ON NORMAL NUMBERS

WOLFGANG SCHMIDT

1. Introduction. A real number & 0 < & < 1, is said to the normal
in the scale of v (or to base r), if in £€=0-aa,--- expanded in the
scale of ' every combination of digits occurs with the proper frequency.
If bb,--- b, is any combination of digits, and Z, the number of indices
7 in 1 £ 4 < N having

by=a;, -, b, =a,.,.,,
then the condition is that
(1) 1\1m ZyN—' = rF,

A number £ is called simply normal in the scale of » if (1) holds
for k =1. A number is said to be absolutely normal if it is normal to
every base r. It is well-known (see, for example, [6], Theorem 8.11)
that almost every number £ is absolutely normal.

We write r ~ s, if there exist integers n, m with r* = s™. Other-
wise, we put r ~ s.

In this paper we solve the following problem. Under what condi-
tions on r, s 1s every number & which is normal to base r also normal
to base s? The answer is given by

THEOREM 1. A Assume r ~s. Then any number normal to base
r 18 normal to base s.

B If r ~ s, then the set of numbers & which are mormal to base
r but not even stmply normal to base s has the power of the continuum.

The A-part of the Theorem is rather trivial, but I shall sketch a
proof of it, since I could not find one in the literature.

Next, let I be an interval of length | I| contained in the unit-interval
U=10,1]. We write My(& r, I) for the number of indices 7 in 1<i<N
such that the fractional part {r'&} of »'¢ lies I. A sequence &, r&, ri€, - ..
has uniform distribution modulo 1 if

Ry(&, r, I) = My(& 7, I) = N|I| = o(N)

for any I. It was proved by Wall [8] (the most accessible proof in |6],
Theorem 8.15) that & is normal to base » if and only if g, r& 2%, -
has uniform distribution modulo 1.

Write T, ,, where 1 <t < s, for the following mapping in U: If
&=0-a,a,-- in the scale of ¢, then T ,& = 0-a,a, --- in the scale of s.

Received June 2, 1959.
1 In case of ambiguity we take the representation with an infinity of a; less then » — 1.
But this does not affect the property of ¢ to be normal or not.
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THEOREM 2. Assume r + s. Then there exists a constant o, =
a,(r, s, t) > 0 such that for almost every & there exists a Ny(&) with

(2) RBy(T.& 7, I) < N*-=

for every N = N(&) and any I.

Thus T, is normal to base = for almost all £. Since T, is not
simply normal to base s part B of Theorem 1 follows. It does not follow
immediately for s = 2, but instead of T,,, which does not exist, we
may take T,,.

We can interpret our results as follows. Write C,, for the image
set T, .U of the unit-interval U under the mapping T,,. C,, is es-
sentially a Cantor set. In C;, we define a measure p,, by

(3) J,, s = | .

where f(£) is any real-valued function such that the integral on the
right hand side of (3) exists. Then it follows from Theorem 2 that
with respect to U, almost every & in C,, is normal in the scale of r.

Throughout this paper, lower case italics stand for integers. a,=
a(r, s, t), ay, a, -+« will be positive constants depending on some or all
the variables 7, s, t.

1. The case r ~ s. First, it follows almost from the definition that
any number normal to base s" is normal to base s.

Next, assume & is normal to base 7, we shall show it is normal in
the scale of »™. If € =0-a,a,--- in the scale of », b, --- b, is any
combination of mk digits and Z% is the number of indices1inl1 <1< N
with 7 =1 (mod m) satisfying

by =y ***y bt = Qyamp—y
then it was shown in [7] and in [3] that

lim ZPN- = 7=t

N->oco
and hence

lim ZO,N-t = (r™)-* .
N—oo
Thus & is normal to base ™.
Combining the above remarks we obtain the A-part of Theorem 1.

2. The measure y,,. We define numbers of order h to be the
number 0:.a,:--a, with 0 < a, <t in the scale of s. There are t*
numbers of order &, we denote them in ascending order by 6, ..., 02’,:’.
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LEMMA 1. Let f(&) be a step-function, having a finite number of
steps. Then

1 ‘/1,
[, f@dm. = AT, 0 =1im e S o).
The integrals and the limit exist and are finite.

Proof. 1t will be sufficient to prove the lemma for f(£) = {&, v},
where 0 < vy <1 and

(o} = {1, if {& <v

0 otherwise.

&P = SI{TMS, 0YdE is the least upper bound of numbers & having
0

T, <0 Thus if 0 =0-a,--+-a, in the scale of s, then &» =
0-a, -+ a, in the scale of ¢ and therefore & = (k — 1)t~".
Hence if 0 < v < 09, or if 0 < v with k = t*, then

(7.6 e = bt —e,

0

where 0 < ¢ < t-". We can rewrite this in the form
1 ¢
[T g =t S 00,91 -,

and Lemma 1 follows.
Particularly, for

) = | (0T, 71

Au((YJ x, y) = So{sz‘tg’ 7} {yTs\cg! (Y}d‘i:

we have
L/L
(4) v, ) = lim ¢ 3 {26, v},
h—co k=1
h
(5) (o, @, ) = lim £ 5% {002, v} {505, 7} -
h—>c0 k=1

3. Exponential sums. Write e(&) for ¢, There exist ([5], pp. 91—
92, 99) for any 7,0 < v < 1, and any » > 0 functions f,(§), f(§) periodic
in & with period 1, such that fi(&) < {& v} < f«(€), having Fourier ex-
pansions

£(O) =7 =7+ 3 APe(uf)
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FAE) =7+ 7+ 3 APe(uf)
where the summation is over all u = 0 and A is majorized by
6 A4, —.
(6) | A, o
Applying this to (5) we obtain

J— th
o, @ ) = (v + 1) + lim =" 37AR || A@ || S el(uz + vy)o™)
00 =1

where we put A® =v + 7 and take the sum over all pairs u,v of
numbers not both being zero. Since

t%id@x+mmwﬂgl,
k=1

and since the double sum over u, v is uniformly convergent in h, we
may change the order of limit and summation and obtain

. L’L
O Y) S (0 )+ 3 TAP (| AP | Tm | S e((u + 0y)og) .

The numbers 0{¥ are the numbers

a a
S ettt

where 0 < a, <t. Hence

ée(woa’“) =11 (1+ (L) + o 22) + oo (=)

j=1 g’

If we keep w fixed, and if 7 is large, then

R /e
o

(8) w2, y) = (v + )"+ ST TAR AP 1I(s, ¢ 5 un + vy) .

Therefore

3

(7) 1T (s, t;w) =11

() e (P

exists and

The next three sections will be devoted to finding bounds for sums
like
SV (s, t; ur™ + vr™) .

1\71<1l,m§N2
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4. Two lemmas on digits.

LEMMA 2. Write w =c¢, +++ cc, ©n the scale of s. Assume there
are at least z pairs of digits c;..c; with

(9) 1=5c0,=8— 2.
(Here c;i.¢; = sCysy + ¢;). Then
(s, t;w) = aj,

uhere a, = aufs, t), 0 < a, < 1.

Proof. There are at least z numbers ¢ having

For such an 7 we have

)14— e(%) + e o+ e(“;sil)ﬂ)—ﬂé‘l + c(%)‘ﬁ—t—Z:taz

and the Lemma is proved.
There exists an ay(s), 0 < a; < 1/4, such that

(s* — 2)%2-as 0314
(20,)"(1 — 2ax,)"1*~ '

LeEmMA 3. If ks large, k > as), then the number of combinations
of digits c¢yCp-, -+ ¢, tn the scale of s with less than as(s)k indices 1
satisfying (9) is not greater than 2¢%%,

Proof. It will be sufficient to show that the number of combinations
with less than a,(s)k indices 7 satisfying both (9) and 7 =1 (mod 2) is
not greater than 2¢/%%*  We first assume k is even. There exist

k|
2 (82 _ 2)l2k/2-1
l

combinations ¢, ++- ¢, with exactly [ indices 7 having both (9) and ¢ =1
(mod 2). Hence the number of combinations with less than as(s)k
indices 1 satisfying (9) and 7 = 1 (mod 2) does not exceed

k

k 2 (82 _ 2)[a3k]2(lc/2)—[a3k] .
[ask]
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Using Stirling’s formula for the binomial coefficient we obtain for large
enough %k the upper bound

(82 _ 2)w3k2((1/2)—a3)ls

I T — 2y

< 2(3/4)10 .

Actually, the expression on the left hand side is < 2**, where a; < 3/4.
This permits us to extend the result to odd k.

5. The order of » modulo p* as a function of k.

LEMMA 4. Assume p is a prime with p ¥ r. Then the order o(r, p*),
of r modulo p* satisfies

o(r, p*) = ay(r, p)p* .

COROLLARY. Let n run through a residue system modulo p*. Then
at most ay(r, p) of the numbers r* will fall into the same residue class
modulo p*.

Proof. Write
g:g(p):{p_l’ if p is odd
2, if p=2,
There exists an a, = a,(r, p) such that
(10) r’ =1+ gp»~" (mod p*),

where ¢ = 0 (mod p). We have necessarily a, > 1 and even a«, > 2 if
p = 2. If follows from (10) by standard methods (see, for instance, [4],
§ 5.5) that

77" =1 + gp% '+ (mod p%*°)
for any ¢ = 0. Thus for k£ = «, we have
P =1 4 gp*' (mod p*)
and
o(r, ) = gp*=" = ay(r, p)p* .
Assume r £ s. Write
ro=PUpEt e Pt
S = PP - PR,

where we may assume that never both d, =0, ¢, = 0. We also may
assume that the primes p, ---, p, are ordered in such a way that
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where we put (¢;/d;) = + o if d, = 0. Since r + s, we have

€1
”'1:7.—d>1-
sl

From now on, p = p,(r,s) is the prime defined above. We have p|s
but ptr,. For any =+ 0, y >1 we define two new numbers x, and
x, by x = x,x,, where x, is a power of y and y } x).

LEMMA 5. A. Assume r ~ s, v+ 0. Let m run through a system
K{(s*) of mon-negative representatives modulo s*. Then at most

k
a(r, S)<’;_> v,
of the numbers
o),

are wn the same restdue class modulo s*.
B. Assume r + s, furthermore ptr. Suppose w + 0, v %= 0, n are
fized. Then, if m runs through K(s*), at most

a(r, s)(-%)k Vy

of the numbers
ur® + vr™
will fall into the same residue class modulo s*.
Proof. A. Write m = m,e; + m,, 0 < m, < e,.. Then r™ = ymam =
smapppm and v(r™); = vri(r™);. The equation
r™m = q (mod p*)

has for fixed a at most e, (r;, p) solutions in m = m.e, + m,, if m runs
through a system K(p*) of residues modulo p*. This follows from the
corollary of Lemma 4. The equation

av(r™); = b(mod p*)
has for fixed b, m, at most
g.c.d.(v(r™);, p*) = v,r™

solutions in a. Hence the number of solutions of
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ori(r™); = b (mod p¥)
in m = m.e, + m,€ K(p*) does not exceed
e, (1 + 7 + « oo + 797 = ay(r, s)v, .
But this implies that the number of solutions of
vr7(r™); = b (mod s*)

in m = m.e, + m,€ K(s*) is not greater than
s \F s \*
alo(/"’ S)”p(“) é a'w(?", S)(‘-) v;o .
D 2
B. The equation
ur® ++ vr™ = b (mod p*)
has according to the corollary of Lemma 4 at most

aS(TJ p)vy

solutions in m € K(p*). The result follows as before.

The following conjecture seems related to our results: Assume
r+s. Then for any ¢ and k almost all the numbers r,r*, --+ are
(e, k)-normal to the base s in the sense of Besicovitch [1]; that s, the
number of n < N for which r" is not (¢, k)-normal is o(N) as N — o«
for fixed ¢ and k.

6. Bounds for exponential sums.

LEMMA 6. A. Let r, s,v be as in Lemma 5A. Then

>V (s, t; vr™) £ oy, stk
mE K(s¥)

B. Let r,s,u,v,n be as in Lemma 5B. Then

SV Il(s, t; ur® 4 vr™) < apw,st Tk
meK(sk)

Proof. A. Write v(+™), =¢; +++ ¢, -+ ¢, in the scale of s. Lemma
5A implies that any digit combination c¢,c;_, ++- ¢, will occur at most
a7, 8)(s/2)*v, times. According to Lemma 3, there are for large k not
more than 2%/Y% digit-combinations ¢, «-- ¢, with less than a;k indices ¢

satisfying (9). Thus of all the numbers v(r™);, m € K(s*), and hence of
all the numbers vr™ there will be at most

(1) 8)(8[2) 0,201 = (7, s),(s/214)" = a(r, s),s"~ 10"
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having less than a,k digits ¢, in their expansion in the scale of s satisfying
(9). Thus Lemma 2 yields

H(s, t; vr™) < akes
for all but at most

(1, 8)v,st-%e®
numbers m € K(s*). This gives

s . H(s, t; vr™) < sPad® 4+ o,0,8""19% < o,v,st 2% |
mEK(S")

B is proved similarly, using Lemma 5B.

LEMMA 7. A. Assume r~+s, v+ 0. Then
(11) ZN I(s, t; vr™) < auy(N, — Ny)'=*s, .

N <nsN,

B. Assume r s, w# 0, v+ 0. Then
(12) S, (s, s urt + vr™) < (N, — Ny)*~*0 max (uy, v,) -

1\71<‘n,m§1\fZ

Proof. A. There exists a k& having s* < N, — N, < s***Y, hence
there exists a w satisfying s*w < N, — N, < s*(w + 1), where s* < w < s**2,
Thus if m runs from N, to N,, then m runs through w systems K(s*)
of residue classes modulo s* and at most s* other numbers. Hence by
Lemma 6A

. <§.‘;N I(s, t; vr™) < w st 9% + s¢ < (N, — N)-“s0, .
1<m=Ny

B. If p}tr, then we proceed as in part A. We first take the sum
over m and use Lemma 6B.

If p/r, then our argument is as follows. Consider, for example,
the part of the sum with » < m. Changing the notation in n, m, we
see that this part of the sum (12) equals

N, —-N,-1 Nz—n

1
ZZ S, (s, t; (ur™ 4+ v)r™) .
n=0 m==N1+1
Except for possibly one exceptional » we have (ur"), # v, and therefore
(ur® 4+ v), < v, < max (u,, v,). If » is not exceptional, then the al-
ready proved Lemma 7TA can be applied to the inner sum and we obtain
the bound

(N, — N, — n)'=*1Bmax (U, v,) .

Taking the sum over n we obtain (12).
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7. A fundamental lemma. Generalizing My(& r, I) we write
v My (&, 7, I) for the number of indices ¢ in N, < ¢ < N, such that {r'¢}
lies in I. We put

v By (&7, I) = v My(E 7, 1) — (N; — Nyl I] .

Fundamental lemma. Assume r + s. Then

1
SO NIRlzvz(TE,tf) /r] I)d§ é a21(N2 - M)?—azz .

Proof. 1t is enough to prove this for intervals of the type I = [0, 7).
Then

v My (& 7, I) = N 2 {r"¢, v}

1<7”/_
and
(3) [ M lTost, v, DdE = 5 plor, )
1<n N2
(14) S o Mi(To 6 7, DdE= S, plor, 17, 1)
0 Nl. n,'m.gN2

Now we combine (8) and Lemma 7. We obtain, together with (6),

ﬂ(f)', ,,.n, ,rm) § (')’ =+ 77)2(N2 - 1\]1)2

N1<n,m§N.z

+ 207 + ) 3 22 (N, — Ny o
70 77?)

+ 3 3l g (v, — Ny
470920 NUNV

Since the sums

Uy 2 max (um vp)

70 ? 0 90 uv?
are convergent, and since 7 was arbitrary, we have

/"(79 T”! Tm) - (Nz - 1\71)2')’2 é a23(Nz - Nl)z-wu .

1\']_<71,,mSN2

In the same fashion we can prove

Z ;U'(% r", Tm) - (Nz - 1\71)2')'2

;’\T:|.<n,’lrl/§l\l'2

Z ﬂ(')/, 7'”) - (Nz - Nx)yl é azs(Nz - Nl)l—%ﬁ .
N <nsN,

§_ azs(Nz - 1\71)1_0"24

These two inequalities, together with (13) and (14), give the Fundamenta.
Lemma.
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8. Proof of the theorems. Once the Fundamental Lemma is shown,
we can prove Theorem 2 by the standard method developed in [2].

By J;, B > 0, we denote the set of intervals [3,7), 0 =R <r<1
of the type 8 = a2 v = (a + 1)2-?, where 0 < b < a,,B/2. By P, we
denote the set of all pairs of integers N,, N, having 0 < N, < N, < 2°
of the type N, = a2’, N, = (a + 1)2° for integers a and b = 0.

LEMMA 8. Assume v +s. Then

1
v BT, &, 7, DAE < @, 250~
0

(N1,N9)EPR IGJBS

Proof. Because of the Fundamental Lemma the left hand side is
not greater than

a212w22812+12 ,
where 2#25/2*1 i{g an upper bound for the number of intervals in J, and

(15) Y= S (N Ny,

(N ,N)EP
In (15) each value of N, — N, = 2° occurs 22-° times, so that

y
—

Ms

B—b+b(2~agg) 2B(1=a9y/2)
2 2) < (1292 22/2)

b=

=)

Hence Lemma 8 is true with a, = ay,/4.

LEmMA 9. For large B there exists a set K, of measure not greater
than 2-*%* such that
(16) BT &, r, I) < 200~
Sor all I, N < 2% and all & in [0, 1) but not in E,.

Proof. We define E, to be the set consisting of all & in [0, 1) for
which it is not true that

an pY S v Ra(Ts &, v, ) < 2050-i

(N, N,)EP, I€Jp
Lemma 8 assures that the measure of E, does not exceed
a272—2l}w28/2 < 2-—wgoB

for large B. We have to show that (16) is a consequence of (17).

We first assume I to be of the type I=[0,v), v = a27" where
0<b = a,B/2. Then the interval [0, 7), is the sum of at most b < B
intervals I, IeJ,, as may be seen by expressing a in the binary scale.
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Expressing N in the binary scale we see that the interval [0, N) can
be expressed as a union of at most B intervals [N,, N,), where the pair
N, N, € P;. Hence we can write Ry(T &, 7, I) as a sum of y Ry (T, .&, 7, I)
over at most B? sets N,, N,, I, where N,, N,e P;, IeJy:

BT, &, 7, I) = ENlRNz(Ts,tS) r, I).
Hence by (17) and Cauchy’s inequality,
RIZV(TS,LS! r, I) < B292B(1~ag/2) < 92B(1-a3))

for large B.
Next, let 1 =1[0,v) be of the type a2 < v < (a + 1)2°%, where
a,Bl4 < b £ a,Bl2. Then

| By(Ts.&y 7, [0, V)| = | Mu(T's.€, 7, [0, 7)) — YN |
= | Ry(Ts. & 7, [0, (@ + 1)27°) | + | BT, 7, [0, a27%)) | + 27°N
é 2.213(1—0432) + 2(1—w22/4)B < 2B(1—¢33) .

The Lemma now follows from

[By( s 5 B S TRy(, 5[0, B) ]+ [Ru( 5 5 [0, 7)1

Proof of Theorem 2. Since Y2-*%% is convergent, there exists for
almost all £ a B, = B(§) such that £ ¢ E, for B> B,. If N = 2%, then
we can find a B = B, satisfying 22! < N < 2% and Lemma 9 yields

R(T; &, 7, I) < 2B0-20 L 2N1-%a L N1
for large enough N.
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