
ON THE EXTENSIONS OF A TORSION MODULE

R. J. NUNKE

This paper concerns the structure of Ext (A, T) = Extβ(A, T) where
A is a torsion-free and T is a torsion module over a Dedekind ring R.
In the first section it is shown that for a given torsion-free module A
the structure of Ext {A, T) is completely determined by the basic sub-
group of T. If in addition T is primary the structure of Ext {A, T) de-
pends on a single known invariant of T, called by Szele [4] the critical
number. The rest of the paper is devoted to showing the nature of this
dependence in the special case in which A is the quotient field of R and
T is primary. The problem reduces to that of computing the rank of
certain complete modules over a discrete valuation ring. This computa-
tion is carried out in section two and the description of Ext (A, T) is
given in section three.

Throughout the paper R is assumed to be a Dedekind ring other than
a field. A consequence of this assumption, used in section two, is that
R is infinite. An exact sequence 0 —> A! —* A —> A" —> 0 and a module C
give rise to two exact sequences. We follow S. MacLane in calling the
one beginning 0—> Horn (A", C) the first exact sequence and the one
beginning 0 —> Horn (C, Af) the second exact sequence.

1. In this section it is shown that whenever A is torsion-free and
C is a torsion module, then the structure of Ext (A, C) depends only on
the basic submodule of C.

LEMMA 1.1. If A, B,C are modules with A torsion-free and if
there is a homomorphism of B into C with divisible cokernel, then
Ext(A, C) is a direct summand of Ext (A, B).

Proof. Suppose that f:B—*C is a homomorphism with Coker / =
Cjlmf divisible. Let / be factored into an epimorphism g followed by
a monomorphism h:f = hg. We get two exact sequences

0 >Imf Λ c > Coker/ >0

0 >Ker/ >B-^->Im f >0 ,

and the relevant parts of the associated second exact sequences are
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Horn (A, Coker/) >

Ext (A, Imf) -^-> Ext (A, C) > Ext (A, Coker /) > 0

Ext (A, Koker /) > Ext (A, B) -^> Ext (A, Im f) > 0 .

Since A is torsion-free all the terms with Ext in them are divisible. But
the divisibility of Coker / implies that Horn (A, Coker /) is also divisible.
For suppose that φ : A —> Coker / is a given homomorphism and r is any
nonzero element of R. Since A is torsion-free, division by r in A is
unique; hence there is a homomorphism ψ: rA —> Coker / defined by
ψ(ra) — φ(a) for α in A. Since Coker / is divisible ψ can be extended
to all of A. Then rψ(a) — ψ(ra) = φ(a) so that rψ = φ and ̂  is divisi-
ble by r.

Hence all the modules in the last two exact sequences are divisible
and the images of the various homomorphisms are direct summands. In
addition Ext (A, Coker/) = 0 because Coker/is divisible. It follows that
Ext (A, C) is a direct summand of Ext (A, Imf) which is in turn a direct
summand of Ext (A, B).

COROLLARY 1.2. If A is torsion-free and each of B and C has a
homomorphism into the other with divisible cokernel, then

Ext (A, B)^Ext(A, C) .

Proof. A divisible i2-module is a direct sum of submodules each of
which is isomorphic to Q or to a primary component of Q/R, the number
of summands of each type being independent of the decomposition.

THEOREM 1.3. If A is torsion-free, C is a torsion module, and B
is a basic submodule of C, then

Proof. A basic submodule of a torsion module is a pure submodule
for which the factor module is divisible and which is a direct sum of
cyclic modules. Hence there is a homomorphism of B into C with divi-
sible cokernel. On the other hand Szele has shown in [4] that B is a
homomorphic image of C (Szele's proof is for primary groups but the
generalization to this case is trivial). Hence the hypotheses of Corollary
1.2 are satisfied and the conclusion follows.

Suppose now that P is a prime ideal of R and that T is a P-primary
module. The order ideal of an element x of T has the form Pe(x) with
e(x) a nonnegative integer which we will call the exponential order of
x. The submodule of T consisting of those elements with exponential
order < 1 is a vector space over the field R/P; its dimension will be
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called the P-rank of T and will be denoted by rP(T). If 2? is a basic
submodule of T, the minimum of the numbers rP(PnB) with n ranging
over the non-negative integers is independent of the choice of B because
the basic submodules of T are all isomorphic. This number is thus an
invariant of T. We shall follow Szele in calling it the critical number
of T.

If the basic submodule B of T is decomposed into the direct sum of
cyclic modules, then rP(PnB) is the number of summands whose gene-
rators have exponential order > n. Hence rP(PnB) finite implies that
the orders of the elements of B are bounded and the critical number of
T is then 0. Thus the critical number of T is either 0 or infinite, and
if 0, B is a direct summand of T which is therefore a direct sum of a
divisible module and a module all of whose elements have bounded order.

THEOREM 1.4. Let T be a P-primary module with critical number
fc$ and let A be torsion-free.

( i ) // K = 0, then Ext (A, T) = 0.
(ii) If ^ is infinite and M is the direct sum of ^ copies of

ΣnRIP*1, then Ext (Af T) and Ext(A,M) are isomorphic. Thus the
module structure of Ext (A, T) depends only on the critical number of
T.

Proof. Since the maximal divisible submodule of T is a direct sum-
mand of T and contributes neither to Ext (A, T) nor to the critical num-
ber of Γ, we may as well assume T reduced. In the paragraph preceding
the theorem it was shown that if ^ = 0, the orders of the elements
of T are bounded. Any extension of T having a torsion-free factor
module contains T as a pure submodule. Hence it splits and Ext (A, T)—0
in this case.

Suppose now that ^ is infinite and M is the direct sum of ^ copies
of ΣnRIPn- By Theorem 1.3 Ext (A, T) & Ext {A, B) where B is a basic
submodule of T. We write B = Σ n B n where each Bn is a direct sum
of copies of RIPn. There is a natural number m such that ^ = rP(PmB)
and B = Bf + B" where B' is the sum of the Bn with n < m and B"
is the sum of the remaining Bn. Since PmBf = 0 and A is torsion-free,
Ext(A,Bf) = 0. Then the additivity of Ext implies that Ext(A,B)&
Ext (A, B"). The module B" is the direct sum of cyclic modules and
rP(B") = rP{PmB") = ^ so that B" is generated by ^ elements. Hence
it is a homomorphic image of M. On the other hand B" can be ex-
pressed as a direct sum B" = C + ΣγCγ where the summands Cy are ^
in number and each Cy is the direct sum of a sequence of cyclic modules
whose orders are strictly increasing. It follows that M is also a homo-
morphic image of B", hence Ext (A, B") & Ext (A, M) by Corollary 1.2.
This proves (ii).
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2. In this section we assume that R is a discrete valuation ring
with prime p. If M is an i?-module for which the submodules pnM have
intersection 0 (i. e. if M has no elements of infinite height), then these
submodules are a base at 0 for a topology called the p-adic topology.
The completion of M in this topology will be denoted by M*. The p-
adic topology on M induces a topology on each submodule N which may
or may not coincide with the p-adic topology on N. The two topologies
will certainly coincide if N is pure in M for then pnN = N Π PUM for
all n.

The problem to be solved in this section is that of determining the
rank of M* where M is a direct sum of copies of ΣnRlpnR.

A subset Xof an iϋ-module A is called independent if rλxx+ + τnxn =
0 implies rx = = rn = 0 whenever x19 , xn are distinct elements of
X and r19 , rn are elements of R. The cardinal | X | of a maximal
independent subset of A is an invariant of A called its rank (denoted
by r(A)); the rank of A is in fact the dimension of A® Λ Q as a vector
space over Q. The rank formula

r(A) = r(J8) + r(A/5)

holds for any jR-modules A and B with J5 a submodule of A. If A is
torsion-free its cardinal | A | and its rank are connected by the relation

I A I = r ( A ) \ R \ .

In particular r(A) = | A | wherenever A is torsion-free and r(A) < \ R \
(The properties mentioned is this paragraph hold for any Dedekind ring.)

LEMMA 2.1. If M — ΣyMy is the direct sum of the modules MΊJ each
of which is without elements of infinite height then M* is isomorphic
to the submodule of the direct product ΠyM* consisting of those sequences
u = (uy) such that (*) for each natural number n, uy e pnMy

< for all but
a finite set of indices.

The condition (*) implies that uy = 0 for all but a countable set of
indices.

Proof. For each index γ My is pure in M which is pure in M*.
Hence My is pure in ikf*. By Lemma 20 of [2] the closure My of MΊ

in the p-adic topology is also pure in ikf*. Therefore M* induces the
p-adic topology on M^ and, since a closed subspace of a complete space
is complete, My = M%.

We next show that the sum ΣyM* c ikf* is direct. Suppose Σyxy=0
where xy e M* and γ belongs to a finite set σ of indices. For each nat-
ural number n and each ye σ there is an xyn e My such that xyn—xy e pnMf,
hence 2 ^ ^ = ^ ( ^ — #γ) € pnM*. Since lyiίy is pure in ikί* it is pure
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in ΣyMf so that Σyxyn e (ΣyMy) Π pnΣyM* = pnΣyMy. Then xyn e pnM for
each yeσ because the sum ΣyMy is direct. Thus for each yeσ, xyn—>0
and #γ = 0.

Let S be the submodule of ΠyM* defined by (*). We shall define
an isomorphism φ of Λf* onto S. Let a; be any element of ikf*. Since
ΣyMy is dense in ikZ* there is, for each natural number n, an element
xneΣyMy such that xn — #epwikf*. We express each xn as a sum xn=
Σyxyn with #γw e ikf* where #γ w = 0 for all 7 not in some finite set τn.
Since xn converges to x, the arguments of the preceding paragraph show
that, for each 7, xyn converges to some uye ikf*. It is easily shown that
the elements uy depend only on x. We set φ(x) = (uy).

It is necessary to show that u lies in S. Consider a fixed natural
number i and assume that 7 is not in τt so that xyi = 0. Then, for j>i,
xyj = # γ j — # γ ί e p*ikf * Π M * = p W * . Passing to the limit we have uy e plM*
because p*M* is closed in ikf*. Since each τi is finite, uy satisfies (*) and
is in S as required.

To prove φ epimorphic suppose ueS. For each n let τn be a finite
set of indices such that uy e pnMy

< for all 7 not in τn and let xn be the
sum (in ikf*) of the w7 for γ e τn. The existence of τn is insured by (*).
Since τn c: τ m for m < n, xm — xn e pnM*. Hence the xn converge to an
element x in ikf*. Moreover a^ — xepnM*. An examination of the de-
finition of φ shows that xyn = uy if 7 e τn and xγw = 0 otherwise. Hence
φ{x) = % and 9) is epimorphic.

Finally suppose that φ(x) = 0. Refering to the definition of φ we
have, for fixed n and all i > n, (Σyi — xγw) = χt — χn e pnM*. Since ΣyMf
is pure in ikf* and the sum is direct, this implies that xyi — xyn e pnMy

for each index 7 and each i > n. We are assuming all uy = 0 so that
^7ίepwikf* for large i, hence α?yn6pnilf^. But then ^w = 2;7a?7n 6 pnM*
and α;w —> 0, a; = 0. This shows that φ is a monomorphism and completes
the proof.

LEMMA 2.3. IfM= ΠyMy where 7 ranges over a set of cardinal
^ and the My are all torsion-free with the same rank, then

r(ikf) = I My I* .

Proof. Note first that for each 7 I My \ = r(ikfγ) |'i21 so that all the
My have the same power. If we can show that r(ikf) > | R |, then r(ikf) =
I MI — I My I* as required.

Suppose the indices are the natural numbers and that each My=R.
Consideration of a suitable Vandermonde determinant shows that the
elements (1, r,r\ •) e M with r ranging over R are independent so that
r(ikf) > I R I in this case. In the general case ^ is infinite and each My

contains a copy of R so that ikf contains a countable product of copies
of R, hence r(ikf) >\R\ in all cases.
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LEMMA 2.3. Suppose that N is a submodule of M and that, for
each natural number n, Mn and Nn are copies of M and N respectively.
If φ: ΠnMn —> M is a homomorphism such that <p-\N) c= ΠnNn, then

r(MIN) = r(MIN)*° .

Proof. Since φ maps φ~\N) into N, it induces a monomorphism

(1) 0 -> ΠnMnlφ-\N) -> MIN .

Since φ"\N) c ΠnNn, there is an epimorphism

( 2 ) ΠnMJφ-\N) -> Πn{MnINn) - 0 .

Rank does not increase on passing to submodules or to homomorphic
images, hence (1) and (2) imply

( 3) r(MIN) > r{ΠnMnjφ-\N)) > r(Πn(MJNn)) .

By the definition of rank MIN contains a free module F such that
r{F) = r(M/N). For each n let Fn be a copy of F in MJNn. Then
/7nFn c Πn(MJNn) and Lemma 2.2 implies

( 4 ) r(Πn(MJNn)) > r{ΠnFn) = \F\*°> r(F)*<> = r(MjN)*» .

Thus (3) and (4) imply the conclusion of the lemma.

THEOREM 2.4. If M is the direct sum of ^ copies of ΣnRlpnR,

then r(M*) = (H I R l)No.

Proof. We first consider the case ^ = 1. It will be convenient to
replace R\pnR by the isomorphic module R(pn) which consists of all ele-
ments of QIR annihilated by pn, for then R(pn) c R(pm) for all m>n.
Each element a Φ 0 in i2(pw) has a height Λw(α) in i2(pw) where hn(a) — i
if aeplR{pn) but a is not in ^>i+1.R(pn). The height and exponential or-
der of a are related by hn(a) + e(a) = n. We let C = I/Jf?^) and -0=
ΠnR(pn). Then C* consists of those elements x = (α?n) e D such that
^n(^n) goes to CΌ with n.

We show first that r(C*) = r(D). The inequality r(C*) < r(D) holds
because C* ςz D. To prove the opposite inequality we define p: D—>C*
by

fc if w = 2fc .

Since R(pk) c i2(p2fc), p is a homomorphism into D. Since β(xfc) < fc and
hic(χk) + e(χk) = 2ft, h21c(xk) > ft so that /?(#) lies in C*. The map p is
clearly a monomorphism so r(D) < r(C*) as required.
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The next step is to show that

r(D) = r(D)*° .

Let σ19 σ2, be an infinite partition of the set of natural numbers into
infinite subsets. For each n let Dn be a copy of D. An element u e ΠnDn

is a sequence (u19 u2, •) with un — (uni) e D. We define ξ : ΠnDn^D by
ξ(u)k = uw i if fc is the i th element of σn; uni e R(pk) because k > i. The
hypotheses of Lemma 2.3 are satisfied with M = D and JV = 0 which
shows that r(D) = r(D)^°.

The module D can be represented as the module of all infinite se-
quences (xlf x2, •••) of elements of R modulo the sequences of the form
ΦiP, b2p\ δ3p\ •••)• Thus Lemma 2.2 and the fact that rank does not
increase on passing to homomorphic images imply that r(D) < | R |*°.
We shall show that r(D) >\R\. Then r(D) = r(D)*° >\R\*° and we
get

r(D) = I i 2 | * o .

To show that r{D) >\R\ let a(τ) = (1, r, r\ •) for each reR and
let a(r) be the image of a{r) in Z). We show that the elements ά(r)
for reR — (p) are independent. Suppose rlf , rn are distinct elements
of R not in (p), and suppose alf , ane R such that

»i«(^i) + + αwά(rw) = 0 .

Then elements b19 62, exist in i? such that

aMrJ + + ana(rn) = (6^, 62p
2, •) .

Hence, for each fc, the at satisfy a system of n equations

aλτ\ + ••• + anr\anr\ =

The determinant Δ of this system is τ\ rid where d is the Vander-
monde determinant of rlf , rn; d Φ 0 because the r 's are distinct. We
set d = pms with s prime to p and t = rf r^s. Then zί = pmί where
ί is prime to p because rlf , rn, s e R — (p). Then by Cramer's rule
each at satisfies an equation of the form pmtai = pkci. Hence, for k>m,
pk-m diodes %ai a n ( j therefore divides a% because it is prime to t. Since
this is true for all k > m, α£ = 0 for each i. Therefore the a{r) with
r ranging over R — (p) is an independent subset of D so τ(D)>\ R—(p)\.
But R — (p) is the disjoint union of cosets of (p) so that | R — (p) >
\(p)\ = \R\; hence | R - (p) \ = | R | .
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We now have r(C*) = r(D) = | R |*° which completes the proof in
the case y$ = 1.

Now suppose ^ arbitrary, let Γ be a set with cardinal ^ and let
M = ΣyMy where, for each γ e Γ, My — C = 2VR(pn). In view of Lemma
2.1 and the remark following it M* is contained in the submodule A of
all sequences x e ΠyM^ with x7 = 0 for all but a countable number of
indices. Each such sequence is determined by the set σ of indices γ
such that xy Φ 0 and a function / : σ —> C* — {0}. From this it follows
easily that | - A | < ( H | C * | ) * ° . Since C * c ΰ and D is a homomorphic
image of the direct product of ^ 0 copies of R, | C* | < | R |*°. Since
I R |κo = r ( c * ) < I C* I we have | C* | = | R |*°. Hence

r(Af *) < r(A) < | A \ < ( ^ | R |)»o .

Using Lemma 2.1 again we have 2yk/7 c t f * so that

r(M*) > r(ΣyM*) = | Γ | r(C*) = « | β |»

These last two sets of inequalities combine to give

If ^ is finite this completes the proof. If ^ is infinite, the proof will
be complete once we show that r(M*)*° = r(M*). To show this assume
^ infinite and partition the index set Γ into a countable sequence Γ19

Γ2, of disjoint subsets such that | Γn \ = | Γ \ = y$ and set Mn =
Σ {My I γ e Γn}. Then ikfw ^ M and ikί* ^ M* for each n. Our purpose
will be achieved if we can define a monomorphism φ : ΠnM* —> M*, for
then φ-^iifcf*) = t{ΠnMt) c ΠJM%, where ίΛf* is the torsion submodule
of M*. Now Lemma 2.3 applies to give r(Λf*/£M*) = r(ikί*/ίM*)Ko.
Butr(M*) = r(M*/ίM*) so r(M*) = r(M*)*°.

Earlier in the proof of this theorem we defined a monomorphism
p : D —> C*. For each fc we now define a monomorphism ψk: D —> i) by

For i > k we have e(xt-n) < ί — k so that /^(ov*) = ί—e(x^k) > k. Hence

: pkD so that / o ^ maps D into p fcC*. We define φk\ C* —>pfcC*
to be the restriction of |Oi/rfc to C* and note that it is a monomorpoism.

We now use Lemma 2.1 to identify Tkf* with the submodule of
ΠyM$ described by the condition (*). An element x of ΠnMZ is a se-
quence (x19 Ba, •••) where xwe Λί* e/7{Λί* | γ e Γ J . We define ^ by
99(#)γ = φn(xny) for γ e Γn. Then 9?: //wMί —> ΠyM* and is a monomor-
phism because each <pw is one. There remains the task of showing that
φ(x) lies in Λf *. Let ^ be a natural number. For each k < n there is
by Lemma 2.1 a finite subset τΛ of Γk such that xkyepnMf for γ e Γ f c
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but not in τk. By the definition of <pk, ψlc{xky)epnM^ for all yeΓk with
k > n. Hence φ(x)y e pnMy for all not in τx u U τw_x which is a
finite set. Thus φ(x) satisfies (*) of Lemma 2.1 and is in M* as re-
quired.

3* Let R once more be an arbitrary Dedekind ring and let P be a
prime ideal of R. For any i2-module T, Ext(Q, T) is a vector space over
Q and is therefore completely described by its dimension over Q or
equivalently its rank over R. According to Theorem 1.4 this dimension
is a function of the critical number of T if T is primary.

THEOREM 3.1. If T is a P-primary R-module with infinite critical
number ^ , then the rank of Ext(Q, T) is (^ | R

Proof, In order to make the results of section two available we
change rings. The module T, being P-primary, can be considered as a
module over the ring S consisting of all elements of the form α/6 in Q
with a and b in R and b prime to P. The theory of P-primary modules
is left unchanged by the shift from R to S. In particular the critical
number of T is ^ i n both cases.

Since S is torsion-free as an iϋ-module Proposition 4.1.3. of [1] ap-
plies to give a natural isomorphism

ExtΛ(Q, T) ^ Ext,(S <g)ΛQ, T) .

Since R and S have the same quotient field Q,Q = S (g)Λ Q and

ExtΛ(Q, Γ) ^ Ext*(Q, Γ) .

These are both vector spaces over Q and the isomorphism is a Q-isomor-
phism; hence the two modules have the same dimension over Q. Let M
be the direct sum of ^ copies of ΣnSjpnS where p is the prime of S.
According to Theorem 1.4

Extδ(Q, T) & Exts(Q, M) .

Since M is a basic submodule of ίikf*, Theorem 1.3 gives

Q, M)

By Theorem 7.4 of [3], Exts(Qf Λf*) = 0 because M* is complete, while
H.oms(Q, M*) = 0 because M* is reduced. Hence the second exact se-
quence associated with Q and 0 —> ίM* —• ikί* —> M*/tM* —> 0 reduces to

0 -> Hom^(Q, M*/ίM*) -> Ext5(Q, ίikf *) — 0 .

Since M*jtM* is torsion-free divisible

Hom^Q, M
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It follows that Extβ(Q, T) and ikf*/£M* have the same dimension over
Q. This dimension is (^ | S |)*° by Theorem 2.5. Moreover | R | = | S \.
Hence the theorem is proved.

Since the integers are the most important example of a Dedekind
ring it is appropriate to interpret the last theorem for this special case.
Since rank and cardinality coincide for torsion-free abelian groups of
infinite rank, we can say that if T is a p-primary abelian group with
infinite critical number fc$, there are *̂*° inequivalent extensions of T
by the rational numbers.
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