
ON THE LINE SEGMENTS OF A CONVEX SURFACE IN E3
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l Introduction. For integral n >̂ 2 let C be a bounded open
convex subset of Euclidean w-space En, and let C be the boundary
(surface) of C. Let Bn be the closed unit ball in En, that is, the set
of points x in En with \\x\\ ^ 1, and let S(re_1} be the boundary of Bn,
that is, the set of points x in En with | |#|| = 1. Let D be the set of
directions of straight line segments lying in C", specifically, the set of
points (α — b)j\\a — 6||, where a and b are distinct points of a line segment
lying in C". Thus D is contained in S(w_1}.

V. L. Klee [2] has stated that D is an Fσ set and has raised two
questions: Is D of first category in S(n_1} ? Is D of (n — l)-dimensional
measure zero? Both of these questions are herein answered affirma-
tively for the case n = 3. The method employed unfortunately does
not generalize to n > 3. (For n — 2 the case is trivial, for then D is
countable. The case is also trivial if C is of dimension less than n,
for then the (n — 2)-dimensional measure of D cannot be greater than
the (n — 2)-dimensional measure of S{n-2) which is finite. The restric-
tion to bounded sets is only a matter of convenience, for any answers
to the questions posed are easily made to serve the unbounded case.)

In one sense though, for the case n = 3, we show somewhat more,
namely, that D is contained in the union of the ranges of a countable
family of Lipschitz functions each on Bλ to S2. By virtue of the
Lipschitz nature of these functions, they possess total differentials
(Lebesgue measure) almost everywhere [4; straight forward generaliza-
tions of Definition 1, V. 2.2, and Lemmas 1 and 2, V. 2.3, to cover the
case of a Lipschitz function on a domain contained in Eλ to 2£$] and
their ranges are compact and have finite one dimensional measure [1].
The affirmative answers to Klee's questions for this case immediately
follow from these last two properties.

2 Preliminaries* We assume henceforth that n = 3.
Let a flat side of C" be a two dimensional intersection of C" with

a plane supporting C". It is easy to check that the set of flat sides is
countable. (Check, for instance, that relative to C", the interior of each
flat side is non-vacuous and, that no two such interiors intersect.)
Thus the set of directions of line segments lying in flat sides is the
union of a countable family of great circles lying on S2 and can
certainly be represented as the union of the ranges of an appropriately
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chosen countable family of Lipschitz functions on Bx to S2.
We go on to show that the set of directions of line segments not

lying in flat sides can be similarly represented.
Let J5f be the set of closed line segments each of which is the

middle third line segment contained in a maximal line segment of C"
not lying in a flat side. Clearly j£f is disjointed, for if any two mem-
bers intersected they would be forced by the convexity of C to lie in a
flat side determined by the plane containing the two line segments.

Now choose a point a in C and let 2δ be the distance from a to
C\ Let <βΓ be the family of open right circular cylinders of radius δ
extending infinitely in two directions whose axis is a line radiating out
from a infinitely in two directions. Thus each member of 3ίΓ intersects
C" in a set open relative to C" and having two components. Let ^ f
be the set of all these components corresponding to all cylinders of

Since ^£ forms an open covering of the compact space C we can
reduce it to a finite subcovering ^£\

Now let & be the family of planes each of which intersects C and
perpendicularly intersects a coordinate axis in a point with rational
coordinates. Let & be the family of pairs of distinct parallel members
of &.

Clearly every member of ^ intersects at least one member of ^ f

and every such intersection intersects both planes of at least one pair
in &.

Since ^ f is finite and & is countable, we will have achieved our
aim when we have shown that corresponding to each member m of ^/έf

and each pair (Plf P2) of planes in g? both intersecting m there exist
two Lipschitz functions each on Bλ to S2 whose ranges together contain
the set of directions of the members of £*? each of which intersects
both m Π Pi and m Π P2. With m, Plf and P2 fixed and letting j£f' be
the set of members of ^f each intersecting both m Π Pλ and m Π P2,
we proceed to secure the required functions.

3 The Lipschitz direction functions* Let / be the set of all pairs
(x, y) such that x e X Π Pi and y e X Π P2 for some λ e jδf'. Let A
be the domain of /. Since ^ff is disjointed and since λ Π Px and X Π P2

are singletons we infer that / is a function. The key to the construc-
tion of the required functions lies in the

LEMMA. / is Lipschitz.
Momentarily leaving aside its proof, we first show how it is used to
obtain these functions.

Drawing upon the lemma, we apply a method due to McShane [3;
or 4, V. 2.4, Lemma 1] to get a Lipschitz extension / * of / on the
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closure of P1 Π m, that is, a Lipschitz function /* on the closure of
Pi Π m to P2 that agrees with / on A.

We next let h be a function that assigns to each member x of the
closure of Px Π m one of the directions of the line connecting x to/*(#),
specifically for x in the closure of Pλ (Ί m we let

Upon checking that the difference of two Lipschitz functions is Lipschitz
and that the ratio of a Lipschitz function whose values are bounded
away from the origin (in our case bounded by the distance between Px

and P2) with its norm is Lipschitz, we infer that h is Lipschitz. It is
easy to construct a Lipschitz homeomorphism g on Bx onto the closure
of ?! Π m. So finally upon defining functions k and kf on B1 to S2 to
be such that for x in Bx

k(x) = h(g(x)), k\x) = - k(x) ,

and noting that the composition of Lipschitz functions is Lipschitz, we
conclude that k and k! are Lipschitz and furthermore that their ranges
together contain the set of directions of members of jg*". These are
the functions we seek.

We now turn our attention to the lemma and close our discussion
with its proof.

4* Proof of the Lemma. We show that / is Lipschitz by show-
ing that it can be represented as the composition of Lipschitz functions.
To do this let us project m perpendicularly onto a plane perpendicular
to the axis of the cylinder in 3Γ associated with m. Let m' be the
projected set and let p be the projecting function. Thus p is on m
onto m'. From the convexity of C and the nature of the cylinder
determining m we readily check that p is a Lipschitz homeomorphism
on m onto m' whose inverse is also Lipschitz. For xf in p(A) let
/'(&') = p(f(p-\x'))). For x in A clearly f(x) = p-\f'(v(x))). We have
only to show that / ' is Lipschitz.

Let λ2 and λ2 be two members of jSf'. Let xλ e X1 Γϊ P± and
x2 e λ2 Π Pi. Let lx and l2 be maximal line segments contained in C
containing respectively λx and λ2. Let Z/ and l2

r be the respective per-
pendicular projections of lλ and l2 onto the plane of m'. Clearly lλ and
l2 fail to intersect or intersect only in an end point of both lx and l2.
Consequently the same is true of l-l any l2. If lλ' and l2 are parallel
or, when extended, intersect on the side of P2 opposite from P19 then
clearly
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If, on the other hand, lί and i2', when extended, intersect in a point
6, on the same side of P2 that P1 lies on, then either an end point of
£/ lies at b or between b and P19 or an end point of l2' lies at b or
between b and Pλ. We may assume the first of these two main disjunc-
tions without loss of generality. Now since the line segment connect-
ing p{%^) with p(/(#i)) is contained in the middle third segment of i/,
we have

- b\\.

and hence

( 2 ) MAx,)) - b\\ = \\v{f(χd) - 3K*i)ll + Il2**i) - &II ^ 2 1 1 ^ 0 - b\\.

As Px and P2 are parallel, we may use a property of similar triangles
to get

)) - b\\
m

\\p(χd - P(x>

Combining (2) and (3) we get

(4) I \vifixd)

Since equations (1) and (4) show that for any x±' and x2' in the
domain of / '

11/ v x i ) J \X2 ) 11 ^ ^ 11 "i &2 11 9

and hence that / ' is Lipschitz, our proof is complete.

REFERENCES

1. H. Federer, Surface Area II, Trans. Amer. Math. Soc, 55 (1944), 438-449.
2. V. L. Klee, Research problem No. 5, Bull. Amer. Math. Soc, 6 3 (1957), p. 419.
3. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc, 40 (1934),
836-842.
4. T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Berlin,
(1955), pp. 322-325 and pp. 334-342.




