ON THE EXTENSIONS OF A TORSION MODULE
R. J. NUNKE

This paper concerns the structure of Ext (4, T') = ExtL(4, T) where
A is a torsion-free and T is a torsion module over a Dedekind ring R.
In the first section it is shown that for a given torsion-free module A
the structure of Ext (4, T') is completely determined by the basic sub-
group of T. If in addition T is primary the structure of Ext (4, T') de-
pends on a single known invariant of T, called by Szele [4] the critical
number. The rest of the paper is devoted to showing the nature of this
dependence in the special case in which A is the quotient field of R and
T is primary. The problem reduces to that of computing the rank of
certain complete modules over a discrete valuation ring. This computa-
tion is carried out in section two and the description of Ext(4,7T) is
given in section three.

Throughout the paper R is assumed to be a Dedekind ring other than
a field. A consequence of this assumption, used in section two, is that
R is infinite. An exact sequence 0 - A’ — A — A” — 0 and a module C
give rise to two exact sequences. We follow S. MacLane in calling the
one beginning 0 — Hom (A”, C) the first exact sequence and the one
beginning 0 — Hom (C, A’) the second exact sequence.

1. In this section it is shown that whenever A is torsion-free and
C is a torsion module, then the structure of Ext (4, C) depends only on
the basic submodule of C.

LEmma 1.1. If A, B,C are modules with A torsion-free and if
there 1s a homomorphism of B into C with divisible cokernel, then
Ext(4, C) is a direct summand of Ext(A, B).

Proof. Suppose that f: B— C is a homomorphism with Coker f =
C|/Imf divisible. Let f be factored into an epimorphism g followed by
a monomorphism A :f = hg. We get two exact sequences

0— Imf —"sC —— Coker f——0
0—sKerf—s B-2sIm f—>0,

and the relevant parts of the associated second exact sequences are

Received May 6, 1959.

597



598 R. J. NUNKE

Hom (A4, Coker f) —
Ext(4, Imf) — Ext (4, C)— Ext (4, Coker f) — 0
Ext (4, Koker f) —— Ext (4, B)—L> Ext (4, Im f) ——0.

Since A is torsion-free all the terms with Ext in them are divisible. But
the divisibility of Coker f implies that Hom (4, Coker f) is also divisible.
For suppose that ¢ : A — Coker fis a given homomorphism and r is any
nonzero element of R. Since A is torsion-free, division by » in A is
unique; hence there is a homomorphism +-: 74 — Coker f defined by
Jr(ra) = ¢(a) for ¢ in A. Since Coker f is divisible 4 can be extended
to all of A. Then rr(a) = y(ra) = ¢(a) so that ) = ¢ and ¢ is divisi-
ble by 7.

Hence all the modules in the last two exact sequences are divisible
and the images of the various homomorphisms are direct summands. In
addition Ext (4, Coker /) = 0 because Coker f is divisible. It follows that
Ext (4, C) is a direct summand of Ext (4, Im f) which is in turn a direct
summand of Ext (4, B).

COROLLARY 1.2. If A 1is torsion-free and each of B and C has a
homomorphism into the other with divisible cokermnel, then

Ext (4, B) ~ Ext(4, C) .

Proof. A divisible R-module is a direct sum of submodules each of
which is isomorphic to @ or to a primary component of Q/R, the number
of summands of each type being independent of the decomposition.

THEOREM 1.3. If A is torsion-free, C is a torsion module, and B
18 a basic submodule of C, then

Ext (4, C) = Ext(4, B) .

Proof. A basic submodule of a torsion module is a pure submodule
for which the factor module is divisible and which is a direct sum of
cyclic modules. Hence there is a homomorphism of B into C with divi-
sible cokernel. On the other hand Szele has shown in [4] that B is a
homomorphic image of C (Szele’s proof is for primary groups but the
generalization to this case is trivial). Hence the hypotheses of Corollary
1.2 are satisfied and the conclusion follows.

Suppose now that P is a prime ideal of R and that T is a P-primary
module. The order ideal of an element x of T has the form P¢® with
e(x) a nonnegative integer which we will call the exponential order of
2. The submodule of T consisting of those elements with exponential
order <1 is a vector space over the field R/P;its dimension will be
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called the P-rank of T and will be denoted by »,(T'). If B is a basic
submodule of 7', the minimum of the numbers »,(P"B) with n ranging
over the non-negative integers is independent of the choice of B because
the basic submodules of T are all isomorphic. This number is thus an
invariant of 7. We shall follow Szele in calling it the critical number
of T.

If the basic submodule B of T is decomposed into the direct sum of
cyclic modules, then 7,(P"B) is the number of summands whose gene-
rators have exponential order > n. Hence 7,(P"B) finite implies that
the orders of the elements of B are bounded and the critical number of
T is then 0. Thus the critical number of 7T is either 0 or infinite, and
if 0, B is a direct summand of 7" which is therefore a direct sum of a
divisible module and a module all of whose elements have bounded order.

THEOREM 1.4. Let T be a P-primary module with critical number
W and let A be torsion-free.

(i) If ¥ =0, then Ext(4, T) = 0.

(ii) If W s infinite and M 1is the direct sum of Y copies of
SwWR/P", then Ext(A,T) and Ext(A, M) are isomorphic. Thus the
module structure of Ext (A, T) depends only on the critical number of
T.

Proof. Since the maximal divisible submodule of 7" is a direct sum-
mand of T and contributes neither to Ext (4, T') nor to the critical num-
ber of T, we may as well assume T reduced. In the paragraph preceding
the theorem it was shown that if ¥ = 0, the orders of the elements
of T are bounded. Any extension of T having a torsion-free factor
module contains T as a pure submodule. Hence it splits and Ext (4, T)=0
in this case.

Suppose now that Y} is infinite and M is the direct sum of YR copies
of 3,R/P". By Theorem 1.3 Ext (A4, T') =~ Ext (4, B) where B is a basic
submodule of 7. We write B = 3\,B, where each B, is a direct sum
of copies of R/P*. There is a natural number m such that ¥ = r,(P™B)
and B = B’ + B” where B’ is the sum of the B, with » < m and B"”
is the sum of the remaining B,. Since P"B’' = 0 and A is torsion-free,
Ext(4,B’) = 0. Then the additivity of Ext implies that Ext (4, B) =~
Ext(4, B"”). The module B” is the direct sum of cyclic modules and
rp(B") = rx(P™B"”) = W so that B" is generated by ¥ elements. Hence
it is a homomorphic image of M. On the other hand B” can be ex-
pressed as a direct sum B” = C + 3,C, where the summands C, are ¥
in number and each C, is the direct sum of a sequence of cyclic modules
whose orders are strictly increasing. It follows that M is also a homo-
morphic image of B”, hence Ext (4, B"”) = Ext (A4, M) by Corollary 1.2.
This proves (ii).



600 R. J. NUNKE

2. In this section we assume that R is a discrete valuation ring
with prime p. If M is an R-module for which the submodules p"M have
intersection 0 (i.e. if M has no elements of infinite height), then these
submodules are a base at 0 for a topology called the p-adic topology.
The completion of M in this topology will be denoted by M*. The p-
adic topology on M induces a topology on each submodule N which may
or may not coincide with the p-adic topology on N. The two topologies
will certainly coincide if N is pure in M for then p"N = N N p"M for
all n.

The problem to be solved in this section is that of determining the
rank of M* where M is a direct sum of copies of 3,R/p"R.

A subset X of an R-module A is called independent if 7@+« +7,2, =
0 implies 7, = --+ = r, = 0 whenever z,, ---, x, are distinct elements of
X and 7, -+, 7, are elements of R. The cardinal | X| of a maximal
independent subset of A is an invariant of A called its rank (denoted
by 7(A)); the rank of A is in fact the dimension of A ®:Q as a vector
space over Q. The rank formula

r(A) = r(B) + r(4/B)

holds for any R-modules A and B with B a submodule of A. If A is
torsion-free its cardinal | A| and its rank are connected by the relation

|Al=r(A)|R].

In particular r(A) = | A| wherenever A is torsion-free and r(4) < | R|-
(The properties mentioned is this paragraph hold for any Dedekind ring.)

LEMMA 2.1. If M = 3,M, is the direct sum of the modules M,, each
of which is without elements of infinite height then M* is isomorphic
to the submodule of the direct product I1,M} consisting of those sequences
U = (4y) such that (*) for each matural number n, uy,e p"M;} for all but
a finite set of indices.

The condition (*) implies that u, = 0 for all but a countable set of
indices.

Proof. For each index vy M, is pure in M which is pure in M*.
Hence M, is pure in M*. By Lemma 20 of [2] the closure M5 of M,
in the p-adic topology is also pure in M*. Therefore M* induces the
p-adic topology on M7 and, since a closed subspace of a complete space
is complete, M7 = M.

We next show that the sum 3,M;} < M* is direct. Suppose Y,z,=0
where x,€ M* and v belongs to a finite set ¢ of indices. For each nat-
ural number 7 and each v € ¢ there is an «,, € M, such that z,,—x, € p"M},
hence ¥, = ¥ %y, — x,) e p"M*. Since 3,M, is pure in M* it is pure
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in Y,M¥ so that 3x,,e(2,M,) N p"2,M} = p"¥,M,. Then x,, <€ p"M for
each ve o because the sum 3,M, is direct. Thus for each ve o, 2,,—0
and x, = 0.

Let S be the submodule of I7,M} defined by (*). We shall define
an isomorphism @ of M* onto S. Let x be any element of M*. Since
3,M} is dense in M* there is, for each natural number n, an element
z, € Y,M3 such that x, —xep"M*. We express each «, as a sum x,=
3%y, with x,,e€ My where x,, =0 for all v not in some finite set z,.
Since x, converges to x, the arguments of the preceding paragraph show
that, for each v, x,, converges to some u,e M*. It is easily shown that
the elements u, depend only on x. We set ¢(x) = (u,).

It is necessary to show that u lies in S. Consider a fixed natural
number ¢ and assume that v is not in 7, so that x,, = 0. Then, for j>1,
Lyy = Lyy— Ly € P'M* N MF=p'My. Passing to the limit we have u,e p'M}
because p'M; is closed in M*. Since each 7, is finite, u, satisfies (*) and
is in S as required.

To prove @ epimorphic suppose € S. For each n let z, be a finite
set of indices such that u,e p"M3 for all ¥ not in 7, and let x, be the
sum (in M*) of the u, for yer,. The existence of 7, is insured by (*).
Since 7, € 7, for m < m, 2, — 2, € p"M*. Hence the z, converge to an
element # in M*. Moreover x,—x € p"M*. An examination of the de-
finition of ¢ shows that x,, =, if yer, and ®,, = 0 otherwise. Hence
@(x) = u and @ is epimorphic.

Finally suppose that @(x) = 0. Refering to the definition of ¢ we
have, for fixed » and all ¢ > n, (£, — @,,) = ¢, — x, € p"M*. Since X, M}
is pure in M* and the sum is direct, this implies that »,, — ,, € p"M}
for each index v and each ¢ >n. We are assuming all u, = 0 so that
x, € p"MF¥ for large ¢, hence x,,€p"M;. But then x,= 3, p"M*
and z,— 0, £ = 0. This shows that ¢ is a monomorphism and completes
the proof.

LEMMA 2.8. If M = II,M, where v ranges over a set of cardinal
W and the M, are all torsion-free with the same rank, then

r(M) = | M, [*.

Proof. Note first that for each v | M, | = »(JM,) 'R | so that all the
M, have the same power. If we can show that »(M) > | R|, then »(M)=
| M| =|M,™ as required.

Suppose the indices are the natural numbers and that each M,=R.
Consideration of a suitable Vandermonde determinant shows that the
elements (1, r, v, -+ -)e M with » ranging over R are independent so that
(M) > | R| in this case. In the general case W is infinite and each M,
contains a copy of R so that M contains a countable product of copies
of R, hence (M) > | R| in all cases.
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LEMMA 2.3. Suppose that N is a submodule of M and that, for
each natural number n, M, and N, are copies of M and N respectively.
If o: I,M,— M is a homomorphism such that ¢-(N) < II,N,, then

r(M|N) = r(M/|N)o .

Proof. Since @ maps ¢ '(N) into N, it induces a monomorphism
(1) 0 — M,M,jp~*(N)— M|N .
Since @~(N) € II,N,, there is an epimorphism
(2) 11,M, |9~ (N) — I1(M./N,) — 0 .

Rank does not increase on passing to submodules or to homomorphic
images, hence (1) and (2) imply

(3) r(M|N) = r(l1,M,|p7(N)) = r(I1 (M,|N,)) .

By the definition of rank M /N contains a free module F' such that
r(F) = r(M|N). For each n let F, be a copy of F in M,/N,. Then
1n,F, c I1,(M,/N,) and Lemma 2.2 implies

(4)  rUT(Mu[N,) = r(I1F,) = | FFo > r(F)¥o = r(M|N)* .

Thus (3) and (4) imply the conclusion of the lemma.

THEOREM 2.4. If M 1is the direct sum of W copies of X,R/p"R,
then r(M*) = (W | R |)®e.

Proof. We first consider the case 8§ = 1. It will be convenient to
replace R/p"R by the isomorphic module R(p*) which consists of all ele-
ments of Q/R annihilated by p®, for then R(p") < R(p™) for all m > n.
Each element @ # 0 in R(p") has a height k,(a) in R(p*) where h,(a)=1
if a e p'R(p") but a is not in p**'*R(p™). The height and exponential or-
der of a are related by h,(a) + e(a) =n. We let C = X, R(p") and D=
II,R(p™). Then C* consists of those elements z = (x,)e D such that
h.(x,) goes to o with n.

We show first that »(C*) = r(D). The inequality »(C*) < r(D) holds
because C* < D. To prove the opposite inequality we define p: D— C*
by

,O(x),,:{o %f n=2k+1,
x, if n=2k.
Since R(p*) € R(p*), p is a homomorphism into D. Since e(x,) < k and

ho(xi) + e(x) = 2k, hy(x,) > k so that o(x) lies in C*. The map p is
clearly a monomorphism so (D) < »(C*) as required.
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The next step is to show that
r(D) = r(D)®o

Let o, 0,, -+ be an infinite partition of the set of natural numbers into
infinite subsets. For each n let D, be a copy of D. An element we I, D,
is a sequence (%, Uy, +++) wWith u, = (u,;) € D. We define &: I1,D,—D by
E(u), = U, if k is the ith element of o,; u,; € R(p*) because k£ > i. The
hypotheses of Lemma 2.3 are satisfied with M = D and N = 0 which
shows that r(D) = r(D)¥o.

The module D can be represented as the module of all infinite se-
quences (x,, 2, -++) of elements of B modulo the sequences of the form
(b.p, b,p*, byp®, +++). Thus Lemma 2.2 and the fact that rank does not
increase on passing to homomorphic images imply that »(D) < |R |Xe.
We shall show that »(D) > | R|. Then (D) = »(D)¥° > | R|®° and we
get

r(D) = | R %o .

To show that (D) > |R]| let a(r) = (1, », 7% --.) for each re R and
let a(r) be the image of a(r) in D. We show that the elements &(r)
for re€ R — (p) are independent. Suppose 7, - -+, 7, are distinct elements
of R not in (p), and suppose a,, «-+, a, € R such that

a,0(r) + <+« + aa(r,) =0.
Then elements b,, b,, -+- exist in R such that
(1) + -+ + aya(r,) = (bip, bp?, - ) .

Hence, for each k, the a, satisfy a system of n equations

oooooooooooooooooooooo

oooooooooooooooooooooo

aq,’.iwn—-l + cee + an,r;c;n—l — bk+n_1pk+n—1 .

The determinant 4 of this system is 7¥ -.. ri%d where d is the Vander-
monde determinant of 7, «+-, 7,; d # 0 because the ’s are distinet. We
set d = p™s with s prime to p and ¢ = ¥ ... rkts. Then 4 = p™t where
t is prime to p because 7, +-+,7r,,s€ R — (p). Then by Cramer’s rule
each a; satisfies an equation of the form p™ta,=p*c,. Hence, for k>m,
p*~™ divides ta, and therefore divides a; because it is prime to t. Since
this is true for all £ > m, a; = 0 for each ¢. Therefore the a(r) with
r ranging over R — (p) is an independent subset of D so 7(D)>| R—(p)|.
But R — (p) is the disjoint union of cosets of (p) so that | R — (p) >
|(®)| = |R|; hence | R —(p)|=|R|.
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We now have r(C*) = »(D) = | R |®o which completes the proof in
the case W = 1.

Now suppose Y arbitrary, let I” be a set with cardinal ¥ and let
M = X,M, where, for each yeI’, M, = C = Y,R(p"). In view of Lemma
2.1 and the remark following it M* is contained in the submodule A of
all sequences xze I1,M} with x, = 0 for all but a countable number of
indices. Each such sequence is determined by the set ¢ of indices v
such that , #+ 0 and a function f: ¢ — C* — {0}. From this it follows
easily that |A | < (W | C*|)®0, Since C* € D and D is a homomorphic
image of the direct product of ¥, copies of R,|C*| <|R|[®0. Since
|[R|®v=r(C*) < |C*| we have |C*| = | R|®. Hence

r(M*) <r(A) <A< (WR[R)¥.
Using Lemma 2.1 again we have S.M¥ < M* so that
r(M*) = r(3M7) = | [r(C*) =NRI[E[F.
These last two sets of inequalities combine to give
WIR® < (M%) < (R [RE ™.

If ¥ is finite this completes the proof. If ¥ is infinite, the proof will
be complete once we show that »(M*)®o = »(M*). To show this assume
W infinite and partition the index set /" into a countable sequence 77,
I, -++ of disjoint subsets such that |I",|=|7"| =% and set M, =
YX{M,|y e I'y}. Then M,~ M and M} ~ M* for each n. Our purpose
will be achieved if we can define a monomorphism ¢ : I1,M} — M*, for
then @ *(tM*) = t(Il,M}) < Il ,tM;, where tM* is the torsion submodule
of M*. Now Lemma 2.3 applies to give »(M*[tM*) = r(M*[tM*)Xo,
But »(M*) = r(M*[tM*) so r(M*) = r(M*)Ro.

Earlier in the proof of this theorem we defined a monomorphism
©0:D— C*. Foreachk we now define a monomorphism r,: D — D by

0, 1<k,
Tir, t >k

For ¢ > k we have e(x;-,) < ¢ — k so that h,(x;_,) = 1 — e(x,-,) > k. Hence
V(D) € p*D so that oy, maps D into p*C*. We define ¢,: C* — p*C*
to be the restriction of o4, to C* and note that it is a monomorpoism.

We now use Lemma 2.1 to identify M* with the submodule of
I1,M} described by the condition (*). An element z of I7,M; is a se-
quence (&, %, *++) Where x,e My C [I{M}|vel,}. We define ¢ by
@(x)y = Pp(yy) for yerl',. Then ¢: I, M} — II,M} and is a monomor-
phism because each ¢, is one. There remains the task of showing that
@(x) lies in M*. Let » be a natural number. For each k < n there is
by Lemma 2.1 a finite subset 7, of /", such that z, e p"M} for yel,

@)= {
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but not in 7,. By the definition of ¢, ¢.(2:,) € p"MF for all ye I', with
k >mn. Hence ¢(x),ep*M; for all not in 7, U +++ U 7,-;, which is a
finite set. Thus ¢(x) satisfies (*) of Lemma 2.1 and is in M™* as re-
quired.

3. Let R once more be an arbitrary Dedekind ring and let P be a
prime ideal of R. For any R-module T, Ext (@, T') is a vector space over
@ and is therefore completely described by its dimension over @ or
equivalently its rank over R. According to Theorem 1.4 this dimension
is a function of the critical number of 7' if T is primary.

THEOREM 3.1. If T s a P-primary R-module with infinite critical
number W, then the rank of Ext(Q, T) is (W | R |)®o.

Proof. In order to make the results of section two available we
change rings. The module T, being P-primary, can be considered as a
module over the ring S consisting of all elements of the form a/b in @
with @ and b in R and b prime to P. The theory of P-primary modules
is left unchanged by the shift from R to S. In particular the critical
number of 7' is YW in both cases.

Since S is torsion-free as an R-module Proposition 4.1.3. of [1] ap-
plies to give a natural isomorphism

Extx(Q, T) =~ Exts(S ®.:Q, T) .
Since R and S have the same quotient field @, Q = S ®,Q and
EXtR(Q7 T) =~ EXtS(Qy T) *

These are both vector spaces over @ and the isomorphism is a @Q-isomor-
phism; hence the two modules have the same dimension over Q. Let M
be the direct sum of Y copies of Y, S/p*S where p is the prime of S.
According to Theorem 1.4

Exts(@Q, T) = Exty(Q, M) .
Since M is a basic submodule of ¢M*, Theorem 1.3 gives
Exty(Q, M) ~ Exty(Q, tM*) .

By Theorem 7.4 of [3], Exts(Q, M*) = 0 because M* is complete, while
Homy(Q, M*) = 0 because M* is reduced. Hence the second exact se-
juence associated with @ and 0 — tM* — M* — M*[tM* — 0 reduces to

0 — Homy(Q, M*[tM*) — Exts(Q, tM*)— 0 .
Since M*[tM* is torsion-free divisible

Homy(Q, M*/tM*) ~ M*[tM* .
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It follows that Extn(Q, T) and M*/tM* have the same dimension over
Q. This dimension is (¥ |S[)®¥° by Theorem 2.5. Moreover |R| =]|S]|.
Hence the theorem is proved.

Since the integers are the most important example of a Dedekind
ring it is appropriate to interpret the last theorem for this special case.
Since rank and cardinality coincide for torsion-free abelian groups of
infinite rank, we can say that «+f T is a p-primary abelian group with
infinite critical number W, there are WX inequivalent extensions of T
by the rational numbers.
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