enough to check in practice, but are
not necessary, as some of them can be weakened by carefully redoing the proof of the
comparison principle in Proposition 7.3. We will discuss this in Remark 7.5.

(iii) If the condition ηZ,Z
′

∆X·∧T + ∆(ρ ? µ̃)·∧T > −1 in Assumption 7.1. (ii) fails to
hold, then the comparison principle for our BSDE is false in general. See [132, Example
3.1] for a counterexample in a Brownian–Poisson setting.

The following comparison principle is the main result of this section.

Proposition 7.3. Suppose that Assumption 7.1 holds. Let (ξT , ξ
′
T ) ∈ (L2(GT ))2, and

suppose that (Y,Z, U,N) and (Y ′, Z ′, U ′, N ′) are solutions in S2
T × H2

T (X) × H2
T (µ) ×

H2,⊥
T (X,µ) to the BSDEs with generator f and terminal condition ξT and generator f ′

and terminal condition ξ′T , respectively. If ξ′T ≤ ξT , P –a.s., and

f ′s
(
Y ′s , Y

′
s−, Z

′
s, U

′
s(·)
)
≤ fs

(
Y ′s , Y

′
s−, Z

′
s, U

′
s(·)
)
, P⊗ dCs–a.e.,

then Y ′ ≤ Y up to P–indistinguishability.

The proof of this result is based on the following lemma.

Lemma 7.4. Suppose that M ∈ Mloc with M0 = 0 is such that 〈M〉 is bounded, where
〈M〉 denotes the compensator of the optional quadratic variation [M ]. Then E(M) ∈ H2.

Proof. Although this result follows from [76, Proposition 8.27], we would like to present
another argument by following the proof of [99, Théorème II.3]. By [100, Proposition
II.1], we can write

|E(M)|2 = E(M)E(M) = E(2M + [M ]) = E(2M + [M ]− 〈M〉+ 〈M〉) = E(Ñ)E(〈M〉),

for some Ñ ∈ Mloc. Since 〈M〉 is non-decreasing, we have that E(〈M〉) ≤ e〈M〉. In
particular, the local martingale satisfies E(Ñ) ≥ 0 and is thus a supermartingale. Since
〈M〉 is bounded, say by a ∈ (0,∞), we can write |E(M)|2 ≤ E(Ñ)ea. Let (τn)n∈N be a
localising sequence such that each stopped process E(M)·∧τn is a uniformly integrable
martingale, and fix t ∈ (0,∞). We find

E

[
sup
s∈[0,t]

|E(M)s∧τn |2
]
≤ 4E[|E(M)t∧τn |2] ≤ 4eaE[E(Ñ)t∧τn ] ≤ 4eaE[E(Ñ)0] = 4ea.

Here the first inequality follows from Doob’s L2-inequality, and the third inequality
follows from the optional stopping theorem (see [141, Theorem 3.2.7]) together with
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the fact that E(Ñ) is a supermartingale. By applying Fatou’s lemma twice, we deduce
that E

[
sups∈[0,∞) |E(M)s|2

]
≤ 4ea. In particular, the stochastic exponential E(M) is a

uniformly integrable martingale and is in H2. This completes the proof.

Proof of Proposition 7.3. First, let us write

δY := Y − Y ′, δZ := Z − Z ′, δU := U − U ′, δN := N −N ′, δξT := ξT − ξ′T ,
δf := f

(
Y, Y−, Z, U(·))− f ′

(
Y ′, Y ′−, Z

′, U ′(·)
)
,

and

λs(ω) := λ
Ys(ω),Y ′

s
(ω)

s (ω), λ̂s(ω) := λ̂
Ys−(ω),Y ′s−(ω)
s (ω), ηs(ω) := η

Zs(ω),Z′s(ω)
s (ω),

ρs(ω;x) = ρY
′,Z′,U,U ′

s (ω;x),

for simplicity. Now consider v :=
∫ ·∧T

0
γsdCs, where γ := λ̂

1−λ̂∆C
. Here the process γ

is predictable and the integral is well-defined by Assumption 7.1. (i) since λ̂s∆Cs ≤
|λ̂s|∆Cs ≤

√
rs∆Cs ≤ Φ < 1 and thus

|γ| ≤ |λ̂|
1− Φ

≤
√

rs
1− Φ

.

Moreover, ∆v = γ∆C = λ̂∆C/(1 − λ̂∆C) > −1. Thus, the stochastic exponential
E(v) is positive and because v is predictable and of finite variation, the stochastic
exponential E(v) is predictable and satisfies 0 < E(v) ≤ ev. In particular, E(v) is bounded
by Assumption 7.1. (i). With the integration by parts formula, we derive

d
(
E(v)δY

)
s

= E(v)s−d(δY )s + δYs−dE(v)s + d[E(v), δY ]s

= −E(v)s−δfsdCs + E(v)s−d(δZ ·X)s + E(v)s−d(δU ? µ̃)s + E(v)s−dδNs

+ E(v)s−δYs−γsdCs + E(v)s−γsd[C, δY ]s

= −E(v)s−δfsdCs + E(v)s−d(δZ ·X)s + E(v)s−d(δU ? µ̃)s + E(v)s−dδNs

+ E(v)s−δYs−γsdCs − E(v)s−γsδfs∆CsdCs + E(v)s−γsd[C, δZ ·X]s

+ E(v)s−γsd[C, δU ? µ̃]s + E(v)s−γsd[C, δN ]s

= −E(v)s−
(
δfs(1 + γs∆Cs)− γsδYs−

)
dCs

+ E(v)s−d(δZ ·X)s + E(v)s−d(δU ? µ̃)s + E(v)s−dδNs

+ E(v)s−γsd[C, δZ ·X]s + E(v)s−γsd[C, δU ? µ̃]s + E(v)s−γsd[C, δN ]s.

(7.2)

Note that the processes on the last line are local martingales by [77, Proposition
I.4.49.(c)] since C is predictable. We now define the probability measure Q on (Ω,G)

through the density

dQ

dP
:= E(L)∞ := E

(∫ ·∧T
0

ηsdXs + ρ ? µ̃·∧T

)
∞
. (7.3)

Assumption 7.1 implies that η ∈ H2(XT ), that E(L) is non-negative since ∆L = η∆X +

∆(ρ ? µ̃) > −1 and that 〈L〉 is bounded since

〈L〉T =

∫ T

0

η>s csηsdCs + 〈ρ ? µ̃〉T =

∫ T

0

θXs dCs + 〈ρ ? µ̃〉T .

Therefore, E(L) ∈ H2 by Lemma 7.4, and E(L)∞ = E(L)T ∈ L2(GT ;P). We now rewrite
the P–local martingales appearing in (7.2) as Q–semimartingales. By an application
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of Girsanov’s theorem [76, Proposition 7.25 and 7.26], we find the Q–semimartingale
decompositions

E(v)s−d(δZ ·X)s = E(v)s−d(δZ ·X − 〈δZ ·X,L〉)s + E(v)s−d〈δZ ·X,L〉s
= E(v)s−d(δZ ·X − 〈δZ ·X,L〉)s + E(v)s−d〈δZ ·X, η ·X〉s
= E(v)s−d(δZ ·X − 〈δZ ·X,L〉)s + E(v)s−η

>
s csδZsdCs,

E(v)s−d(δU ? µ̃)s = E(v)s−d
(
δU ? µ̃− 〈δU ? µ̃, L〉

)
s

+ E(v)s−d〈δU ? µ̃, L〉s
= E(v)s−d

(
δU ? µ̃− 〈δU ? µ̃, L

)
s

+ E(v)s−d〈δU ? µ̃, ρ ? µ̃〉s,
E(v)s−dδNs = E(v)s−d(δN − 〈δN,L〉s) + E(v)s−d〈δN,L〉s

= E(v)s−dδNs,

where the last equality follows from the P–orthogonality of N with respect to X and µ
from (D2),

E(v)s−γsd[C, δZ ·X]s

= E(v)s−γsd
(
[C, δZ ·X]−

〈
[C, δZ ·X], L

〉)
s

+ E(v)s−γsd
〈
[C, δZ ·X], L

〉
s

= E(v)s−γsd
(
[C, δZ ·X]−

〈
[C, δZ ·X], L

〉)
s

+ E(v)s−γs∆Csd〈δZ ·X,L〉s
= E(v)s−γsd

(
[C, δZ ·X]−

〈
[C, δZ ·X], L

〉)
s

+ E(v)s−γs∆Csη
>
s csδZsdCs,

here the second-to-last equality follows from d[C, δZ · X]s = ∆Cd(δZ · X)s, see [77,
Proposition I.4.49], and similarly,

E(v)s−γsd[C, δU ? µ̃]s = E(v)s−γsd
(
[C, δU ? µ̃]−

〈
[C, δU ? µ̃], L

〉)
s

+ E(v)s−γsd
〈
[C, δU ? µ̃], L

〉
s

= E(v)s−γsd
(
[C, δU ? µ̃]−

〈
[C, δU ? µ̃], L

〉)
s

+ E(v)s−γs∆Csd〈δU ? µ̃, ρ ? µ̃〉s,
E(v)s−γsd[C,N ]s = E(v)s−γsd

(
[C, δN ]−

〈
[C, δN ], L

〉)
s

+ E(v)s−d
〈
[C, δN ], L

〉
s

= E(v)s−γsd
(
[C, δN ]−

〈
[C, δN ], L

〉)
s

+ E(v)s−∆Csd
〈
δN,L

〉
s

= E(v)s−γsd
(
[C, δN ]−

〈
[C, δN ], L

〉)
s

= E(v)s−γsd[C, δN ]s.

Inserting the previous identities into (7.2) yields

d
(
E(v)δY

)
s

= −E(v)s−
(
δfs(1 + γs∆Cs)− γsδYs−

)
dCs + E(v)s−d(δZ ·X)s

+ E(v)s−d(δU ? µ̃)s + E(v)s−dδNs + E(v)s−γsd[C, δZ ·X]s

+ E(v)s−γsd[C, δU ? µ̃]s + E(v)s−γsd[C, δN ]s

= −E(v)s−
(
δfs(1 + γs∆Cs)− γsδYs−

)
dCs + E(v)s−d(δZ ·Xs − 〈δZ ·X,L〉)s

+ E(v)s−η
>
s csδZsdCs + E(v)s−d

(
δU ? µ̃− 〈δU ? µ̃, L〉

)
s

+ E(v)s−d〈δU ? µ̃, ρ ? µ̃〉s + E(v)s−dδNs

+ E(v)s−γsd
(
[C, δZ ·X]−

〈
[C, δZ ·X], L

〉)
s

+ E(v)s−η
>
s csδZsγs∆CsdCs

+ E(v)s−γsd
(
[C, δU ? µ̃]−

〈
[C, δU ? µ̃], L

〉)
s

+ E(v)s−γs∆Csd〈δU ? µ̃, ρ ? µ̃〉s + E(v)s−γsd[C, δN ]s

= −E(v)s−
(
δfs(1 + γs∆Cs)− γsδYs−

)
dCs + E(v)s−d(δZ ·Xs − 〈δZ ·X,L〉)s

+ E(v)s−η
>
s csδZs(1 + γs∆Cs)dCs + E(v)s−d

(
δU ? µ̃− 〈δU ? µ̃, L〉

)
s

+ E(v)s−(1 + γs∆Cs)d〈δU ? µ̃, ρ ? µ̃〉s + E(v)s−dδNs
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+ E(v)s−γsd
(
[C, δZ ·X]−

〈
[C, δZ ·X], L

〉)
s

+ E(v)s−γsd
(
[C, δU ? µ̃]−

〈
[C, δU ? µ̃], L

〉)
s

+ E(v)s−γsd[C, δN ]s. (7.4)

Note now that E(v)−(1 + γ∆C) = E(v) > 0, and thus

E(v)s−δfs(1 + γs∆Cs)

≥ E(v)s−

(
λsδYs + λ̂sδYs− + η>s csδZs +

d〈δU ? µ̃, ρ ? µ̃〉
dCs

)
(1 + γs∆Cs)

= E(v)s−

(
λsδYs + η>s csδZs +

d〈δU ? µ̃, ρ ? µ̃〉
dCs

)
(1 + γs∆Cs) + E(v)s−γsδYs−.

Therefore

d
(
E(v)δY

)
s
≤ −E(v)s−λsδYs(1 + γs∆Cs)dCs + dMQ

s = −E(v)sλsδYsdCs + dMQ
s .

Here we use E(v) = E(v)−(1 + γ∆C) in the last line, and we denote by MQ the sum

of the Q–local martingales appearing in (7.4). Consider now w :=
∫ ·∧T

0
λsdCs. Since

|λs∆Cs| = |λs|∆Cs ≤
√
rs∆Cs ≤ Φ < 1, we have E(w) > 0. Moreover, since |λs| ≤√

rs, Assumption 7.1. (i) ensures that w is bounded. As before, this also implies that
E(w) is bounded since E(w) ≤ ew. Another application of the integration by parts formula
yields

d(E(w)E(v)δY )s = E(w)s−d(E(v)δY )s + (E(v)δY )s−dE(w)s + d[E(w), E(v)δY ]

= E(w)s−d(E(v)δY )s + (E(v)δY )sdE(w)s

= E(w)s−d(E(v)δY )s + E(w)s−E(v)sλsδYsdCs

≤ −E(w)s−E(v)sλsδYsdCs + E(w)s−dMQ
s + E(w)s−E(v)sλsδYsdCs

= E(w)s−dMQ
s .

This implies that, P–a.s., for each (t, t′) ∈ [0,∞) with t ≤ t′, we have

E(w)t∧TE(v)t∧T δYt∧T ≥ E(w)t′∧TE(v)t′∧T δYt′∧T −
∫ t′∧T

t∧T
E(w)s−dMQ

s . (7.5)

Let (τn)n∈N be a Q–localising sequence such that for each n ∈ N, the stopped pro-
cess

∫ ·∧τn
0
E(w)s−dMQ

s , is a uniformly integrable martingale under Q. By taking the
conditional expectation in (7.5), we find

E(w)t∧τn∧TE(v)t∧τn∧T δYt∧τn∧T ≥ EQ
[
E(w)t′∧τn∧TE(v)t′∧τn∧T δYt′∧τn∧T

∣∣∣∣Gt]. (7.6)

Since E(v) and E(w) are bounded, δY ∈ S2
T and dQ/dP ∈ L2(G,P), we can apply domi-

nated convergence with n −→∞ and find

E(w)t∧TE(v)t∧T δYt∧τn∧T ≥ EQ
[
E(w)t′∧TE(v)t′∧T δYt′∧T

∣∣∣∣Gt]. (7.7)

Applying dominated convergence again, now letting t′ ↑↑ ∞, yields

E(w)t∧TE(v)t∧T δYt∧T ≥ EQ
[
E(w)T∞−E(v)T∞−δY

T
∞−

∣∣∣∣Gt]. (7.8)

Since G∞ = G∞− =
∨
t∈[0,∞) Gt, we deduce from∫ t

0

δfs1[0,T ]dCs + δY Tt = E

[
δξT +

∫ T

0

δfsdCs

∣∣∣∣Gt] =: Mt, t ∈ [0,∞),
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that ∫ T

0

δfsdCs + δY T∞− = M∞− = δξT +

∫ T

0

δfsdCs, P–a.s.,

and thus δY T∞− = δξT = ξT − ξ′T ≥ 0, P–a.s. Then (7.8) implies

E(w)t∧TE(v)t∧T δYt∧T ≥ 0, Q–a.s. (7.9)

Because E(w) and E(v) are positive under P and thus under Q, this implies that δYt∧T ≥ 0,
Q–a.s. Since Q and P are equivalent probability measures on each (Ω,Gt), t ∈ [0,∞), we
also have δYt∧T ≥ 0, P–a.s., and therefore Y ≥ Y ′, P–a.s. by (P–a.s.) right-continuity of
Y and Y ′. This completes the proof.

Remark 7.5. As we mentioned in Remark 7.2, one could weaken Assumption 7.1. For
the arguments laid out in the proof of Proposition 7.3 to go through, we have to ensure
the following:

(i) the probability measure Q defined in (7.3) has to be locally equivalent to P, that
is, the restriction Qt of Q to Gt is equivalent to the restriction Pt of P to Gt for each
t ∈ [0,∞);

(ii) we need to be able to let n→∞ and t′ ↑↑ ∞ inside the conditional expectations
of (7.6) and (7.7);

(iii) the stochastic exponentials E(w) and E(v) have to be positive, so that we can
divide both sides of (7.9) by E(w)E(v).

A Proofs of Section 2 and 3

Proof of Proposition 2.5. That ‖ · ‖H2(µ) is a norm and that the stated equalities hold is
clear from our preceding discussion. It remains to show completeness. Let (Uk)k∈N be a
Cauchy sequence in H2(µ). Then, in particular,

lim
(k,`)→∞

‖Uk−U `‖2H2(µ) = lim
(k,`)→∞

E
[
〈(Uk−U `)? µ̃〉∞

]
= lim

(k,`)→∞
E
[
〈Uk ? µ̃−U ` ? µ̃〉∞

]
= 0.

Hence the sequence (Uk ? µ̃)k∈N is Cauchy in K2(µ) ⊆ H2. Since K2(µ) is closed in H2,
there exists U ? µ̃ ∈ K2(µ) with

lim
k→∞

E
[
〈Uk ? µ̃− U ? µ̃〉∞

]
= 0.

Therefore limk→∞ ‖Uk−U‖2H2(µ) = limk→∞E
[
〈(Uk−U) ? µ̃〉∞

]
= limk→∞E

[
〈Uk ? µ̃−U ?

µ̃〉∞
]

= 0.

Proof of Proposition 2.6. Let us start by showing that L2(X)∩K2(µ) is the null subspace
of H2. For M ∈ L2(X) ∩ K2(µ), we can write

M =

∫
(0,·]

ZsdXs =

∫
(0,·]×E

Us(x)µ̃(ds,dx).

Therefore

〈M,M〉 =

〈
M,

∫
(0,·]×E

Us(x)µ̃(ds,dx)

〉
= 0,

by [32, Theorem 13.3.16] or [76, Lemme 7.39] since Mµ

[
∆M

∣∣P̃] = Mµ

[
Z>∆X

∣∣P̃] =∑n
i=1 Z

iMµ

[
∆Xi

∣∣P̃] = 0, which implies that M = M0 = 0. We now define H2,⊥(X,µ) =(
L2(X)⊕K2(µ)

)⊥
, which by the previous considerations lead to a decomposition H2 =
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L2(X) ⊕ K2(µ) ⊕H2,⊥(X,µ). We now fix M ∈ H2. By the previous considerations, we
can decompose M uniquely as

M =

∫
(0,·]

ZsdXs +

∫
(0,·]×E

Us(x)µ̃(ds,dx) +N,

where uniqueness is meant in the spaces L2(X), K2(µ) and H2,⊥(X,µ), respectively. In
particular, since Xi ∈ L2(X), we have that 〈Xi, N〉 = 0. Moreover, by [77, Theorem
III.4.20], we have Mµ[∆N |P̃] = 0.

We now turn to the claimed uniqueness. Suppose that there exists (Z ′, U ′, N ′) ∈
H2(X)×H2(µ)×H2,⊥(X,µ) satisfying

M =

∫
(0,·]

Z ′sdXs +

∫
(0,·]×E

U ′s(x)µ̃(ds,dx) +N ′, 〈N ′, Xi〉 = 0, for each i ∈ {1, . . . , n},

and Mµ

[
∆N ′

∣∣P̃] = 0. We now show that N ′ ∈ H2,⊥. Since for any H ∈ H2(X),〈
N ′,

∫
(0,·]

HsdXs

〉
=

∫
(0,·]

( m∑
i=1

Hi
sc
N ′,i
s

)
dCs,

for a predictable process cN,i satisfying 0 = 〈N ′, Xi〉· =
∫

(0,·] c
N ′,i
s dCs, we see that

cN,is = 0, dCs–a.e., P–a.s., which then implies〈
N ′,

∫
(0,·]

HsdXs

〉
= 0.

Hence N ′ ∈
(
L2(X)

)⊥
. Next, since Mµ[∆N ′|P̃] = 0, we have again by [32, Theorem

13.3.16] or [76, Lemme 7.39] that 〈N ′, V ? µ̃〉 = 0 for each V ? µ̃, and therefore N ′ ∈
(K2(µ))⊥, so N ∈ H2,⊥. This implies that

M =

∫
(0,·]

Z ′sdXs +

∫
(0,·]×E

U ′s(x)µ̃(ds,dx) +N ′,

is a decomposition of M in L2(X) ⊕ K2(µ) ⊕ H2,⊥. We therefore have (Z,U,N) =

(Z ′, U ′, N ′) in H2(X)×H2(µ)×H2,⊥ since∫
(0,·]

ZsdXs =

∫
(0,·]

Z ′sdXs, and

∫
(0,·]×E

Us(x)µ̃(ds,dx) =

∫
(0,·]×E

U ′s(x)µ̃(ds,dx),

implies that ‖Z − Z ′‖H2(X) = 0 and ‖U − U ′‖H2(µ) = 0, which then also implies N = N ′.
This completes the proof.

Proof of Lemma 3.3. Note first that

‖α ∗ξ‖2H2

T ,β̂

= E

[ ∫ T

0

E(β̂A)s lim
s′↑↑s

{
sup

t∈[s′,∞]

∣∣ξ+
s 1{s<T}

∣∣2}dAs

]
= E

[ ∫ T

0

E(β̂A)s lim
s′↑↑s

{
sup

t∈[s′,∞]

∣∣E(β?A)−1/2
s E(β?A)1/2

s ξ+
s 1{s<T}

∣∣2}dAs

]
≤ E

[ ∫ T

0

E(β̂A)s lim
s′↑↑s
E(β?A)−1

s′

{
sup

t∈[s′,∞]

∣∣E(β?A)1/2
s ξ+

s 1{s<T}
∣∣2}dAs

]
= E

[ ∫ T

0

E(β̂A)sE(β?A)−1
s− lim

s′↑↑s

{
sup

t∈[s′,∞]

∣∣E(β?A)1/2
s ξ+

s 1{s<T}
∣∣2}dAs

]
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= E

[ ∫ T

0

E(β̂A)s−(1 + β̂∆As)E(β?A)−1
s− lim

s′↑↑s

{
sup

t∈[s′,∞]

∣∣E(β?A)1/2
s ξ+

s 1{s<T}
∣∣2}dAs

]
≤ (1 + β̂Φ)E

[
sup

s∈[0,∞]

∣∣E(β?A)1/2
s ξ+

s 1{s<T}
∣∣2 ∫ T

0

E(β̂A)s−E(β?A)−1
s−dAs

]
= (1 + β̂Φ)E

[
sup

s∈[0,∞]

∣∣E(β?A)1/2
s ξ+

s 1{s<T}
∣∣2 ∫ T

0

E(Aβ̂,β
?

)s−dAs

]
,

where Aβ̂,β
?

= −(β? − β̂)Ac −
∑
s∈(0,·]

(β?−β̂)∆As

1+β?∆As
, by Lemma C.1. (ii) and Ac denotes the

continuous part of A. Next,∫ t∧T

0

E(Aβ̂,β
?

)s−dAs

=

∫ t∧T

0

E(Aβ̂,β
?

)s−dAcs +
∑

s∈(0,t∧T ]

E(Aβ̂,β
?

)s−∆As

= − 1

(β? − β̂)

∫ t∧T

0

E(Aβ̂,β
?

)s−d(Aβ̂,β
?

)cs

−
∑

s∈(0,t∧T ]

E(Aβ̂,β
?

)s−
(1 + β?∆As)

(β? − β̂)
∆(Aβ̂,β

?

)s

=

∫ t∧T

0

E(Aβ̂,β
?

)s−
(1 + β?∆As)

(β? − β̂)
d(−Aβ̂,β

?

)cs

+
∑

s∈(0,t∧T ]

E(Aβ̂,β
?

)s−
(1 + β?∆As)

(β? − β̂)
∆(−Aβ̂,β

?

)s.

Since −Aβ̂,β? is non-decreasing, the stochastic exponential E(Aβ̂,β
?

) = E(β̂A)/E(β?A) is
non-negative, and β? − β̂ > 0, we deduce that∫ t∧T

0

E(Aβ̂,β
?

)s−dAs ≤
(1 + β?Φ)

(β? − β̂)

∫ t∧T

0

E(Aβ̂,β
?

)s−d(−Aβ̂,β
?

)s

=
(1 + β?Φ)

(β? − β̂)

(
1− E(Aβ̂,β

?

)t∧T

)
≤ (1 + β?Φ)

(β? − β̂)
,

where in the last inequality we used that 0 < E(Aβ̂,β
?

) ≤ 1 since 1 ≤ E(β̂A) ≤ E(β?A).
We thus conclude that

‖α ∗ξ‖2H2

T ,β̂

≤ (1 + β?Φ)(1 + β̂Φ)

(β? − β̂)
E

[
sup

s∈[0,∞]

∣∣E(β?A)1/2
s ξ+

s 1{s<T}
∣∣2]

=
(1 + β?Φ)(1 + β̂Φ)

(β? − β̂)
‖ξ+
· 1{·<T}‖2S2

T ,β?
.

This completes the proof.

B Proofs of technical lemmata

Lemma B.1. Let Ψ ∈ [0,∞), and let (fΨ, gΨ) : (0,∞)→ R×R be defined by

fΨ(β) := inf
γ∈(0,β)

{
(1 + βΨ)

γ(β − γ)

}
and gΨ(β) := inf

γ∈(0,β)

{
(1 + γΨ)

γ(β − γ)

}
.

Then, for β ∈ (0,∞),

fΨ(β) =
4(1 + βΨ)

β2
and gΨ(β) =

4

β2
1{Ψ=0} +

Ψ2
√

1 + βΨ(
1 + βΨ−

√
1 + βΨ

)(√
1 + βΨ− 1

)1{Ψ>0}.
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Proof. Fix β ∈ (0,∞), and let f : (0, β) → R be given by f(γ) := (1+βΨ)
γ(β−γ) , so that

fΨ(β) = inf f . Note that f is strictly convex since

∂2f

∂γ2
=

2(β2 − 3γβ + 3γ2)(1 + βΨ)

γ3(β − γ)3
,

because

β2 − 3γβ + 3γ2 = β2 − 2
3

2
γβ +

9

4
γ2 − 9

4
γ2 + 3γ2

=

(
β − 3

2
γ

)2

− 9

4
γ2 +

12

4
γ2 =

(
β − 3

2
γ

)2

+
3

4
γ2 > 0, (B.1)

and as f tends to infinity at the boundaries of the interval (0, β), there is a unique critical
point γ? in (0, β) at which f attains its minimum. The point γ? satisfies

∂f

∂γ
(γ?) =

(2γ? − β)(1 + βΨ)

(γ?)2(β − γ?)2
= 0,

and therefore γ? = β/2. This implies fΨ(β) = inf f = f(γ?) = 4(1+βΨ)
β2 .

We turn to gΨ. Let g : (0, β) −→ R be given by g(γ) := (1+γΨ)
γ(β−γ) . Then gΨ(β) = inf g. We

also note here that g tends to infinity at the boundary of (0, β). Similar to before, g is
strictly convex since

∂2g

∂γ2
=

2(β2 − 3γβ + 3γ2 + γ3Ψ)

γ3(β − γ)3
> 0,

where the strict inequality follows from (B.1). As before, we now only need to find the
unique critical point γ? of g in (0, β). Suppose first that Ψ ∈ (0,∞). From

∂g

∂γ
(γ?) =

2γ − β + γ2Ψ

γ2(β − γ)2
= 0,

we find that γ?1,2 = −1±
√

1+βΨ
Ψ , and thus the critical point we are looking for is γ? =

(−1 +
√

1 + βΨ)/Ψ. This implies

gΨ(β) = inf g = g(γ?) =
Ψ2
√

1 + βΨ(
1 + βΨ−

√
1 + βΨ

)(√
1 + βΨ− 1

) .
In case Ψ = 0, we have g0(β) = f0(β) = 4/β2. This completes the proof.

Lemma B.2. Let Ψ ∈ [0,∞). Then

lim
β↑↑∞

fΨ(β) = 0 and lim
β↑↑∞

βgΨ(β) = Ψ.

Furthermore, for each i ∈ {1, 2, 3}, the constant MΨ
i (β) is decreasing in β and

lim
β↑↑∞

MΨ
1 (β) = max{1,Ψ}Ψ, lim

β↑↑∞
MΨ

2 (β) = Ψ and lim
β↑↑∞

MΨ
3 (β) = max{1,Ψ}Ψ.

Proof. It is clear that (1 + βΨ)/β, fΨ(β) and gΨ(β) are decreasing in β. Moreover, (1 +

βΨ)/β converges to Ψ, fΨ(β) converges to zero and βgΨ(β) converges to Ψ by Lemma B.1
as β tends to infinity. The stated limits of MΨ

1 , MΨ
2 and MΨ

3 thus follow immediately.

The following result can be deduced similarly, we thus omit its proof.

Lemma B.3. For each i ∈ {1, 2, 3}, the constant M̃Ψ(β) is decreasing in β, and

lim
β→∞

M̃Ψ
1 (β) = max{1,Ψ}Ψ, lim

β→∞
M̃Ψ

2 (β) = Ψ, and lim
β→∞

M̃Ψ
3 (β) = max{1,Ψ}Ψ.
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We now prove the technical lemmata of Section 4.

Proof of Lemma 4.1. We clearly have L = L·∧T , P–a.s., and since −|M | − 1 ≤ L ≤
ξ+
·∧T +

∫ T
0
|fu|dCu + |M |+ 1, up to P–indistinguishability, we find using (4.1) and Doob’s

L2-inequality that

E

[
sup

s∈[0,T ]

|Ls|2
]

= E

[
sup

s∈[0,∞]

|Ls|2
]
<∞.

Next, it is clear that L ≥ J and thus V (S) ≤ ess supτ∈TS,∞

GSE[Lτ |GS ], P–a.s., S ∈ T0,∞.
We turn to the converse inequality. Fix S ∈ T0,∞, let τ ∈ TS,∞ and let τ̂ := τ1{Jτ≥Lτ} +

∞1{Jτ<Lτ} ∈ TS,∞. Then

E[Lτ |GS ] = E[Lτ1{Jτ≥Lτ} +
(
Mτ − 1{τ<T}

)
1{Jτ<Lτ}|GS ]

≤ E[Lτ1{Jτ≥Lτ} +Mτ1{Jτ<Lτ}|GS ]

≤ E[Jτ1{Jτ≥Lτ} + E[J∞|Gτ ]1{Jτ<Lτ}|GS ]

= E[Jτ1{Jτ≥Lτ} + J∞1{Jτ<Lτ}|GS ] = E[Jτ̂ |GS ] ≤ V (S), P–a.s.,

and therefore ess supGSτ∈TS,∞
E
[
Lτ
∣∣GS] ≤ V (S), P–a.s., S ∈ T0,∞, which completes the

proof.

Proof of Lemma 4.2. We only show that V (S) ∈ L2(GS), for each S ∈ T0,∞, as the rest
follows from Proposition 1.3 and Proposition 1.5 in [92]22 together with the argument in
[62, Footnote 4]. Fix S ∈ T0,∞, and note that

−E
[
|ξT |

∣∣GS]−E[ ∫ T

0

|fu|dCu
∣∣∣∣GS] ≤ V (S) ≤ E

[
|ξT |+ sup

u∈[0,T )

ξ+
u +

∫ T

0

|fu|dCu
∣∣∣∣GS], P–a.s.,

implies

|V (S)| ≤ E
[
|ξT |+ sup

u∈[0,T )

ξ+
u +

∫ T

0

|fu|dCu
∣∣∣∣GS], P–a.s.,

from which we deduce that V (S) ∈ L2(GS) by (4.1). This completes the proof.

Proof of Lemma 4.3. The existence of the process V = (Vt)t∈[0,∞] is a mere applica-
tion Lemma 4.2 and [41, Appendix I, Remark 23(b)]. Next, let S ∈ T0,∞. Since
VT = V (T ) = V (S ∨ T ) = VS∨T , P–a.s., we find

VS∧T = VS1{S≤T} + VT1{S>T} = VS1{S≤T} + VS∨T1{S>T} = VS , P–a.s.

In particular, V· = V·∧T up to P–indistinguishability by Proposition C.3.
The fact that V is in S2

T can be argued as follows. Let N = (Nt)t∈[0,∞] be the
martingale satisfying

NS = E

[
|ξT |+ sup

u∈[0,T )

|ξ+
u |+

∫ T

0

|fu|dCu
∣∣∣∣GS], P–a.s., S ∈ T0,∞.

Note that N is square-integrable by (4.1). As in the proof of Lemma 4.2, we find that

|VS | ≤ E

[
|ξT |+ sup

u∈[0,T )

|ξ+
u |+

∫ T

0

|fu|dCu
∣∣∣∣GS] = NS , P–a.s., S ∈ T0,∞,

22The fact that the filtration is complete and the horizon is finite in [92] is not relevant for the proof of their
Proposition 1.3 and Proposition 1.5.
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Thus |V | ≤ N up to P–indistinguishability by Proposition C.3, and with Doob’s L2-
inequality for martingales, we find

E

[
sup

s∈[0,∞]

|Vs∧T |2
]
≤ E

[
sup

s∈[0,∞]

|Ns|2
]
≤ 4E

[
|N∞|2

]
<∞,

which completes the proof.

Proof of Lemma 4.4. We start with (i). Let S ∈ T0,∞. Note that on {S < T}, we have
1{VS=LS} = 1{VS=JS}, P–a.s., since VS ≥MS > MS − 1, P–almost surely. On {S ≥ T}, we
have that VS = VT = JT , P–a.s., and therefore 1{VS=LS} = 1{VS=JS}, P–almost surely.

We turn to (ii). Let S ∈ T p0,∞. On {S ≤ T}, we have 1{VS−=L̄S} = 1{VS−=J̄S} since
VS− ≥ MS− > MS− − 1, P–almost surely. On {S > T}, we have VS− = VT = JT = JS−,
P–a.s., and therefore 1{VS−=L̄S} = 1{VS−=J̄S}, P–a.s., which completes the proof.

C Miscellaneous

Lemma C.1. Let A and B be two optional, real-valued processes with P–a.s. right-
continuous and non-decreasing paths such that A0 = B0 = 0, P–almost surely. Then the
following holds:

(i) E(A)−1 = E(−A), where A = A−
∑
s∈(0,·]

(∆As)
2

1+∆As
;

(ii) E(A)−1E(B) = E(C), where C = Bc −Ac +
∑
s∈(0,·]

∆Bs−∆As

1+∆As
;

(iii) E(A)1/2 = E(D), where D = 1
2A

c +
∑
s∈(0,·]

(√
1 + ∆As − 1

)
.

Proof. Assertion (i) follows from [31, Lemma 4.4]. We prove (ii). The product formula
for stochastic exponentials yields E(A)−1E(B) = E(C), where C = −A+B +−[A,B]. By
differentiating the continuous part Cc of C from the purely discontinuous part Cd, we
can explicitly write

C = −A+B − [A,B]

= −Ac +Bc +
∑
s∈(0,·]

(
−∆As +

(∆As)
2

1 + ∆As
+ ∆Bs −

(
∆As −

(∆As)
2

1 + ∆As

)
∆Bs

)

= Bc −Ac +
∑
s∈(0,·]

(
− ∆As

1 + ∆As
+

∆Bs + ∆As∆Bs
1 + ∆As

− ∆As∆Bs
1 + ∆As

)

= Bc −Ac +
∑
s∈(0,·]

∆Bs −∆As
1 + ∆As

.

Assertion (iii) follows by squaring E(D), using the product formula for stochastic expo-
nentials, and then checking that this coincides with E(A). This completes the proof.

Proposition C.2. Let A be a non-decreasing, [0,∞]-valued function with the conventions
A0− := 0, A∞− := limt↑↑∞At and A∞ := ∞. Let R = (Rt)t∈[0,∞] and L = (Lt)t∈[0,∞] be
defined by

Rt :=

{
inf{s ∈ [0,∞) : As > t}, t ∈ [0,∞),

∞, t =∞,

with the conventions inf ∅ =∞ and R0− = 0, and Lt := Rt−, t ∈ [0,∞]. For any t ∈ [0,∞]

(i) t ≤ ALt = ARt− ≤ ARt
;

(ii) ALt− = ARt−− ≤ ARt− ≤ t;
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(iii) for any s ∈ [0,∞], t ≤ As if and only if Lt ≤ s;

(iv) for any s ∈ [0,∞], if t < As, then Rt ≤ s (the other direction is false in general, and
equality is possible);

(v) for any function f on [0,∞) which is non-negative and Borel-measurable, if A is
finite on [0,∞), then∫

[0,∞)

f(s)dAs =

∫
[0,∞)

f(Ls)1{L·<∞}(s)ds =

∫
[0,∞)

f(Rs)1{R·<∞}(s)ds;

(vi) for any non-decreasing, Borel-measurable, `–sub-multiplicative23 g : [0,∞) −→
[0,∞), and if A is finite on [0,∞), then∫

(0,t]

g(As)dAs ≤ `g
(

max
{s:Ls<∞}

∆ALs

)∫
(A0,At]

g(s)ds.

Proof. For (i) through (v) see [41, page 119–120] or [72, page 21–22], for (vi) see the
proof of Lemma 2.14 in [113].

Since we have not been able to locate a reference for the following result, we prove
it for the convenience of the reader.

Proposition C.3. Suppose that X = (Yt)t∈[0,∞] and Y = (Yt)t∈[0,∞] are two optional
processes for which XS ≤ YS , P –a.s., holds for each S ∈ T0,∞. Then X ≤ Y holds up to
P-evanescence.

Proof. Let ε > 0, and let A := {(ω, t) ∈ Ω× [0,∞) : Xs(ω) > Ys(ω)}, which is an optional
subset of Ω × [0,∞). By [40, Theorem IV.84], there is a G–stopping time S such that
for all ω ∈ Ω with S(ω) < ∞, we have (ω, S(ω)) ∈ A and P[S < ∞] ≥ P[πΩ(A)] − ε.
Here, πΩ(A) is the projection of A onto Ω, which is GU∞-measurable. Since P[S <∞] ≤
P[S <∞, XS > YS ] = 0 and ε > 0 was arbitrary, it follows that P[πΩ(A)] = 0. This, with
P[X∞ > Y∞] = 0, implies the claim.

Lemma C.4. Suppose that M = (Mt)t∈[0,∞] is a non-negative, P –a.s. right-continuous,
(F,P)-martingale with M∞ ∈ L2(G∞). Then

E

[
sup

s∈[t,∞]

M2
s

∣∣∣∣Gt] ≤ 4E[M2
∞|Gt], P–a.s., t ∈ [0,∞]

Proof. First, the condition that M∞ ∈ L2(G∞) implies already that Mt ∈ L2(Gt) for each
t ∈ [0,∞). Moreover, the result is trivial for t =∞. So we fix t ∈ [0,∞), and consider a
subdivision t = t0 < t1 < · · · < tN =∞. By Proposition 2.1 in [1], we have that

max
k∈{0,...,N}

M2
tk ≤ −4

N−1∑
`=0

max
k∈{0,...,`}

Mtk

(
Mt` + 1

−Mt`

)
− 2M2

t0 + 4M2
tN .

For each ` ∈ {0, 1, . . . , N − 1},∣∣∣∣ max
k∈{0,...,`}

Mtk

(
Mt` + 1

−Mt`

)∣∣∣∣ ≤ 1

2
max

k∈{0,...,`}
M2
tk +

1

2

(
Mt` + 1

−Mt`

)2
,

23This means that ` ∈ (0,∞) and

g(x+ y) ≤ `g(x)g(y), (x, y) ∈ [0,∞)2.
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and the right-hand side in the previous inequality is integrable. Therefore, by the
martingale property of M , we deduce that

E

[
max

k∈{0,...,N}
M2
tk

∣∣∣∣Gt0]
≤ E

[
− 4

N−1∑
`=0

max
k∈{0,...,`}

Mtk

(
Mt` + 1

−Mt`

)∣∣∣∣Gt0]− E[2M2
t0

∣∣Gt0]+ 4E
[
M2
tN

∣∣Gt0]
≤ 4E

[
M2
tN

∣∣Gt0].
The claim then follows by approximating the supremum of M on [t,∞] and then using
Fatou’s lemma for conditional expectations, which completes the proof.

Lemma C.5. Let L = (Lt)t∈[0,∞] and J = (Jt)t∈[0,∞] be two product-measurable pro-
cesses whose P–almost all paths admit limits from the left on (0,∞]. Suppose that
E[supt∈[0,∞] |Lt|] + E[supt∈[0,∞] |Jt|] < ∞ and that E[Lt|Gt] ≤ E[Jt|Gt], P–a.s., t ∈ [0,∞].
Then E[Lt−|Gt−] ≤ E[Jt−|Gt−], P–a.s., t ∈ [0,∞], where L0− := J0− := 0 and G0− := G0.

Proof. The assertion trivially holds for t = 0. So suppose that t ∈ (0,∞]. Let (tn)n∈N ⊆
[0, t) be a sequence that converges increasingly to t. We have

lim
n→∞

E
[
|E[Ltn − Lt−|Gtn ]|

]
≤ lim
n→∞

E
[
|Ltn − Lt−|

]
= 0.

Here the last equality follows by dominated convergence. Therefore, upon choosing a
suitable subsequence of (tn)n∈N if necessary, we have

lim
n→∞

E[Ltn |Gtn ] = E[Lt−|Gt−], P–a.s.

The same argument applied to E[Jtn |Gtn ], n ∈ N, and upon choosing a further subse-
quence if necessary, then yields

E[Lt−|Gt−] = lim
n→∞

E[Ltn |Gtn ] ≤ lim
n→∞

E[Jtn |Gtn ] = E[Jt−|Gt−], P–a.s.,

which completes the proof.

Proposition C.6. Let ξ = (ξt)t∈[0,∞] be (Gt)t∈[0,∞]-predictable. Then the process ξ =

(ξt)t∈[0,∞] defined by

ξ0 := ξ0, and ξt := lim sup
s↑↑t

ξs for t ∈ (0,∞],

is (GUt )t∈[0,∞]-predictable.

Proof. For each n ∈ N, define ξn = (ξnt )t∈[0,∞] by ξn0 := ξ0 and for t ∈ (0,∞] by

ξnt :=

(
sup
s∈[n,t)

ξs

)
1(n,∞](t) +

n2n−1∑
k=0

(
sup

s∈[k2−n,t)

ξs

)
1(k2−n,(k+1)2−n](t).

Each ξn is (GUt )t∈[0.∞]-adapted by [52, Proposition 2.21] and left-continuous on (0,∞].
The claim now follows from the fact that ξ is the limit of the sequence (ξn)n∈N, which
completes the proof.

Proposition C.7. Let ξ = (ξt)t∈[0,∞] be a real-valued, optional process, T be a stopping
time. Suppose that ξ· = ξ·∧T . Then sups∈[0,T ] |ξs| is GU∞-measurable and for each p ∈
(1,∞)

E

[
ess sup
τ∈T0,T

G∞ |ξτ |p
]
≤ E

[
sup

s∈[0,T ]

|ξs|p
]
≤
(

p

p− 1

)p
E

[
ess sup
τ∈T0,T

G∞ |ξτ |p
]

(C.1)
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Proof. Fix p ∈ (1,∞). Since ξ·∧T is optional, and thus B([0,∞]) ⊗ G∞-measurable, we
have that sups∈[0,T ] |ξs| = sups∈[0,∞] |ξs∧T | is GU∞-measurable by an application of [52,
Proposition 2.21]. The first claimed inequality follows from

ess sup
τ∈T0,T

G∞ |ξτ |p ≤ sup
s∈[0,T ]

|ξs|p, P–a.s.

Next, we suppose without loss of generality, that the right hand side in (C.1) is finite,
otherwise the second inequality trivially holds. Let M = (Mt)t∈[0,∞] be the non-negative
martingale satisfying

MS = E

[
ess sup
τ∈T0,T

G∞ |ξτ |
∣∣∣∣GS], P–a.s., S ∈ T0,∞.

Note that |ξS | ≤ MS , P–a.s., for each S ∈ T0,∞ and thus in particular sups∈[0,T ] |ξs| =

sups∈[0,∞] |ξs∧T | ≤ sups∈[0,∞] |Ms| by Proposition C.3. By using Doob’s inequality for
martingales, we thus find

E

[
sup

s∈[0,T ]

|ξs|p
]
≤ E

[
sup

s∈[0,∞]

Mp
s

]
≤
(

p

p− 1

)p
E[Mp

∞] =

(
p

p− 1

)p
E

[
ess sup
τ∈T0,T

G∞ |ξτ |p
]
,

which concludes the proof.
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