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1 Introduction

The Schramm-Loewner evolution, SLEκ (κ > 0), introduced in [20], is a one-parameter
family of random conformally invariant curves which arise as the scaling limits of
statistical mechanics models in two dimensions. When constructing η ∼ SLEκ via the
Loewner differential equation (see Section 2.2), the curve is parametrised by capacity,
that is, if Kt is the set of points in H which are separated from ∞ by η([0, t]), then
hcap(Kt) = 2t for each t ≥ 0. However, there are other parametrisations which may
be equally natural for SLE. One example is the so-called natural parametrisation of
SLE, constructed in [12] for κ < 4(7 −

√
33) and then in [14] for all κ < 8. This is

the parametrisation which is conjectured to arise when considering SLEκ as a scaling
limit of a discrete model where the discrete interface is parametrised by the number
of edges it traverses (so far this has only been proved to be the case when considering
the scaling limit of loop-erased random walk [13] and critical site percolation on the
triangular lattice [5]). It turns out that the natural parametrisation of SLEκ is in fact
(a deterministic constant times) the dκ-dimensional Minkowski content of SLEκ, where
dκ = 1 + κ/8 is the almost sure Hausdorff dimension of SLEκ [1].

In [2] the natural parametrisation of SLEκ for κ ∈ (0, 4) was constructed using the
Gaussian free field (GFF). More precisely, it was constructed as a conditional expectation
of a certain quantum length measure on SLEκ. The same was done in [15] in the case
of κ ∈ (4, 8), when the curves are non-simple. The goal of this paper is to complete this
picture by providing the corresponding construction in the case κ = 4. The difference in
this case compared to κ 6= 4, is that in order to cut and weld Liouville quantum gravity
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A GFF approach to the natural parametrisation of SLE4

(LQG) surfaces with η ∼ SLE4, one must choose the LQG parameter γ = 2, which is
the critical value. When working with critical LQG, the calculations turn out to be a bit
more cumbersome (due to the factor containing the logarithm in the definition, see (2.5))
and one has to be extra careful, as the LQG boundary length of a (Euclidean) bounded
interval no longer has finite expectation.

For a simply connected domain D, denote by rD(z) the conformal radius of D as seen
from z ∈ D.

Theorem 1.1. Let η ∼ SLE4 and (ft) be its centred Loewner chain. Let h0 be a zero-
boundary GFF onH independent of η and for each t > 0, define ht = h0◦f−1t +2 log |(f−1t )′|.
We define the measure µ0 on η by

µ0|η([0,t])(dz) = F (z)E[νht | η] ◦ ft(dz),

where F (z) = rH(z)
−1/2 and νht is the critical LQG boundary length measure with respect

to ht (see (2.5)). Then, there exists a (deterministic) constant C > 0 such that a.s. Cµ0 is
the natural parametrisation of η.

Related work

There have been many results concerning natural measures on random fractals. We
already mentioned the results on the natural parametrisation of SLE in [12, 14, 10, 2, 15].
Moreover, in [15], a natural conformally covariant measure on CLEκ, κ ∈ (8/3, 8), was
constructed and proved to be unique (up to multiplicative constant). Moreover, in [3],
natural conformally covariant measures on several fractals (cut points and boundary
touching points of SLEκ, κ > 4, CLE pivotal points and carpet/gasket) were constructed
and in [9] the natural measure on cut points of SLEκ for κ > 4 was studied further and
proved to have bounded moments.

Another related result is the construction of a family of random measures on the
so-called two-valued sets (TVS) of the GFF, carried out in [19]. This is done similarly to
the measures above, using the imaginary multiplicative chaos (that is, a version of LQG
where the real parameter γ is replaced by iσ for some σ ∈ (0,

√
2)) and it was shown

that if the conformal Minkowski contents of the TVS exist, then they are equal (up to
deterministic constants) to the constructed measures.

Outline

Section 2 contains the necessary preliminaries and in Section 3 we prove the main
theorem. The latter section begins with the proof of the consistency of the definition of
µ0 for different t > 0, after which the rest of the section is divided into two subsections.
In Section 3.1 we prove that µ0 is almost surely locally finite as a measure on H and
in Section 3.2 we prove that µ0 is conformally covariant and use this together with the
local finiteness of µ0 on H to deduce the local finiteness of µ0 as a measure on SLE4. The
main result then follows.

Notation

For any quantities a, b, we write a . b to mean a ≤ Cb for some constant C > 0 which
does not depend on any of the parameters of interest. Moreover, we write a & b if b . a.
Finally, we write a � b if a . b and a & b.

We denote by R the real line and C the complex plane. Moreover, we write H for the
upper half-plane {z ∈ C : Im(z) > 0} and D for the unit disk {z ∈ C : |z| < 1}.

We denote two-dimensional Lebesgue measure by dz.
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2 Preliminaries

2.1 Random measures

A random measure is a random element in a space of measures on some Borel space,
in our case C. For a random measure ξ, we define the intensity E[ξ] of ξ by E[ξ](A) =
E[ξ(A)] for all Borel sets A ⊂ C. Moreover, for a σ-algebra G , we define the conditional
intensity of ξ given G to be the random measure given by E[ξ |G ](A) = E[ξ(A) |G ] for
each Borel set A ⊂ C. For more on random measures, see [7] (note that while they
require local finiteness as a part of the definition, this property will be shown to hold for
the measure we construct).

2.2 Schramm-Loewner evolution

Consider the Loewner differential equation

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z, (2.1)

with Wt =
√
κBt where κ > 0 and Bt is a standard Brownian motion. There exists a

solution gt(z) to (2.1) for each time t ∈ [0, Tz) where Tz = inf{t ≥ 0: gt(z) −Wt = 0}.
We let Kt = {z ∈ H : Tz ≤ t} and note that (gt)t≥0 is a family of conformal maps
gt : H \Kt → H such that limz→∞ gt(z)− z = 0, called the SLEκ Loewner chain. By [17]
(for κ 6= 8) and [11] (for κ = 8) there exists a continuous curve η such that Kt is the
set of points separated from infinity by η([0, t]). This curve η is an SLEκ in H from 0 to
∞. The behaviour of η is heavily influenced by the value of κ: if κ ≤ 4, η is a.s. simple,
if κ ∈ (4, 8), η a.s. intersects its past as well as the boundary and if κ ≥ 8, the η is a.s.
space-filling. It turns out that η has a.s. Hausdorff dimension dκ = 1 + κ/8 for κ ∈ (0, 8),
see [1].

Denote by (ft)t≥0 the centred Loewner chain of η ∼ SLEκ, that is, for each t ≥ 0 and
all z ∈ H, ft(z) = gt(z)−Wt. An important property of SLE is that the law of η is scale
invariant and satisfies the domain Markov property, that is, for any a.s. finite stopping
time τ , the law of ητ (u) = fτ (η(τ + u)) is SLEκ.

2.2.1 Natural parametrisation of SLE

We now recall some basic facts about the natural parametrisation of SLE. The natural
parametrisation of SLE was constructed in [12, 14] and in [10] shown to be equal to
(a deterministic constant times) the Minkowski content of SLE which they also proved
exists (we shall discuss briefly what this means below). We recall that the d-dimensional
Minkowski content of a set A ⊂ H is (if it exists) defined as the limit

Contd(A) = lim
r→0

rd−2Area({z ∈ H : dist(z,A) ≤ r}).

For η ∼ SLEκ we let M denote the dκ-dimensional Minkowski content of η (where
dκ = 1+κ/8), that is,M is the measureM(D) = Contdκ(η∩D). Typically, the Minkowski
content of SLE is viewed as a parametrisation of η, that is, one can parametrise η so that
M(η([s, t])) = t− s for all 0 < s < t.

Furthermore, it is proved that if we denote by (ft) the centred Loewner chain for η,
then

E[M(D)] =

∫
D

Gκ(z)dz, E[M(D)2] =

∫∫
D2

Gκ(z, w)dzdw,

E[M(D) | η([0, t])] =M|η([0,t])(D) +

∫
D

|f ′t(z)|2−dGκ(ft(z))dz,
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where Gκ(z) = cκ sin
8
κ−1(arg z)Im(z)d−2 and cκ > 0 and

Gκ(z, w) = lim
r→0

r2(d−2)P(dist(z, η) ≤ r, dist(w, η) ≤ r).

Next, we recall a characterisation of the natural parametrisation which we will use to
identify the measure that we will construct with the natural parametrisation. Again, let
(ft) be the centred Loewner chain of η ∼ SLEκ and for each t > 0, let ψt = f−1t . For each
t > 0, we define the “unzipped” curve ηt by

ηt(u) = ft(η(t+ u)), u > 0, (2.2)

write η0 = η and recall that ηt ∼ SLEκ. Moreover, for a dκ-dimensional volume measure
µ on η, we define

µt(dz) = |ψt(z)|−dκµ ◦ ψt(dz), (2.3)

and note that µ0 = µ. The following uniqueness result was proved in [12].

Theorem 2.1. Fix κ ∈ (0, 8), set dκ = 1 + κ/8, let η ∼ SLEκ and let µ be an a.s. locally

finite measure on η. If (µt, ηt)
d
= (µ, η) for all t ≥ 0, then there is a deterministic constant

C > 0 such that Cµ is the natural parametrisation of η.

2.3 Gaussian free field

Let D be a Jordan domain and let H0(D) be the Hilbert space closure of the space
C∞0 (D) of smooth functions with support compactly contained in D, under the Dirichlet
inner product

(f, g)∇ =
1

2π

∫
D

∇f(z) · ∇g(z)dz.

Let (φn)n≥1 be an orthonormal basis of H0(D) and consider a sequence (αn)n≥1 of
i.i.d. N(0, 1) random variables. The zero-boundary GFF h on D is defined by the sum
h =

∑
n≥1 αnφn. The law of h does not depend on the choice of orthonormal basis and it

is conformally invariant in the sense that if ϕ : D̃ → D is a conformal map, then h̃ = h ◦ϕ
is a zero-boundary GFF in D̃.

The zero-boundary GFF satisfies a domain Markov property. Indeed, if U ⊂ D is
open, then we have the orthogonal decomposition H0(D) = H0(U) ⊕ H⊥0 (U), where
H⊥0 (U) is the space of functions f ∈ H0(D) which are harmonic on U . It follows that
we can decompose h as h = hU + h⊥U , where h is a zero-boundary GFF on U and h⊥U is
a distribution which agrees with h on D \ U , is harmonic on U and is independent of
hU . We think of h⊥U |U as the harmonic extension of the the values of h on ∂U to U . With
this in mind, one can also define a GFF with boundary data F as h+ f , where f is the
harmonic extension of F to D.

One can, equivalently, define the zero-boundary GFF as a centred Gaussian process
h : H0(D)→ L2(D) with correlation kernel given by the Dirichlet Green’s function for D.
This means that (h, f), f ∈ H0(D), is a collection of centred Gaussians with covariance
given by E[(h, f)(h, g)] =

∫
D×D f(z)GD(z, w)g(w)dzdw, where GD is the Green’s function

on D for Dirichlet boundary data.
We let H(D) denote the Hilbert space closure of the set of functions f ∈ C∞(D)

with (f, f)∇ < ∞ such that
∫
D
fdz = 0 (we do not require that the functions have

compact support), with respect to (·, ·)∇. A free boundary GFF is defined in the same
way as a zero-boundary GFF, with an orthonormal basis of H(D) replacing that of H0(D).
Similarly, the law of the free boundary GFF is independent of the choice of orthonormal
basis and it is conformally invariant.

ECP 28 (2023), paper 60.
Page 4/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP563
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A GFF approach to the natural parametrisation of SLE4

In the interior of the domain, the laws of a zero-boundary GFF and a free boundary
GFF are mutually absolutely continuous. In fact, we may decompose a free boundary
GFF hf as hf = h0 + h, where h0 is a zero-boundary GFF and h is a harmonic function,
independent of h0.

Remark 2.2 (Radial/lateral decomposition in H). We have the orthogonal decomposition
H(H) = HR(H)⊕HL(H), where HR(H) (resp. HL(H)) is the space of functions in H(H)

which are constant (resp. has mean zero) on each semicircle ∂B(0, s).
If h is a free boundary GFF on H, then the projection of h onto HR(H) is called the

radial part of h and if hR(z) = h|z|(0) denotes the average value of h on ∂B(0, |z|), then
(hR(e

−t))t∈R has the same law as (B2t)t∈R where B is a two-sided Brownian motion with
B0 = 0. The projection of h onto HL(H) is called the lateral part of h.

2.4 Liouville quantum gravity

Fix γ ∈ (0, 2]. A γ-Liouville quantum gravity (γ-LQG) surface is a law on equivalence
classes of pairs (D,h) where D is a simply connected domain and h a distribution on D,
such that (D,h) and (D̃, h̃) are equivalent if there exist a conformal map ψ : D̃ → D such
that

h̃ = h ◦ ψ +Qγ log |ψ′|, Qγ =
2

γ
+
γ

2
. (2.4)

Typically, h is a random distribution which looks locally like a GFF. One can also define
quantum surfaces with marked points. We say that (D,h, z1, . . . , zn) and (D̃, h̃, z̃1, . . . , z̃n)

are equivalent if (D,h) and (D̃, h̃) are equivalent as quantum surfaces and ψ(z̃j) = zj for
all 1 ≤ j ≤ n.

An LQG surface comes naturally equipped with an area measure and a length measure,
but we shall only need the latter. Consider a 2-LQG surface embedded into H and for
ε > 0 and x ∈ R, we denote by hε(x) the average value of h on ∂B(x, ε) ∩H (this makes
sense for any h which is locally absolutely continuous with respect to a GFF). Then we
define the boundary length measure to be

νh(dx) = lim
ε→0

ε

(
log(1/ε)− hε(x)

2

)
ehε(x)dx. (2.5)

By the conformal coordinate change (2.4) one can then define the quantum length of
boundaries in arbitrary simply connected domains. We note that while νh is a measure on
∂D, it can actually be used to measure the length of curves inside on D as well. Indeed,
if η is a curve in D and f : D \ η → D is a conformal map which extends to the boundary
(in the sense of prime ends), then letting ηL (resp. ηR) denote the left (resp. right) side of
η we define the length of ηq as νh̃(f(η

q)), where h̃ = h ◦ f−1+2 log |(f−1)′| and q ∈ {L,R}
(note here that Q2 = 2).

Next, we recall the definition of a quantum wedge.

Definition 2.3. A (γ, α)-quantum wedge, α ∈ (−∞, Qγ) is a doubly marked γ-LQG
surface W = (H, h, 0,∞) such that the projection hL of h on HL(H) has the law of the
lateral part of a free boundary GFF on H and such that if Xt denotes the average value
of h on ∂B(0, e−t), then X is as follows.

• (Xt)t≥0 has the law of (B2t + αt)t≥0, where B is a standard Brownian motion with
B0 = 0, conditioned so that B2t + αt ≤ Qγt for all t ≥ 0.

• (Xt)t≤0 has the law of (B̂−2t + αt)t≤0, where B̂ is a standard Brownian motion with
B̂0 = 0.

• hL, (Xt)t≤0 and (Xt)t≥0 are independent.

ECP 28 (2023), paper 60.
Page 5/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP563
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A GFF approach to the natural parametrisation of SLE4

We then write (H, h, 0,∞) ∼ QWedgeα=α
γ=γ . The particular embedding in this definition is

called the last exit parametrisation.

Remark 2.4. Sometimes it is useful to parametrise a quantum wedge by the strip
instead. This is done using the conformal coordinate change (2.4) with ψ(z) = e−z. Then,
a last exit parametrisation embedding of (h,S ,−∞,+∞) can be sampled by letting
h = X + hL where hL, the projection of h onto HL(S ), has the law of the lateral part of
a free boundary GFF in S and Xt is the average value of h on {t} × [0, π], defined as
follows.

• (Xt)t≥0 has the law of (B2t− (Qγ −α)t)t≥0, where B is a standard Brownian motion
with B0 = 0, conditioned so that B2t − (Qγ − α)t ≤ 0 for all t ≥ 0.

• (Xt)t≤0 has the law of (B̃−2t − (Qγ − α)t)t≤0, where B̃ is a standard Brownian

motion with B̃0 = 0.

• hL, (Xt)t≤0 and (Xt)t≥0 are independent.

Remark 2.5. Some care has to be taken when conditioning on a zero probability event.
Fix a > 0 and let (Ut)t≥0 be (Bt − at)t≥0 “conditioned to stay negative”. By this we
mean the weak limit as ε→ 0 of the processes (Bt − at)t≥0 conditioned to stay below ε.
A sample from this law can be drawn by sampling a standard Brownian motion B̂t, letting
τ = sup{t ≥ 0 : B̂t − at ≥ 0} (which is a.s. finite) and setting Ut = B̂τ+t − a(τ + t).

3 Natural measure

For any field h we let νh denote the 2-LQG boundary measure associated with h,
defined in (2.5). Moreover, we let η be an SLE4 in H from 0 to ∞ and (ft) its centred
Loewner chain. For t ≥ 0 we denote by ηt the curve ηt(u) = ft(η(t + u)) and note that
η0 = η. Moreover, we write ψt = f−1t and let fs,t = ft ◦ ψs and ψs,t = f−1s,t = fs ◦ ψt.

We let h0 be a zero-boundary GFF independent of η and for each t > 0 let

ht = h0 ◦ ψt + 2 log |ψ′t| (3.1)

be the field on H formed by unzipping h0 along η0. Then, we define the measure µ0 on
η0 by

µ0|η0([0,t])(dz) = F (z)E[νht | η0] ◦ ft(dz), (3.2)

where F (z) = rH(z)
−1/2, and rH(z) denotes the conformal radius of H seen from z. An

identity that we will use several times is the following. If ϕ be a conformal map, then

ϕ′(ϕ−1(z)) =
1

(ϕ−1)′(z)
. (3.3)

We begin by proving that this definition of µ0 is consistent for different values of t.

Lemma 3.1. The definition of µ0 given in (3.2) is consistent for different values of t.
That is, if 0 < s < t, then for each A ⊂ [0, s], we a.s. have that∫

η0(A)

F (z)E[νhs | η0] ◦ fs(dz) =
∫
η0(A)

F (z)E[νht | η0] ◦ ft(dz).
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Proof. If 0 < s < t, then ht = hs ◦ ψs,t + 2 log |ψ′s,t|. Thus,

νht ◦ ft(dz)
= νhs◦ψs,t+2 log |ψ′s,t| ◦ ft(dz)

=

[
lim
ε→0

ε

(
log(1/ε)−

(hs ◦ ψs,t)ε + 2 log |ψ′s,t|
2

)
e(h

s◦ψs,t)ε+2 log |ψ′s,t|
]
◦ fs,t ◦ fs(dz)

=

[
lim
ε→0

ε

(
log(1/ε)−

hsε/|f ′s,t|
− 2 log |f ′s,t|
2

)
e
hs
ε/|f′s,t|

−2 log |f ′s,t|
]
◦ fs(dz)

=

[
lim
ε→0

ε

|f ′s,t|

(
log(|f ′s,t|/ε)−

hsε/|f ′s,t|

2

)
e
hs
ε/|f′s,t|

]
◦ fs(dz)

= νhs ◦ fs(dz),

where in the third equality we used (3.3) and the fact that as ε → 0, the preimages of
circles of radius ε around ft(z) under fs,t are (roughly) circles of radius ε/|f ′s,t(fs(z))|
around fs(z). This concludes the proof.

The rest of this section is divided into two subsections, the first of which is focused on
establishing that µ0 is locally finite as a measure on H, that is, for each compact K ⊂ H,
we have that µ0(K) <∞ a.s. The second subsection is devoted to proving the conformal
covariance of µ0 and then to deducing the local finiteness of µ0 as a measure on η, that
is, for each compact I ⊂ (0,∞), we have that µ0(η0(I)) <∞ a.s.

3.1 Local finiteness on H

Lemma 3.2. Almost surely, µ0 is locally finite as a measure on H. That is, P[µ0(K) <

∞] = 1 for each K ⊂ H compact.

We begin by noting that we can decompose a (2, 1)-quantum wedge as the sum
of a zero-boundary GFF and a harmonic function. For the proof, we refer to [9] (the
parametrisation is slightly different but the proof is the same).

Lemma 3.3. Let (H, hw, 0,∞) ∼ QWedgeα=1
γ=2 have the last exit parametrisation. Then,

we can write hw = h0 + h, where h0 is a zero-boundary GFF on H and h is a harmonic
function on H which is independent of h0.

The following moment bound is the key ingredient in the proof of Lemma 3.2. The
reason for the choice of quantum surface is that QWedgeα=1

γ=2 is natural in the context
of SLE4, as if we unzip such a surface along an SLE4 curve for a finite time, then the
resulting law is still that of a QWedgeα=1

γ=2 , see [6, Theorem 1.5].

Lemma 3.4. Let η0 ∼ SLE4 and let (H, hw, 0,∞) ∼ QWedgeα=1
γ=2 have the last passage

parametrisation and be independent of η0. Set hw,t = hw ◦ ψt + 2 log |ψ′t|. Then there
exists p ∈ (0, 1) such that for each t ≥ 0,

E[νhw,t(ft(D ∩H))p] <∞.

Before proving Lemma 3.4, we begin by providing some moment bounds.

Lemma 3.5. Let (S , h,−∞,+∞) ∼ QWedgeα=1
γ=2 have the last exit parametrisation and

let for each k ∈ Z, Ik = [k − 1, k] × {0, π}. For each p ∈ (0, 1) there exists a constant
Cp > 0 such that if k ≥ 1, then E[νh(Ik)p] ≤ Cp and if k ≤ 0, then

E[νh(Ik)
p] ≤ Cpe−(4p

2+2p)k.
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Proof. We let h = X +hL be the decomposition into the average on vertical lines process
X and the lateral part hL of h. By [8, Lemma A.4] we have that E[νhL

(Ik)
p] <∞ for all

k ∈ Z and p ∈ (0, 1). Moreover, we have that

νh(Ik) ≤ νhL
(Ik) exp

(
2 sup
t∈[k−1,k]

Xt

)
. (3.4)

Since Xt is non-positive whenever t ≥ 0, the first assertion follows. Consider now the
case k ≤ 0, so that the Brownian motion in the process X is not conditioned on any event.
Then,

sup
t∈[k−1,k]

Xt ≤ 1− k + sup
t∈[k−1,k]

B̃2t = 1− k + B̃−2k + sup
t∈[k−1,k]

B̃−2t − B̃−2k.

Thus, since B̃ has stationary and independent increments and for a Brownian motion B̂
and any c > 0, the expectation E[exp(c supt∈[0,2] B̂t)] is finite, it follows from (3.4) that for
p ∈ (0, 1),

E[νh(Ik)
p] ≤ E[νhL

(Ik)
p]E

[
exp

(
2p sup

t∈[k−1,k]
Xt

)]

= e2p(1−k)E[νhL
(Ik)

p]E[exp(2pB−2k)]E

[
exp

(
2p sup

t∈[0,2]
B̂t

)]
≤ Cpe−(4p

2+2p)k

where Cp is some positive constant depending only on p.

Proof of Lemma 3.4. Let τ = sup{t ≥ 0 : η0(t) ∈ D}. We note that by conformal invari-
ance,

νhw,s(fs(D ∩H)) ≤ νhw,τ (fτ (D ∩H)) = νhw,t(ft((D ∩H))

whenever s ≤ τ ≤ t. By [21, Theorem 4.1] we have that

P

[
sup

0≤t≤τ
|η0(t)| ≥ R

]
. R−2. (3.5)

We let τR = inf{t ≥ 0 : |η0(t)| ≥ R} and note that for all 0 ≤ t ≤ τR, |ft(0−)|, |ft(0+)| ≤ 4R.
Indeed, this follows immediately from [18, Equation (8)] and a comparison with the
compactH-hull RD∩H. We shall now bound moments of the quantum length of [−4R, 4R].

We first bound pth moment of the quantum length of [−4R,−1]∪ [1, 4R]. As above, let
Ik = [k − 1, k] × {0, π}. Then, letting (S , hS ,−∞,+∞) ∼ QWedgeα=1

γ=2 , this corresponds
to bounding E[νhS ([− log 4R, 0]× {0, π})p]. By Lemma 3.5 and the inequality (

∑
j xj)

p ≤∑
j x

p
j (for xj > 0, 0 < p < 1),

E[νhS ([− log 4R, 0]× {0, π})p] ≤
dlog 4Re∑
k=0

E[νhS (I−k)
p] ≤ Cp

dlog 4Re∑
k=0

e(4p
2+2p)k

.
∫ dlog 4Re

0

e(4p
2+2p)xdx . R4p2+2p,

where the implicit constants depend on p. Moreover, let as in Remark 2.5, B̂ be a standard
Brownian motion, τ = sup{t ≥ 0 : B̂t − t ≥ 0} and such that Xt = B̂τ+t − (τ + t), and let
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M = supt≥0 B̂t− t. Then, letting X∗k = supt∈[k−1,k]Xt and k∗ = argmaxt∈[k−1,k] B̂t− t, we
have that

E[νhS ([0,∞)× {0, π})p]

≤ E

[ ∞∑
k=1

exp(2pX∗k) νhL(Ik)
p

]
. E

[ ∞∑
k=1

exp(2pX∗k)

]

≤ E

[ ∞∑
k=1

exp
(
2p(B̂k∗ − k∗)

)]
= E

[
E

[ ∞∑
k=1

exp
(
2p(B̂k∗ − k∗)

)∣∣∣∣∣M
]]

. E[exp(2pM)] ([4,Lemma A.5])

Letting Tx = inf{t ≥ 0 : B̂t ≥ x}, we have that P(M > x) = P(Tx <∞) = exp(−2x) and
hence, since p ∈ (0, 1), E[exp(2pM)] is finite. Consequently,

E[νhS ([− log 4R,∞]× {0, π})p] . R4p2+2p

where the implicit depends only on p. We let En be the event that sup0≤t≤τ |η(t)| ∈
(n− 1, n]. Then, by [6, Theorem 1.5], we have that

E[νhw,τ (fτ (D ∩H))p] =

∞∑
n=0

E[νhw,τ (fτ (D ∩H))p |En]P(En)

≤
∞∑
n=0

E[νhw([−4n, 4n])p]P(En)

.
∞∑
n=1

n4p
2+2pn−2

which is finite if we pick p small enough, so that 4p2 + 2p− 2 < −1.

Proof of Lemma 3.2. Let p ∈ (0, 1) be as in Lemma 3.4. We shall begin by showing that
E[νht(ft(K))p] <∞ for each K ⊂ 1

2D ∩H compact and each t > 0.
Fix some compact K ⊂ 1

2D∩H and let δ = dist(K, ∂H) > 0. We decompose hw = h0+h

as in Lemma 3.3 and note that since δ > 0, we have that h is almost surely bounded
on K. Thus, if EK denotes the event that supz∈K |h(z)| ≤ C, then P[EK ]→ 1 as C →∞.
We choose C > 0 large enough so that P[EK ] ≥ 1/2. Then, it follows that

E[νht(ft(K))p | h]1EK ≤ eCpE[νhw,t(ft(K))p | h]1EK ≤ eCpE[νhw,t(ft(K))p | h]. (3.6)

Since E[E[νhw,t(ft(K))p | h]] = E[νhw,t(ft(K))p] <∞, it follows that E[νhw,t(ft(K))p | h] is
almost surely finite. By the independence of h0 and h, we have that E[νht(ft(K))p | h] =
E[νht(ft(K))p]. Since the right-hand side of (3.6) is a.s. finite it follows that E[νht(ft(K))p]

is finite.
Next, we shall show that µ0(K) <∞ almost surely. Let τ be the last exit time of D

for η0. Since η0 is transient, we have that τ <∞ almost surely and hence that if E∗T is
the event that τ ≤ T , then P[E∗T ]→ 1 as T →∞. Thus, since dist(z,H) ≥ δ for all z ∈ K,
we have that

E[µ0(K)p1E∗T ] ≤ δ
−p/2E[νhτ (fτ (K))p1E∗T ] ≤ δ

−p/2E[νhT (fT (K))p] <∞. (3.7)

Assume for the sake of contradiction that P[µ0(K) =∞] = p0 > 0. Choose T > 0 large
enough so that P[E∗T ] ≥ 1− p0/2. Then, it follows from (3.7) that conditional on the event
E∗T , µ0(K) is a.s. finite, and consequently, {µ0(K) =∞} is contained in the union of (E∗T )

c
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and a zero probability event. This, however, is a contradiction since P[(E∗T )
c] ≤ p0/2.

Hence µ0(K) is a.s. finite.

We now consider a general compact K̃ ⊂ H and let R = inf{r > 0: K̃ ⊂ B(0, r/2)}
and δ = dist(K̃, ∂H) > 0. Let ϕR(z) = z/R and note that K := ϕR(K̃) ⊂ 1

2D ∩ H.

Moreover, we note that ϕR(η0) ∼ SLE4, h̃0 := h0 ◦ ϕ−1R is a zero-boundary GFF on H.

Furthermore, we let σ be the last exit time of B(0, R) for η0 and (f̃t) be the Loewner
chain corresponding to the curve η̃0(t) := ϕR(η

0(t)), that is, f̃t(z) = 1
Rft(Rz), and we

let ψ̃t(z) = f̃−1t (z) = 1
Rψt(Rz) and h̃t = h̃0 ◦ ψ̃t + 2 log |ψ̃′t|. Then by the LQG coordinate

change and the scale invariance of η0 and h0, it follows that a.s.

νhσ (fσ(K̃)) = νh̃σ+2 logR(f̃σ(K))
d
= νhτ+2 logR(fτ (K)) = R2νhτ (fτ (K)).

Thus, it follows analogously to the above that E[νhT (fT (K̃))p] is almost surely finite for
T > 0 and hence that µ0(K̃) is as well.

3.2 Conformal covariance

Fix s > 0 and let h̃s be a zero-boundary GFF on H, independent of η0. This then gives
us a field h̃0 = h̃s ◦ fs + 2 log |f ′s| by zipping up along η0, and hence a family of fields
(h̃t)t≥0 by letting h̃t = h̃0 ◦ψt+2 log |ψ′t|. We recall that fs,t = ft ◦ψs : H\ηs([0, t−s])→ H

and define the measure µ̃s by

µ̃s|ηs([0,t−s])(dz) = F (z)E[νh̃t | η
s] ◦ fs,t(dz). (3.8)

Recall from (2.3) that µt(dz) = |ψ′t(z)|−d4(µ0 ◦ ψt)(dz), where d4 = 3/2.

Lemma 3.6. Almost surely, µ̃s = µs, that is,

µ0|η0([s,∞)) ◦ ψs(dz) = |ψ′s(z)|3/2µ̃s(dz).

Proof. Since h̃s is a zero-boundary GFF in H, we have that h̃s ◦ fs is a zero-boundary
GFF in H \ η0([0, s]). Thus we may assume that h̃s and h0 are coupled together in such
a way that we can define a Gaussian field H, which is conditionally independent of h̃s

given η0 and such that h0 = h̃s ◦ fs + H. Then the covariance kernel of H is given by

GH(z, w)−GH\η0([0,s])(z, w) = GH(z, w)−GH(fs(z), fs(w))

and hence the variance of H at a point z is well-defined and equal to

VarH(z) = lim
ε→0

VarHε(z) = log rH(z)− log rH(fs(z)) + log |f ′s(z)|

(here Hε(z) denotes the average value of H on the circle ∂B(z, ε)). The term log |f ′s(z)|
comes from the change of variables dilating the ball of radius ε roughly by a factor of
|f ′s(z)|.

We note that ht = h0 ◦ ψt + 2 log |ψ′t| = h̃t +H ◦ ψt + 2 log |ψ′s| ◦ ψs,t and that since H is
centred and VarH(z) is finite, it follows from [16, Lemma 2.1] that

E

[
lim
ε→0

ε

(
(H ◦ ψt)ε

2
+ log |ψ′s| ◦ ψs,t

)
eh̃

t
ε+(H◦ψt)ε+2 log |ψ′s|◦ψs,t

∣∣∣∣ η0] ◦ ft(dz)
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is the zero measure. It follows that

µ0|η0([0,t])(dz) =

= F (z)E

[
lim
ε→0

ε

(
log

(
1

ε

)
− h̃tε + (H ◦ ψt)ε + 2 log |ψ′s| ◦ ψs,t

2

)

× eh̃
t
ε+(H◦ψt)ε+2 log |ψ′s|◦ψs,t

∣∣∣∣∣ η0
]
◦ ft(dz)

= F (z)E

[
lim
ε→0

ε

(
log

(
1

ε

)
− h̃tε

2

)
|ψ′s|2 ◦ ψs,teh̃

t
ε+(H◦ψt)ε

∣∣∣∣∣ η0
]
◦ ft(dz)

= F (z)|fs(z)|−2E[eH(z) | η0]E

[
lim
ε→0

ε

(
log

(
1

ε

)
− h̃tε

2

)
eh̃

t
ε

∣∣∣∣∣ η0
]
◦ ft(dz),

where (3.3) was used in the last inequality. Since the conditional law of H(z) given η0 is
that of a centred Gaussian, we have that

E[eH(z) | η0] = rH(z)
1/2rH(fs(z))

−1/2|f ′s(z)|1/2 =
F (fs(z))

F (z)
|f ′s(z)|1/2

and hence

µ0|η0([0,t])(dz) = F (fs(z))|f ′s(z)|−3/2E
[
lim
ε→0

ε(log(1/ε)− h̃tε/2)eh̃
t
ε

∣∣∣ η0] ◦ ft(dz).
Consequently,

µ0|η0([s,t]) ◦ ψs(dz) = F (z)|f ′s(ψs(z))|−3/2E
[
lim
ε→0

ε(log(1/ε)− h̃tε/2)eh̃
t
ε

∣∣∣ η0] ◦ fs,t(dz)
= |ψ′s(z)|3/2F (z)E[νh̃t | η

s] ◦ fs,t(dz)

= |ψ′s(z)|3/2µ̃s|ηs([0,t−s])(dz),

where (3.3) was used in the second equality. Thus, the proof is complete.

The following lemma is proved in the same way as Lemma 3.6, and hence the proof is
omitted.

Lemma 3.7. Let φa(z) = az for a > 0. Then,

E[µ0] ◦ φa(dz) = a3/2E[µ0](dz).

We need that the intensity is absolutely continuous with respect to two-dimensional
Lebesgue measure. In essence, that the randomness of the curve causes an averaging
of the measure E[µ0], so that its mass is spread out over the entire H, rather than in a
subset of zero Lebesgue measure. The following was proved for the measures on SLEκ
for κ ∈ (4, 8), see [15, Lemma 3.6], but the exact same proof works with the measure µ0

on SLE4.

Lemma 3.8. The measure E[µ0] is absolutely continuous with respect to Lebesgue
measure.

Next, we recall the following lemma of [15].

Lemma 3.9 (Lemma 3.7 of [15]). For each a > 0, let φa(z) = az. Let m be a measure on
H which is absolutely continuous with respect to Lebesgue measure and satisfies

m ◦ φa(dz) = adm(dz)

for some d > 1 and all a > 0. Then there exists some function H(z) = H(arg z) such that

m(dz) = H(arg z)Im(z)d−2dz.
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By Lemmas 3.7 and 3.8 the conditions of Lemma 3.9 are satisfied for E[µ0]. Next, we
note the form of H in the case of m = E[µ0].

Lemma 3.10. There is some constant c > 0 such that

E[µ0](dz) = c sin(arg z)Im(z)−1/2dz.

Proof. This is proved exactly in the same way as [15, Lemma 3.8].

We wrap up this section by deducing the following. The proof is the same as that of
[15, Lemma 3.9], but it is very short so we repeat it here.

Lemma 3.11. Almost surely, µ0 is locally finite. That is, almost surely,

µ0(η([s, t])) <∞ for all 0 < s < t.

Proof. Note that by Lemma 3.10, E[µ0(B(0, R))] < ∞ for each R > 0, so that a.s.,
µ0(B(0, R)) is finite. Moreover, for each 0 ≤ s ≤ t, we have that P(η([s, t]) ⊂ B(0, R))→ 1

as R → ∞. Finally, since µ0(η([s, t])) ≤ µ0(B(0, R)) on the event {η([s, t]) ⊂ B(0, R)}, it
follows that for any 0 ≤ s ≤ t, µ([s, t]) is a.s. finite.

Proof of Theorem 1.1. By Lemmas 3.6 and 3.11 and Theorem 2.1 the conclusion of the
theorem holds.
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