HOLDER CONTINUITY OF N-DIMENSIONAL
QUASI-CONFORMAL MAPPINGS

E. DaviD CALLENDER

1. Introduction and main results. This paper is an extension of
previous work on the Holder continuity of two-dimensional mappings.
We shall use the approach of Finn and Serrin' and prove analogous
results in » dimensions. A two-dimensional quasi-conformal mapping is
one which carries infinitesimal circles into infinitesimal ellipses of bounded
eccentricity. An n-dimensional quasi-conformal mapping carries infini-
tesimal spheres into infinitesimal ellipsoids of bounded eccentricity. Finn
and Serrin gave an elementary proof that a quasi-conformal mapping is
uniformly Holder continuous in compact subdomains and obtained the
best possible Holder exponent. Their proof makes extensive use of the
Dirichlet integral. We obtain similar results in » dimensions using a
modified Dirichlet integral suggested by C. Loewner. It is not clear
whether the n-dimensional exponent is the best possible one.

Let u(zx, y) and v(x, y) be continuously differentiable functions in a
domain D of the complex z-plane. Then the function w(2) = u + v
represents a quasi-conformal mapping if there exists a constant K such
that

(1) [Fw|* = u; + uy + v + v < 2K (w0, — u,v,) ,
) v

for all points of the domain of definition of w. If K < 1, the mapping
functions are constant; if K = 1, they are conformal. The only case of
interest is K > 1. Geometrically, (1) implies that infinitesimal circles
map into infinitesimal ellipses for which the ratio of minor to major axis
>K-—- VK —1.

Let f = (4, +++, u,) be an n-dimensional mapping of a domain A of
E, into E, such that f is continuously differentiable, the Jacobian, .J,
of the transformation is non-negative and

(2) | 7f|? Eiélu;, < nKJ¥", where u, , = ou,/ox,

and K is a constant holding for all points of the domain A of definition.

If K <1, the mapping functions are constant, if K =1, the map-
pings are the conformal mappings of space. Geometrically the mapping
x — f(x) is sense preserving and infinitesimal spheres map onto infini-
tesimal ellipsoids. In this paper the norm used is the usual one for E,
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and is denoted by |z]|.

Finn and Serrin treat a class of mappings which they call elliptic
mappings. This generalization of the notion of quasi-conformal mapping
is due to L. Nirenberg. w(z) is an ellistic mapping if it satisfied the
conditions for a quasi-conformal mapping except that condition (1) is
replaced by

(3) |Fw|* < 2KJ + K, ,

where K and K, are constant, K >1 and K, > 0. A generalization of
two-dimensional elliptic mappings is obtained by replacing condition (2)
in the definition of n-dimensional quasi-conformal mappings by

(4) \rf" < mKy"*J + K, ,

where K and K, are constants, KX > 1, and K, > 0. Such mappings we
shall call near quasi-conformal mappings.

In two dimensions many important estimates are given in terms of
the Dirichlet integral

D) = SSG | Pw [P dzdy

where C, is a circle of radius . We shall find that the appropriate
n-dimensional analog of this integral is

(5) D) = | { S} av,

S?‘ 4,5=1
where S, is an mn-dimensional hypersphere of radius ». This integral
was suggested by C. Loewner in a paper that will appear shortly in the
Journal of Mathematics and Mechanics.

The proofs of Finn and Serrin make use of Morrey’s lemma, which
is based on the usual Dirichlet integral. By means of the modified
Dirichlet integral, an analogous lemma is proved in » dimensions.

For the n-dimensional quasi-conformal mappings and the near quasi-
conformal mappings the following two theorems are proved.

THEOREM 1. Let f be a quasi-conformal mapping defined in a
domain A of E,. Assume |f| < 1. Then in any compact subregion B
of A,

(6) @)~ f)| < cloml

where d is the distance from B to the boundary of A; ¢t = pn, K) and
0<pn<1;and C=C(n, K), a constant depending only on the dimension
of the space and K. (See equation (12) for definition of f.)
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THEOREM 2. Let f be a near quasi-conformal mapping defined on
a domain A of K, Let |f|<1. Then in any compact subregion B
of A

(7) |f(@) = f(2)| < Hl@, — @, [*,

where H is a constant depending on n, K, K,, and d (d is the distance
from B to boundary of A) and p = p(n, K), 0 < e < 1. p is the same
constant that appears in Theorem 1.

2. Preliminary lemmas. To generalize the proofs of Finn and
Serrin to n dimensions, several lemmas are needed. They are listed
below and the more difficult proofs are given.

LEemMMA 1. The weak Maximum Principle holds for quasi-conformal
mappings, t.e., if f is quasi-conformal in a bounded region A and
continuous in A, then the maximum of the norm (and of the components)
is attained on the boundary A of A. The minimum of the components
is also attained on A. (The proof is the same as in two dimensions.)

LEMMA 2. Let u be a function defined im some domain A. If

w=0 on S, where S, is the surface of a sphere of radius r in A and
n 1s the dimension of the space, then

(8) S,[u]"dAgCr”S,[ut]"dA,
ST ST

where u, 18 the tangential component of the gradient of w on S, and C
1s a constant depending only on the dimension of the space.

LEMMA 3. For all a,b >0, x>0 and n > 2,

n ap =t a
(9) ——a'"b gv_—lerb,

m— 1)

and the constant of this tnequality cannot be improved.

LEMMA 4. Let u be a function defined in a domain A and let
o = o(S,) be the oscillation of u on the surface of sphere of radius r
wm A where n is the dimension of the space. Then there exists a con-
stant C depending only on the dimension of the space such that

(10) @"(S) _ of, turia.
r 8,

LEMMA 5. Let (a;;) be an n x n matrixz with real coefficients. Then
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1 n ) n/2
1) [det (@) | < o San)"

The constant in the inequality cannot be approved. (This lemma follow
immediately from the proof of Hadamard’s inequality.)

Morrey’s lemma in n dimensions. Let B be a closed subregion of
D and let d = distance (B, D). Suppose there exist constants L, y, 7,

where 0 < g2 and 7, < d, such that for all spheres S, with center in B,
r < Ty

D(r) = S \PfI"dV < Lem
S?‘
Then f satisfies a Holder condition in B:

'f(xl)_f(xz)lgczlx1_x2 “,

where

C, = 1 ( nL )””(27101(72—1))";

" '\n—1 y2z
and-C, = C,(n).

Proof of Lemma 2. Let n > 3. Choose the coordinates such that
# = 0 at the north pole. For given (6,, ++-, 6,-)), let u,, = Un,(6,, -, 6,_))

0

be the maximum of |u| for 0 <4, <7w. We have u =S ued @, which
0

implies that

n T In T n—
tn < [[10s1 0 <[ gt sime== 0,00, [S d*"}—
0 0

* ysinm1 6,

by Holder’s inequality. Let

C < . Hence
uryn-t < C"‘ngI Ug [*r™~" sin"~* 6,d0,
< T"C"“IS:| u, ["r*=' sin"2 60,d0, .
Now

2r(x T
S. | dA = rg S S \u " sin" 0,d0,da,_,
S 0 0 0

r —_

n-2
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< pr-t g ur sin®-*0,d6,dw,_,

ne1r =1 {(n — D)2},
<rr —Wgumdwn_l .

Combining the above results

Ss;’“ jaa<vr L0 rgs_rlut|dA.

Proof of Morrey’s lemma. Denote the points «,, z, by P and 0,
respectively. Let |x, —x,| <7, and let » = |z, — x,|. Let M be a

perpendicular bisector of PQ. Select a point S on M such that PS =
QS < PQ <7, Then

F(P) = @) = S fdr — SQS fdr

which implies

7@ —r@1< |, (lar+ | (slar

Hence
2r (7 x /3
So So U | £(P) — f(Q)|do, -+ do,.,
" R(ox(x x (x/3
<2l (" [ rrrao, - ao,ar
0 Jo Jo 0
So
lf(P)—f@]< n’?-l L \PF1do, « - dOn_dr
< 3 [S | Pf |Prn=1=# gin®=2 0, « + - sin 0,,_,drdf, « -+ dan-l]lm- In;1 ’
7[71,-1 Sr
where

B (n=2 . (=2 R
"RIT sin ("-1)61 sin ("-1)02 ceesin m 1 0, drdd, «-- dO,_, .

I= rn_}:f<n ; 1)27701

x x n- (=2 .
L= S coe S sin_('"_—%)ﬁ1 sin (n—2)92 eeesin 210, ,d0, o+ db,-, < o .
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S | Pf Pt dw, = r-*D(r) ,
ST

uSrD(r)‘r““—ldr < perLym 4 ﬂLST'r“‘"‘”‘ldr =_" I Ly®-ve |
0 0

since by hypothesis

D(r) < Lr™,
Combining
. 3 n v\ " e — 1 o
F(P) =7 @1 = s (g Troe) e (B JenCo T = G,
where

C, = 3 ( nL )1/n<2ncl(n — 1))17‘:1_.

o '\n —1 u
Proof of Lemma 4. The surface of the n dimensional hypersphere

of radius  can be mapped onto a n — 1 dimensional hyperplane by a
stereographic mapping. Under such a transformation

g, |, |"-’dS:S \Pu-d Vv,
ST 14
and
S, a —cos&)[u,l”dS:S \PudV,
S,/ 14
where the variables on the surface of the sphere are (6,,0,, «++, 0,-),

on the hyperplane are (o, 6, +-+, 6,-,), and domains of integration are
mapped onto one another. Hence

S |PurdV < S | u, ["dS .
14 ST

In the hyperplane

S \PudV < UIVu Id V]ﬂn——l[gd V]”"
lz|<p
< cfpl, 1w pas]s,
ST

where latter integration is taken over the whole surface of the n di-
mensional hypersphere and

2 The author is indebted to R. Finn for suggesting this proof which strengthens and
simplifies the author’s original proof.
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T T (2r
¢t = S ces S S sin"* 0, sin""*@, +++sin6,_,d0, --- df,_, .

0 0Jo

Hence by Morrey’s lemma applied in the n — 1 dimensional hyperplane

o < C‘OS |, *dS

N
where C is a constant depending only on n. It follows immediately that

@S 2c§. lu, ["dS .
r 8,

3. Proof of Theorems 1 and 2. The proof of Theorem 2 will be
given before that of Theorem 1, and Theorem 1 will follow as an im-
mediate corollary of Theorem 2. Then an alternate method of proof for
Theorem 1 will be given. This second proof uses a modulus of continuity
instead of Morrey’s lemma.

Proof of Theorem 2. It must be shown that it f is a near quasi-
conformal mapping, then D(r) < constant-r™ for » sufficiently small.
Then the conclusion will follow by Morrey’s n dimensional lemma. By

(4)

D(r) < (nK)"“S JAV + oK, .
S

| Jav= S ity + - du, = S(ul —a)du, - - - du,
s, $,

7

. 8(1,4,2 e U )

= y—y) "dS"'dSn,
Sé’r( ' 1) a(82 b Sn) ’

where u, is the mean value of u, over S,, ds, = rdé,, ds, = ssin 6,d6,,

ds, = rsin 6, sin 0,d0,, - -+, and ds, = rsind, --- sin6,_,dd,_,. Hence by

Lemma 5, Lemma 3, and Lemma 2

S Jav<—1
5y (n—1)7

Py 2=t
XS.|u_u1|[u§,sz+"'+u§,sn+u§,sz+°"+u72¢,snj > dA
r

n-—1

S(n—l)n 3 {S lul-—n_?J'ndA—*—/}”S.[ug.sz+...+u?‘-5]n/2dA}
n $, r 5, "

<=8 Eplef juiraa+ | w4 o 1, praal,
n 8, 8, n J

where C = C(n) is the constant of Lemma 2. Hence
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Sé JAV < c'rS, £, "dA
, N

where
n=1_n-1
Cl — (% - 1) " : C ,
n

and finally

S Jav < cr 3D
s, dr

The Holder exponent g is defined by the equation

(12) L _ ok — 1y
7
where C is the constant of Lemma 2.
Combining above results
(13) D)< L 9D 4 ok,
ny dr

where w, is the area of the unit sphere in # dimensions.
Let B be a closed subregion of A, and let d be the distance from

B to A. Let S, be a sphere whose center is in B. For such a sphere
D(r)g—r—d—D—I—wnr"KI, for 0 < r < d.
ny dr
Hence
d - n—1-n
— —(r"™D) < nuK,w,r L
dr
and integrating

(14) D(o) < {D(t) + KZ}({-)"“ , p<t<d

where

K,

w,t" .

2:

We now wish to estimate D(t). We know

niz -1
Mlﬁgs lu |[uis, + =+ + uns, | 2 dA + 70, K,

(n—1)y=% *°r

D) <
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A\
I

S |, |ndA]”"U f,|" dA] = K,

<K, S lfblndA] + oK,

'dD
L dr

]" rw,K, ,

where

K, = _(nK)" and K, = Kw/".

7n -1

(n—1)7*

We have also used the fact that |f| < 1. The immediately preceeding
result implies

dD
dr ’

(D(r) — ,,)" 1 <K" lr

for r < d and where K, = d"w,K,.
Now suppose D(t) > K, for some {. Then D(r) > K, for all r > t.
Hence

L _ K — 1)
D)y — K)yrt <24+ 7 )
(D(?) )it < oz (/5)
or
K,
D(t . ol NS
O =5 = Fog @iy
where
K, = Krn — 1) .
So
K,
15 Dty <—2 __ + d"w,K, .
(15) O <o + 4o

This inequality also holds if D(r) < K.

Now let ¢t = de™ where v = 1/ng. Combining (14) and (15) we ob-
tain D(p0) < Hp™ where H is a constant depending only on u, K, K,,
and d. We can now conclude that for z,x, € D and |z, — x,| < de~”
that |f(z) — f(x,)| < H|w, — @,|*. Because of the bound on |f|, we
get a similar result when |z, — x,| > de™.

Alternate proof of Theorem 1. Here we do not use Morrey’s lemma,
instead a modulus of continuity on f is obtained in terms of D(r).
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Proof. For any point set T c A4, let w(t) = lu.b.|f(x) — f(x,)]
where x,x, € T. Since f is quasi-conformal, it satisfies the weak maxi-
mum principle. Let S, be a sphere of radius » such that its center is

at least a distance p from A. Then &(S,) = w(S,). By Lemma 4,

@"(S,) <C aD for s < r.
r dr
Hence
o"(S;) logg < CD(p) for s < p.

This implies

CD(p) 1
w(Ss)s[log (p/s)] ,

where C depends only on the dimension of the space.
D(p) can be estimated by the technique used in the proof of Theo-
rem 2.

D(o) < elmpy =Ky o, n — 1) (L),
where ¢ is the base of the natural logs, ¢ is defined as in proof of
Theorem 2 and p < d*e*. This is valid for all spheres of radius p
whose centers are at least a distance d* from A.
Let 2, and 2z, be two points in B such that |z, — z,| = 2s < de™ =
de Y*. The midpoint of the line segment %%, is at least a distance
d* = d/2 from A. Consequently

B CoK) (oY
76— 7@ < 08 < 28K 0

for s < p < d¥e+.
Let

0 =se.
Then
|~

/@) = F@)| < Cn, K) DB

On the other hand, if |z, — «,| < de™*, we again get a Holder estimate
since | f| < 1.

4, Additional results. Theorems 3 and 4 are on removable singu-
larities. The final theorem is concerned with one-to-one quasi-conformal
mappings.
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THEOREM 3. Let f(x) satisfy the hypothesis of Theorem 1 or 2 for
all points x in the domain A except on a set T of tisolated points in
A. Then f can be defined at the points of T such that the resulting

function is continuous in A and satisfies the conclusion of Theorems
1 or 2.

Proof. To prove Theorem 3 it is sufficient to show that D(r) exists
and satisfies

D(r) < (nK)”“Sé ity -+ - du, + 0K,
for all spheres whose surface contains no points of 7. Then all the
previous statements are valid and hence f satisfies a Hélder condition
in B— T. Finally f can be defined on T such that resulting function
is continuous in A and satisfies a Holder condition throughout A.
Let S be a sphere of radius r. Let S, contain exactly one point =,
of T. Let S° be a sphere of radius ¢ with center x,.

D(s, 7) = S \PFPdV .
Sr_So
Hence
D(o,r) < -(nK)"/zg. wdty -+~ du, + I,
ST
when
I = (nK)”“S, w,du, «+ - du, + 0,r"K, . lfl <1,
S?‘
Hence

n-1
n

’

(D@, 1) = ) < K[ ~02D. ]
do
which implies

_ Iy < g — g 8D(9, 1)
(D(a, r) — Iy"T < K (o (7 )

Suppose D > I for some value of ¢, say ¢ =0, Then D > I for all
o < 0,. There we may integrate from o, to ¢, and obtain

< OmK)
% (D(o, 7) — I)"T

log K4

Let o, approach zero. A contradiction is then obtained. Therefore
D(o,r) < I. Let ¢ approach zero, and we obtain D(r) < I.
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Since there at most a finite number of points of 7T in any compact
subset of A, the desired result can be obtained.

THEOREM 4. Let f be a continuously differentiable function defined
wn the region 0 < |xz| < 1. Suppose that

[7fI" < Ky + K[|,

where K, K,, and d are constants such that K > 1, K, > 0and 0 <X > 1.
Also assume u, =o(|x|™) as € — 0 where p = pn, K) as defined in
Theorems 1 and 2. Then w can be defined at x =0 such that the
resulting function 1is continuous im 0 <|x| <1, and in any closed
subregion of |x| <1, f satisfies a uniform Holder condition with ex-
ponent [L.

Proof. If S, is any sphere in |x| <1 whose surface does not con-
tain the origin, the D(r) exists and satisfies

(16) D(r) < (nK)nnL" W, duy o+ du, + KISS 2|~V .

r

If S, does contain the origin, then let S, denote a sphere of radius
o and center x = 0.
Then as in proof of Lemma 3,

(17 Do, r) < — (nK)"“S. wdity -+ du, + B,
S

a

where B denotes the right hand side of (16).
By hypotheses

lu, " < e(le )| 2™,
where
exe))—0 as |z|—0.

Without loss of generality we may assume the ¢(|«[) is monotonically
increasing.
(D(“’T)—‘J)Z%Tfé(ﬂl(ﬁé%ﬁ[g‘1hdu2-..dn%]7%T
SU’
< —C(n, K)s(o)ol-"#_dD .
do

Now suppose D > J for ¢ = 0,. Then D > J for all ¢ < g,. Hence
__ C(n, K)e(o) dD

O-np.—l S —
(D — gy 40

for o < a,.
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Integrate from o, to ¢, where g, < 0, < 0, ,

L (o — 01 < C(n, K)e(o)(D — J) 7T .
gt

Let o, approach zero. Hence
(18) (D — BT < C(n, K)e(a)o .
As in the proof of Theorem 2, the inequality of the hypothesis implies

D_B<____g_dD + wnKl O-n—nx.
- np do n — ni

It follows that
-—dd—[o“"’L(D(o, r) — B(r)] < C(n, K, N)g=mr-mwn-t
g

Hence, for o, < o,
o;"™D(oy, r) — B) < 7" D(a, r) — B) + C(n, K, \)gn-#- |

and finally
D(g,7)— B > [D(o,,7) — B — C"mw—momg_:; ’

1

Let 0 < 0,. For fixed o, 0, may be chosen small enough such that
D(al! /r) — B — Co'"(l—}l-—)\)o-';m > 0.

For small enough ¢ this contradicts (16). Hence D(o, ) < B which im-
plies D(r) < B.

Now proceed as in the proof of Theorem 2. Let B be an arbitrary
compact subregion of || <1 and let d = distance from B to |x| = 1.
For any sphere with center in B,

dD
D(r) < &2 KS A
(r) < i e K P

This implies

_i(,’.—nMD) < Klr—nu—lg o~V = Kw, p1nl-p-n)
dr s, n — N\

Integrating from p to d,
o~"D(p) < d-"D(d) + Cdr~-+-» |
Note that D(p) is bounded by

(nK)”“S JAV + Kj -V < oo
8 8
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So D(p) < constant p™.
By Morrey’s n-dimensional lemma, f is uniformly Hélder continuous
on B with exponent p.

THEOREM 5. Let f(x) be a one-to-one quasi-conformal mapping of
x| <1 onto |f| <1 and such that £(0) =0. The f can be extended to
a one-to-one continuous mapping of |x| <1 onto |f| <1 satisfying
| f(®) — f(x)| < H|2, — x| where H=H(n,K) and p=pn, K).
0< <l

The proof of this theorem is an immediate generalization of the
proof of the 2-dimensional theorem of the Finn and Serrin paper. All
new ideas have already been introduced. Hence the proof will not be
given.

5. Weakened differentiability requirements. The previous theorems
remain true if instead of f € C' and | 4f |* < nKJ¥", f satisfies
(1) fe C in A, f=(u1,u2, cery Up),
(ii) wu, is absolutely continuous in x, for almost all values of the other

n — 1 variables 7,7 =1, -+, n,

(iii) the derivatives wu, , (which exist almost everywhere by (ii) should

be nth integrable,
(iv) |Ff[]? < nKJ*™ almost everywhere or |Vf[* < (nK)"*J + K, almost

everywhere.

To prove the above theorems it suffices to show that the following .
inequalities on the growth of the modified Dirichlet integral of f remain
valid under the weakened hypotheses

19 D(o) < (D) + K} L),
for p<t<d and K, = I”Kl w,t".
K,

(20) D( + d"w,K, ,

) . —
) {log (d/t)}""
for t < d and where

K, = o (nKyn — 175 .

We shall prove (19) in the case where |Ff |* < nKJ¥". The other state-
ments are proved in a similar manner.
Let f be approximated in the nth integral norm of its derivative

by a sequence of functions f™ e C'. Thus S [P(f — f™)|"dV and
A

sup | f — f™ | approach zero as h approaches zero. For f™, (let J™ be

A

its Jacobian), @™ is defined to be SSJ mdV,
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n=1
N

(n—1)y—= """

_ ol Jﬁ[ dD"“]"—;‘,
(n _ 1)2— dr

S TV < —1———S | [, + +oe i, T dA
ST

since | f| < 1. e approaches zero as h approaches infinity, and

D(h)(,r) — Ss lVfUL) lndV .

Hence

" 1e o ap < (Lm)wn(r + MDY +3) = D))

(n—1)
Let & approach infinity. Thus

| 1@ ap < e (r 4 MID + ) — D,
r (’n — 1) !

where
=] aav.
We know |Ff|* < nKJ*" almost everywhere. Hence
D(r) < (nK)*"*Q(r) .

Therefore

rHA nl—f wn(nK)i(—:i—l) -
[T < GE DG+ — DO

Let
Fo) =" Dioyip.
Then
Foy <[ [ @ ao 7" ]"
which implies

n

(FT < 3w 1 (D) Tdp

1

[F()[77 < C(n, K)o (r + \)F'(r)

513
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which implies

dr __ _\wvom, K)y—
(r+2) [F(r)] "=
Hence
g {1 < VT OO K - —
o F(@™=  FR™

_ATTCm,K) _ Cn, K)

—_ 1

OD(@)*T  D(r)"T

Let A approach zero and we obtain the desired inequality.

6. Improvement on Holder exponent.

LEmMMA 6. If

[7f P < nKJm,
then
[ for " S C™2|TfI,
where
_ Km-—-1y" -
1 —2)K(n — 1)’

for any such that 0 <\ < 1.

Proof.
_ n-1
J <15 (J‘—l_)[ u‘s‘,j} ;
(n— 1)z JLiz5ion ’
since
n n/
dete)| < L San)"
AN =
Because
M gy < e 4 ab for 0< A<,
(n — 1)7T

n-1

|Pf < mETH < nK] £, [0 — 1)—'7"[ 3 uz.J]T
=

gKm—DWPﬂﬂﬂ+xgwq.

=2
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Hence

po (K =1 =) oo,
[l S R T T

A simple calculation shows that there is exactly one value of X
between 0 and 1 which will minimize C(\). To find the value of ),
solve the equation

(n — 1\ — nKm — 1Pme-t 41 =0.

The Holder exponent gt of Theorem 1 and Theorem 2 is not the
largest exponent that can be obtained. In the proofs of Theorem 1 and
Theorem 2 if Lemma 6 were used, the size of ¢ would be increased.

The constant of Lemma 2 also determines the size of ;. We con-
jecture that the best constant for this lemma is 1, i.e.,

@1) g lu["dAgr”S. \u, |"dA if g udA =0 .
ST ST Sr

This is true if » = 2 for then the inequality is Wirtinger’s inequality.
If (21) is true, then ¢ could be defined by the equation

1 K(n - 1)2/”' —_ )\‘_Jnlz n/2 1-1/n-n/2
22 —_ = I: I(q — 1)t-tn-niz
(22) 7 1 -\ Wi )

where )\ is the root between 0 and 1 of the equation

(n— A" —nK(n — 1)\ +1=0.

We further conjecture that this value of p will be the ‘“best’’ that can
be obtained for given K.
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