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ON THE GRAPH CONVERGENCE OF
SEQUENCES OF FUNCTIONS

Abstract

Let (X, TX) and (Y, TY ) be topological spaces. A sequence (fn) of
functions fn : X → Y is graph convergent to f : X → Y if for each set
U ∈ TX × TY containing the graph Gr(f) of f there is an index k such
that Gr(fn) ⊂ U for nk. It is proved that if (X, TX) is a T1 space, then
the graph convergence implies the pointwise convergence. Moreover the
uniform and graph convergences are compared, and the graph limits of
sequences of continuous (quasicontinuous, cliquish, almost continuous
or Darboux) functions are investigated.

Let (X,TX) and (Y, TY ) be topological spaces and let R be the set of all
reals considered with the natural topology Te. Denote by TX×TY the product
topology in X × Y .

We will say that a sequence of functions fn : X → Y graph converges to a
function f : X → Y if for each set U ∈ TX × TY containing the graph Gr(f)
of the function f there is a positive integer k such that Gr(fn) ⊂ U for all nk.

Theorem 1. If (X,TX) is a T1 topological space and a sequence of functions
fn : X → Y graph converges to a function f , then the sequence (fn) pointwise
converges to f .

Proof. Of course, assume to a contrary, that there is a point x ∈ X such that
the sequence (fn(x)) does not converge to f(x). Then there is a set V ∈ TY

containing f(x) and a sequence (nk) of positive integers such that

nk+1nk and fnk
(x) ∈ Y \ V for all k ≥ 1.
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Let
U = ((X \ {x})× Y ) ∪ (X × V ).

Then
U ∈ TX × TY and Gr(f) ⊂ U.

However for each positive integer m there is nmm such that the graph Gr(fnm)
is not contained in U , a contrary to the graph convergence of (fn). This
completes the proof.

As an immediate corollary we obtain:

Corollary 1. If (X,TX) is a T1 topological space and (Y, TY ) is a Hausdorff
topological space, then the limit f of a graph convergent sequence of functions
fn : X → Y is unique.

Remark 1. If a topological space (Y, TY ) is such that there are points a, b, an ∈
Y , n ≥ 1, such that a 6= b and a sequence (an) converges to a and b, then
for each singleton topological space X = {x} with the discrete topology TX the
sequence of functions fn : X → Y defined by fn(x) = an, n ≥ 1, graph con-
verges to different functions f(x) = a and g(x) = b. Evidently such (Y, TY ) is
not any Hausdorff space.

Remark 2. If a topological space (X,TX) does not satisfy separation axiom
T1, then there are functions f, g, fn : X → R, n ≥ 1, ( R is considered with
the topology Te ), such that f 6= g and the sequence fn graph converges to f
and g.

Proof. Since (X,TX) does not satisfy axiom T1, there are two different points
a, b ∈ X such that every set U ∈ TX containing a contains also b. For n ≥ 1
put

fn(x) = f(x) = 0 for x ∈ X,

and let
g(x) = 0 for x 6= b and g(b) = 1.

Evidently, g 6= f and the sequence (fn) graph converges to f . We will prove
that (fn) graph converges to g. For this fix a set W ∈ TX×Te with Gr(g) ⊂W .
Let

W1 = W ∩ (X × (−1
3
,

1
3

)) and W2 = W ∩ (X × (
2
3
,

4
3

)).

Observe that Gr(g) ⊂ W1 ∪ W2 ⊂ W . Since (a, g(a)) = (a, 0) ∈ W1 and
W1 ∩W2 = ∅, there are a set V ∈ TX and an open interval I ⊂ (− 1

3 ,
1
3 ) with
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(a, 0) ∈ V × I ⊂ W1. From the choice of points a and b it follows that b ∈ V .
So the point (b, 0) ∈W1 ⊂W and Gr(fn) ⊂W for n ≥ 1. This completes the
proof.

Theorem 2. Let (X,TX) be a T1 topological space. If there is an isolated
infinite closed set A ⊂ X, then there is a sequence of functions fn : X → R
which uniformly converges to a function f : X → R and which is not graph
convergent to f .

Proof. Let A = {an;n ≥ 1} be an isolated infinite subset of X and for
n = 1, 2, . . . let Wn ∈ TX be such that {an} = A ∩Wn. Moreover for n ≥ 1
put

fn(x) =
1
n

for x ∈ A, and fn(x) = 0 otherwise on X.

Then the set

U = ((X \A)× R) ∪
⋃
n

(Wn × (− 1
2n
,

1
2n

)) ∈ TX × Te,

and the graph of the function f = 0 on X is contained in U . Evidently, the
sequence (fn) uniformly converges to f .

We will prove that (fn) is not graph convergent to f . For this we observe
that for n ≥ 1 the points

(an, fn(an)) = (an,
1
n

) ∈ (X × R) \ U,

so the graphs Gr(fn) are not contained in U . This finishes the proof.

However in some special cases the uniform convergence implies the graph
convergence.

Theorem 3. If (X, ρX) and (Y, ρY ) are compact metric spaces, a function
f : X → Y is continuous and a set U ∈ TX × TY contains the graph Gr(f)
of f , then there is a positive real r such that each function g : X → Y with
sup{ρY (f(x), g(x));x ∈ X}r has the graph Gr(g) ⊂ U

Proof. Since the function d : (X×Y )→ R defined as d(x, y) = ρY (f(x), y) is
continuous and the set (X×Y )\U is compact, the real r = min{d(x, y); (x, y) ∈
(X×Y )\U} is positive and the graph Gr(g) of each function g : X → Y with
sup{ρy(f(x), g(x)); (x ∈ X}r is contained in U .
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As an immediate consequence of this theorem we obtain:

Corollary 2. If (X, ρX) and (Y, ρY ) are compact metric spaces and a function
f : X → Y is continuous, then the uniform convergence of a sequence (fn) to
f implies the graph convergence of (fn) to f .

Theorem 4. Let (X,TX) be a topological space and let (Y, ρY ) be a metric
space. Suppose that a sequence (fn) of functions fn : X → Y graph converges
to a continuous function f : X → Y . Then the sequence (fn) uniformly
converges to f .

Proof. Observe that for every positive real r the set

Ar(f) =
⋃

x∈X

({x} ×K(f(x), r))

belongs to TX × TY , where TY is the topology determined by the metric ρY .
Of course, if a point (x, y) ∈ Ar(f), then ρY (y, f(x))r. Let

s =
r − ρY (y, f(x))

3
.

Then s0 and from the continuity of f it follows that there is a set U ∈ TX such
that x ∈ U and f(U) ⊂ K(f(x), s). Fix a point (u, z) ∈ U×K(y, s) ∈ TX×TY .
Then

ρY (z, f(u)) ≤ ρY (z, y) + ρY (y, f(x)) + ρY (f(x), f(u))s+ r − 3s+ s = r − sr,

and consequently (x, y) ∈ U × K(y, s) ⊂ Ar(f). So Ar(f) is an open set
belonging to TX × TY containing Gr(f). Consequently, there is a positive
integer k such that for nk we obtain Gr(fn) ⊂ Ar(f), where from

ρX(fn(x), f(x))r for x ∈ X and nk.

This implies that the sequence (fn) uniformly converges to f .

Remark 3. Let X = {0} ∪ { 1
n ;n ≥ 1} and let TX = Te/X be the natural

topology generated by Te. Let g(0) = 0 and g( 1
n ) = 1 for n ≥ 1. Moreover

for k ≥ 1 let gk( 1
n ) = 1 for n ≤ k and gk(x) = 0 otherwise on X. Then

the functions gk, k ≥ 1, are TX-continuous (i.e. they are continuous as
applications from (X,TX) to (R, Te)), the sequence (gk) graph converges to g,
and g is not continuous at 0.
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By a direct modification in next example we show that there is a sequence
of continuous functions fn : R → R, n ≥ 1, which graph converges to a
discontinuous function f : R→ R.

Example 1. For n ≥ 1 let In = [an, bn] = [ 1
n −

1
8n ,

1
n + 1

8n ] and let cn = 1
n

denote the center of the interval In. Moreover for n = 1, 2, . . . let

fn(x) =


1 for x = ck, k ≤ n
0 for x ∈ R \

⋃
k≤n(ak, bk)

linear on the intervals [ak, ck] and [ck, bk], k ≤ n,

and let

f(x) =

 1 for x = cn, n ≥ 1
0 for x ∈ R \

⋃∞
n=1(an, bn)

linear on the intervals [an, cn] and [cn, bn], n ≥ 1.

Observe that the sequence (fn) is graph convergent to f . Of course, if an
open (i.e. belonging to Te × Te) set U ⊂ R2 contains the graph G(f) of the
function f , then there is a positive real r such that K((0, 0), r) ⊂ U . Let a
positive integer k be such that 1

k r. So for nk we have

Gr(fn) ⊂ Gr(f) ∪ ([0,
1
n

]× {0}) ⊂ U ∪K((0, 0), r) = U,

and consequently the sequence (fn) graph converges to f .
All functions fn, n = 1, 2, . . ., are continuous (as applications from (R, Te)

to (R, Te)), but the function f is not continuous at 0.
So the graph limit of a sequence of continuous functions from R to R may

be discontinuous. Such a limit must be of the first Baire class, because it is
the limit of a pointwise convergent sequence of continuous functions. However
the following theorem is true.

Theorem 5. Let (X, ρ) be a separable complete metric space which is dense
in itself. If a sequence (fn) of the first Baire class functions fn : X → R is
graph convergent to a function f , then f is also of the first Baire class.

Proof. Assume, to a contradiction, that f is not of Baire 1 class. Then, by
Baire’s theorem, there is a nonempty closed set A ⊂ X such that the restricted
function f/A is discontinuous at each point x ∈ A. Observe that A must be a
perfect subset of X.

For each point x ∈ A there are intervals [a(x), b(x)] and [c(x), d(x)] with
rational endpoints such that c(x), a(x), f(x), b(x), d(x) and x ∈ cl(A∩f−1(R\
[c(x), d(x)])), where cl(P ) denotes the closure of the set P .
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Since the set of all pairs of intervals with rational endpoints is countable,
there are closed intervals I = [a, b] and J = [c, d] with rational endpoints such
that the set

B = {x ∈ A; [a(x), b(x)] = I and [c(x), d(x)] = J}

is of the second category in A. The functions fn are of the first Baire class, so
the sets C(fn/A) of all continuity points of the restrictions fn/A are residual
in A, and consequently the intersection

E = B ∩
∞⋂

n=1

C(fn/A)

is of the second category in A. From the graph convergence of the sequence
(fn) it follows its pointwise convergence. Thus for each point x ∈ E there is a
positive integer n(x) such that for all n ≥ n(x) the inequality a(x)fn(x)b(x)
holds. Let Ek = {x ∈ E;n(x) = k} for k ≥ 1. Observe that

E =
∞⋃

k=1

Ek.

Since E is of the second category in A, there is a positive integer j such that
Ej is of the second category in A.

Let U ⊂ X be a nonempty open set in X such that U ∩A 6= ∅ and U ∩Ej

is dense in U ∩A. Let u ∈ U ∩B be a point. Since u ∈ U ∩A∩ cl(f−1(R\J)),
there are points un ∈ A ∩ U such that

lim
n→∞

un = u and f(un) ∈ R \ [c, d].

So the set G = U∩A∩f−1(R\ [c, d]) is dense in U∩A. Fix two reals c1 ∈ (c, a)
and d1 ∈ (b, d). Since the restricted functions fn/E, n ≥ 1, are continuous
and since for kj the sets U ∩ A ∩ f−1

k ((a, b)) are dense in U ∩ A, the sets
Hk = U ∩ A ∩ (fk)−1(R \ [c1, d1]), kj, are nowhere dense in U ∩ A. But
f = limn→∞ fn, so for every point x ∈ U ∩A with f(x) ∈ R \ [c, d] there is an
index m such that x ∈ Hm. Thus the set G ⊂ K =

⋃
nHn. Let n1 be the first

positive integer such that G∩Hn1 6= ∅. Fix a point a1 ∈ G∩Hn1 . Since G ⊂ K
is dense in U ∩ A, there are an index n2n1 and a point a2 ∈ G ∩ (Hn2 \Hn1)
with ρ(a2, a1) 1

2 . Similarly, by induction, if we have indices nini−1 and points
ai ∈ G ∩ (Hni

\
⋃

liHnl
), 1i ≤ k, such that ρ(ai, a1) 1

i , then we find an index
nk+1nk and a point ak+1 ∈ G∩ (Hnk+1 \

⋃
l≤k Hnl

) such that ρ(ak+1, a1) 1
k+1 .

Since limn→∞ an = a1, the set L = {an;n ≥ 1} is closed. Let

W = ((X \ L)× R) ∪ (X × (R \ [c, d])).
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Evidently W is an open set in X × R containing the graph Gr(f). Moreover
for each index k there is an index njk and a point aj+1 /∈ Hnj , thus fnj (aj) ∈
[c1, d1], and consequently the graph Gr(fnj

) is not contained in W . This
contradicts the graph convergence of (fn) to f , and the obtained contradiction
completes the proof.

Recall that a function f : X → R is quasicontinuous (resp. cliquish) at a
point x ∈ X if for each set U ∈ TX containing x and for each real η0 there is a
nonempty set V ∈ TX contained in U and such that f(V ) ⊂ (f(x)−η, f(x)+η)
(resp. the diameter diam(f(V ))η) ([4, 6]).

In Example 2 we show that there exists a sequence of quasicontinuous
functions graph converges to a function which is not quasicontinuous.

Example 2. For n ≥ 1 let In = [− 1
n ,

1
n ] and

fn(x) = 1 for x ∈ In and fn(x) = 0 otherwise on R.

Then the functions fn, n ≥ 1, are quasicontinuous and the sequence (fn)
graph converges to the function

f(0) = 1 and f(x) = 0 otherwise on R,

which is not quasicontinuous at 0.
However the following theorem is true.

Theorem 6. Let (X, ρ) be a separable complete metric space which is dense in
itself. If a sequence of cliquish functions fn : X → R, n ≥ 1, graph converges
to a function f , then f is also cliquish.

Proof. The proof is completely similar to that of Theorem 5 in which the
set A is an open set V ⊂ X. Moreover we use the known result which says
that a function f : X → R is cliquish iff its set of continuity points is dense
([6]).

Recall that a function f : X → Y is almost continuous (in the sense of
Stallings) if for each set U ∈ TX × TY containing the graph Gr(f) there is a
continuous function g : X → Y such that Gr(g) ⊂ U ([7]).

Remark 4. If a sequence of almost continuous functions fn : X → Y graph
converges to a function f : X → Y , then f is also almost continuous.

Proof. If U ∈ TX × TY contains the graph Gr(f), then there is a positive
integer k with Gr(fk) ⊂ U . Since the function fk is almost continuous, there
is a continuous function g : X → Y such that Gr(g) ⊂ U . So f is almost
continuous and the proof is finished.
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Corollary 3. Since each continuous function is almost continuous, the graph
limit of a sequence of continuous functions is an almost continuous function.

Each almost continuous function f : R→ R (with respect to the topologies
TX = TY = Te) has the Darboux property and each Baire 1 Darboux function
f : R → R is almost continuous ([1]), so the graph limit of a sequence of
Darboux Baire 1 functions is almost continuous and consequently it has the
Darboux property.

However there are uniformly convergent sequences of Darboux functions
whose limits do not have the Darboux property ([2]).

Theorem 7. Let I be an open interval and let (fn) be a sequence of Darboux
functions fn : I → R which graph converges to a function f : I → R with
respect to the topology Te × Te. Then f has also the Darboux property.

Proof. Assume, to a contradiction, that f does not have the Darboux prop-
erty. Then there are points a, b ∈ I with ab and f(a) 6= f(b) and a real
number

c ∈ (min(f(a), f(b)),max(f(a), f(b)))

such that f(x) 6= c for all points x ∈ (a, b). Let

r =
min(|c− f(a)|, |c− f(b)|

2
,

and let
U = ((I × R) \ (([a, b]× {c}) ∪ ({a, b} × R)))∪

∪({a} × (f(a)− r, f(a) + r)) ∪ ({b} × (f(b)− r, f(b) + r)).

Then U ∈ Te × Te and U ⊃ Gr(f). Consequently, there is a positive integer k
such that Gr(fk) ⊂ U . Observe that

min(fk(a), fk(b)) min(f(a), f(b)) + rc

max(f(a), f(b))− rmax(fk(a), fk(b))

and fk(x) 6= c for x ∈ (a, b). This is contradictory with the Darboux property
of the function fk, and the proof is completed.

In the same manner we can prove an analogous theorem for functionally
connected functions.

Recall that a function f : I → R is functionally connected if for each
continuous function g : [a, b]→ R with a, b ∈ I and ab and (f(a)−g(a))(f(b)−
g(b))0 there is a point c ∈ (a, b) such that f(c) = g(c) ([3]).
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Theorem 8. If a sequence of functionally connected functions fn : I → R
graph converges to a function f : I → R, then the function f is also function-
ally connected.

Proof. Assume, to a contradiction, that there are points a, b ∈ I with ab and
a continuous function g : [a, b]→ R such that

(g(a)− f(a))(g(b)− f(b))0 and g(x) 6= f(x) for all x ∈ [a, b].

Let

r =
min(|g(a)− f(a)|, |g(b)− f(b)|)

2
and let

U = ((I × R) \ (Gr(g) ∪ ({a, b} × R)) ∪ ({a} × (f(a)− r, f(a) + r))∪
∪({b} × (f(b)− r, f(b) + r)).

Then U ∈ Te × Te and U ⊃ Gr(f). Consequently, there is a positive integer k
such that Gr(fk) ⊂ U . If g(a)f(a) and g(b)f(b), then

g(a)f(a)− rfk(a) and g(b)f(b) + rfk(b)
and fk(x) 6= g(x) for x ∈ (a, b).

This is contradictory with the functional connectivity of the function fk. If
g(a)f(a) and g(b)f(b), then

g(a)f(a) + rfk(a) and g(b)f(b) + rfk(b)
and fk(x) 6= g(x) for x ∈ (a, b).

This is also contradictory with the functional connectivity of the function fk.
We have considered all cases, so the proof is completed.

Finishing observe that the graph topology Tgr in the set Y X of all functions
from X to Y may be generated by the family of all sets

W (f, U) = {g ∈ Y X ;Gr(g) ⊂ U}, where

U ∈ TX × TY , f ∈ Y X and Gr(f) ⊂ U.

Then a sequence of functions fn : X → Y is graph convergent to a function
f : X → Y if and only if it is convergent to f with respect to the graph
topology Tgr.

From Theorems 5 and 7 (cf. also Remark 4) it follows immediately
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Corollary 4. Let I ⊂ R be a nondegenerate interval. If a sequence of contin-
uous functions fn : I → R graph converges to a function f , then f is of the
first class of Baire and has the Darboux property.

On the other hand the following theorem is true.

Theorem 9. Let I ⊂ R be a nondegenerate interval and let DB1 be the space
of all Darboux Baire 1 functions f : I → R considered with the topology Tgr.
Then the set C of all continuous functions f : I → R is dense in DB1.

Proof. Fix a set W (f, U), where f ∈ DB1 and U ⊂ R2 is an open set such
that Gr(f) ⊂ U . Since f is an almost continuous (in the sense of Stallings)
function, there is a continuous function g : I → R with Gr(g) ⊂ U . So
g ∈W (f, U) and the proof is completed.

Acknowledgement. The author is grateful to the referee for his sugges-
tion concerning the present form of Theorem 3.
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