UNIONS OF CELL PAIRS IN E®
P. H. DoYLE

In [4] it is shown that there are pairs of cells of all dimensions
possible in euclidean 3-space, E®, which are tame separately, but which
have a wild set as their union. Such pairs can be constructed when
the individual cells intersect in a single point. The present paper gives
conditions that unions of some such pairs be tame sets as well as a
number of other results.

LEMMA 1. Let D, be a disk which is polyhedral and which lies
on the boundary, 8T, of a tetrahedron T in E°. If D, is a disk in
E* which has a polygonal boundary and is locally polyhedral mod
0D, while D,N T=D,N D, =0D, N oD, =J, an are, then D,UD, 1s
a tame disk.

Proof. Let P, and P, be polyhedral disks in 87, P, N P, =[] and
(P,U P)N D, =[]. Then aT\(P, U P,) is a polyhedral annulus, A4,. If
Q@ is a polyhedral disk in D,\éD,, thenm is an annulus A, which is
locally polyhedral mod 8D,. By applying Lemma 5.1 of [8] to A, and
A, one obtains a space homeomorphism A& carrying E*® onto E*® while
h(D, U D,) is a polyhedral set. This completes the proof of Lemma 1.

LEMMA 2. Let D, be the disk of Lemma 1 while D, is a tame disk
in E* such that D,N T=D,N D, =0D,N oD, =J, an arc. Then
0T U 0D, is tame.

Proof. By Theorem 2 of [3] 8D, U 0D, is locally tame and hence
tame by [1] or [8]. Let a be a point of 8J and J’ be an interval of
oD, having a as an end point and J' N 8D, = a. We choose a polygonal
disk M on 8T with (J'/0J’) in its interior while 6D, N M =J'. By a
swelling [5] of M toward the component of E®\@T which meets 8D, we
obtain a disk M’ which is locally polyhedral mod oM and M’ N 87T =
oM=0M'. The sphere S = M' | (8T\M) is tame by [8] and S is pierced
at a by a tame arc lying on 8(D, U D,). Hence by [7] D, U S is local-
ly tame at a. We select an arc P in (S\M’) U a which is locally poly-
hedral except at the point a. There is an arc A on 0D, which lies in
the exterior of S except for its end point a. The arc A U P is tame
since S U 8D, is tame. Let the arc P be swollen into a 3-cell C* with
P in its interior such that C?® is locally polyhedral mod ¢, C*°N S is a
disk while C* N M = a. Then 0C® is pierced at a« by A U P and so
AU PyUoC® is tame by [7]. Evidently there is an arc P’ on 9C’ so
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that A U P’ pierces 8T at a. Again by [7] 0D, U 8T is locally tame at
a. A similar argument applies to the other end point of 8J. Hence
oD, U 0T is tame. This proves Lemma 2.

THEOREM 1. Let D, and D, be two tame disks in E°® such that
D, ND,=0D,NoD,=J, an arc. Then D, U D, is a tame disk.

Proof. Since D, is tame there is a homeomorphism k;, of E°® onto
E® such that h(D,) is a plane triangle. The disk A,(D,) is to be swollen
so that a 3-cell ¢ is formed such that

(1) h(D) C o¢,
(ii) €* is tame,
(ili) and € N h(D,) = hy(J).

That such a cell ¢ exists follows from Lemma 5.1 of [5] and
Theorem 9.3 of [8].

There is a homeomorphism %, of E° onto E*® which carries 6¢® and
h(D,) onto the boundary of a tetrahedron and a polyhedral disk, re-
spectively. By Lemma 2 h,(¢*) U hh,(0D,) is a tame set. By Theorem
2 of [6] we can insist that h,h,(D,) be -locally polyhedral mod h.h,(3D,),
while h,h,(6D,) is polygonal. Hence by Lemma 1 hh(D, U D,) is tame
and so D, U D, is tame.

The following result gives a characterization of tame 1-dimensional
complexes in KE°® By a 1,-star we mean a homeomorphic image of a
1-dimensional simplicial complex K with a vertex x whose star is K
and z is the common end point of the n segments meeting only in x.

THEOREM 2. If Nisa 1l,-star in E* such that (n — 1) of the bran-
ches of N lie on a disk D which meets the remaining branch J at x
only and if each arc in N is tame, then N 1is tame.

Proof. By [2] we may assume that D is locally polyhedral mod N.
An application of the method in Theorem 1 of [3] makes it possible
to select a subset D’ of D which is a disk consisting of (n — 1) tame
disks which contain arcs with % as an end point of all branches of N
except J. An argument almost identical with that of Theorem 2 of [3]
suffices to show that J U D’ is tame and hence N is tame by [1] or [8].

COROLLARY 1. Let G be a graph in E® such that the star of each
vertex of G meets the conditions of Theorem 2, then G is tame. The
conditions are evidently mecessary as well.

COROLLARY 2. Let D be a tame disk and J a tame arc in E°. If
DNJ=0DnNJ=p, an end point of J, and if 8D U J is tame, then
D U J is tame.

P7'oof.x Since D is tame there is a space homeomorphism % which
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carries D onto a face of a tetrahedron T, [A(J)\k(p)] C E*\T. Let P
be a segment on h(@D) with h(p) as an end point. We enclose P in a
polyhedral disk M in 8T such that P spans M and m(®D) N M = P. We
swell M as in Lemma 2 to obtain a tame disk M’ such that oM’ = oM,
and M"\oM' c E\T. Then h(J) U W(0D) contains a tame arc which
pierces the tame sphere [8] S = M' U (6T\M) at h(p) and so S U M(J)
is tame by [7]. The construction of an arc P’ as in Lemma 2 comple-
tes the proof.

In Example 1.4 of [4] an arc A which is the union of two tame
arcs is shown. Although A has an open 3-cell complement in compacti-
fied E°®, it is nevertheless wild. A similar example can be obtained
from Example 1.4 of two tame disks which meet at a point on the
boundary of each and which have a wild union. In this connection we
give the following result.

THEOREM 3. Let D, and D, be disks in E*® such that each arc in
D, and D, is tame and D, N D, = 0D, N 6D, = J, an arc. Then D, U D,
18 a disk such that each arc in D, U D, is tame.

Proof. Let J’ be an arc in D, U D,. If 8J’ does not lie in 6D, U
oD, we extend J' so that this is the case, obtaining J” D J', 8J” C 6D,
UéD, and J” < D, U D,. By [2] there is a disk D such that 6D =
oD, U D,), JUJ"c D and D is locally polyhedral mod J UJ” U 8D.
The arc J in D is the intersection of two disks in D, D] and D), such
that D] U D; = D. Consider any point x of J” in D)\oD;. In [3] a
method is given for enclosing 2 in the interior of a tame subdisk of
D). Hence D) is locally tame at each of its interior points and 8D is
tame. By [8] D! is tame. A similar argument can be applied to Dj.
Hence D! U D) is a tame disk by Theorem 2. Then J” is tame and so
J' is tame. Since J' was arbitrarily chosen D, U D, is a disk in which
each arc is tame.

COROLLARY 1. Let L, and L, be tame disks which intersect in a
single point on the boundary of each. If L, U L, lies on a disk in
which each arc is tame, then L, U L, is tame.

Proof. Let L, U L, lie on a disk D such that each arc in D is
tame. By Theorem 2 6L, U 0L, is tame. There is a disk D’ in D with
a tame boundary such that D’ N (L, U L,) € 6L, U 8L, while D' U L, U L,
is a disk. Then by [2] there is a disk D" such that D" = aD’, D" is
locally polyhedral mod 8D and 8D"” N (L, U L,) = oD’ N (L, U L,). Now
D" is tame by [8] and so D" U L,U L, is tame by Theorem 2. It follows
that L, U L, is tame.
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