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INVARIANT SUBSPACES OF POLYNOMIALLY
COMPACT OPERATORS ON BANACH SPACE

ALLEN R. BERNSTEIN

This paper contains a proof of the following:
MAIN THEOREM. Let T be a bounded linear operator on an

infinite-dimensional Banach space B over the complex numbers.
Suppose there exists a polynomial p(λ) Φ 0 with complex coef-
ficients such that p(T) is compact (completely continuous).
Then T leaves invariant at least one closed linear subspace
of B other than {0} or B.

Since in most of the common nonreflexive Banach spaces (e.g. lu

C[0,1], AP, etc.) weakly compact operators have compact squares (cf.
[7], pp. 511 and 580), one can conclude in particular from the above
theorem that these operators have proper invariant subspaces.

The proof of the main theorem is carried out within the frame-
work of A. Robinson's Theory of Nonstandard Analysis and follows
lines similar to the proof presented in [3] for the special case where
B is a Hubert space, which settled a question raised by P. Halmos
and K. Smith [9], That proof made strong use of the fact that in a
separable Hubert space it is possible to choose a countable orthonormal
basis. In a general separable Banach space, of course, one does not
even know whether there is a basis, much less an "orthonormal" basis.
However this difficulty may be overcome by the introduction of metric
projections to take the place of projections in Hubert space, as was
done by Aronszajn and Smith in their proof of the existence of in-
variant subspaces for compact operators [1], and by the introduction
of a semi-basis to take the place of the orthonormal basis in Hubert
space.

The proof in [3] was carried out within the framework of a non-
standard model of the real numbers. This was possible because the
elements of a separable Hubert space may be represented as sequences
of complex numbers which in turn may be defined as ordered pairs of
real numbers. However, in the case of a general Banach space no
such convenient representation is apparent so that a more general
version of nonstandard analysis is necessary. The remainder of this
section is an introduction to such a version drawn essentially from the
work of A. Robinson ([11]-[14]).

The class T of types is defined inductively as follows, (i) 0 is a
type; (ii) if τu ---,τn are types, n^l, then (τ19 , rΛ) is a type; (iii)
T is the smallest class satisfying (i) and (ii).

A higher order structure is defined to be a generalized sequence
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{Aτ}τer of sets (i.e., a mapping which assigns to each type τ a set Aτ)
such that Ao is nonempty and if τ Φ 0, τ = (τ19 , τ»), then AΓ is a set
of subsets of ATl x AT2X x ALΓ%. If n = 1 then the preceding Carte-
sian product is understood to be just the set ATl and ^Lr is then a set
of subsets of ATl. If α G i 0 then a is called an individual of Λf and
if Q e Aτ, τ Φ 0, then Q is called a relation of ilί. If for each τ Φ 0,
τ = (τu , τΛ), AΓ is the set of αίi subsets of ATl x AΓ2 x x ATn,
then Λf is called the complete structure of Ao.

Now let B be the set of elements of a Banach space over the set
of complex numbers C. Let AQ = B U C and let M = {i4.r}r€* be the
complete structure of Ao. Thus among the relations of M are 2? and C
together with all their subsets, relations, relations of relations, etc.
In particular the set of real numbers R and the set of positive integers
Z, being subsets of C, will be relations of M. Furthermore we may
single out the relations under which B is a Banach space over the
complex numbers C. Thus for example, we can find in M the relation
S(x, y, z) which holds just in case x,y, zeC and x — y = z and the
relation A(x, y, z) which holds just in case x, y, ze B and x + y = z.
In this manner all the algebraic operations over B and C are relations
of M. Similarly we can find in M the relation N(x, y) which holds
just in case xeB, yeR and the norm of x, \\x\\, is equal to y. A
function of n variables in this system is a relation of n + 1 variables
in which the first n coordinates determine the (n + l)st coordinate
uniquely. Thus, for example, a sequence of elements of B, {xn}, which
is a function from Z into B, is a two-placed relation S(n, y) which
holds just in case y = xn.

Next we choose a suitable higher-order predicate language L which
includes distinct constant symbols for each individual and relation of
ikf. L contains variables ranging over each type and quantification is
permitted over each variable. A suitable notion of when a sentence
of L is true in a higher order structure M (under a suitable corre-
spondence between the constant symbols of L and the individuals and
relations of M) may then be defined (see [12] or [2]). It then follows
from a completeness theorem of Henkin ([10]) that there exists a non-
standard higher order structure *M — {Bτ}τeιϋ, where Bo properly in-
cludes AQ, such that under a suitable correspondence between the
constant symbols of L and the elements of the J3/s, any sentence of
L which is true in M is true also in *M. Furthermore any constant
symbol of L which denotes some individual a e Ao in M will again
denote a in *M, now regarded as an element of Bo. If a sentence of
L is known to be true in M, we say its truth in *M is established
by transfer from M to *M. In *ikf the variables of L range only
over the elements of the J3/s so that, for example, a sentence of L
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which asserts that a certain property is true for all sets of individuals
will be true in *M if it is true for each element of 2?(0)% Any element
of one of the Bτ's, τ Φ 0, is called an interior (or admissible) relation.

Now let Q be a relation of Jlί, QeA r . Q is denoted by some
constant symbol β of L and β must denote in *M some element of Bτ

which we write as *(?. *Q will have the same properties as Q to the
extent to which these can be expressed as sentences of L. In parti-
cular B, C, R, and Z will extend in *M to the sets *B, *C, *i2, *Z which
properly include B, C, R, and Z respectively. Thus the nonstandard
Banach space *j? will contain in addition to all standard points of By

other nonstandard points which are not elements of B. Similarly *Z
will contain elements which do not belong to Z and these are called
infinite integers.

Any function / which is a relation of M corresponds to a relation
*/ of *M which again must be a function since this fact can be ex-
pressed as a sentence of L, If, in addition, / is a function from
individuals to individuals, then */ will be an extension of /. Thus
for example a sequence {xn} of elements of B (or C) which is a func-
tion / from Z into B (or C), extends to a "sequence" *{xn} which is
just the function */ defined now for all n e *Z and taking values in
*B (or *C). If me *Z, then xm will designate the element of *B (or
*C) corresponding to m in *{α;n}, i.e., xm = *f(m). Since *f(m) = f(m)
for all me Z, this designation is unambiguous.

If Σ is the set of sequences in M, then we refer to any element
of Σ as an S-sequence. Its extension to *Λf, *Σ, will contain all
standard sequences, that is all extensions *{xn} of S-sequences {xn} in
Σ. In addition, *Σ will contain other elements which must be func-
tions from *Z into M o since this fact can be expressed as a sentence
of L. Any element {tn} of *Σ we call a quasi-standard sequence, or
briefly a Q-sequence.

For the algebraic operations on B and C we use the same symbol
for their extensions to *M. Thus for example the extension of the
relation of addition, + , for complex numbers is in *M a relation over
elements of *C and will again be denoted by " + ". Likewise the norm
(I . (I which in M is a function from B into R extends to a function
from *B into *iϋ which is again denoted by " | | | |".

Let c be an element of *C. If | c | < r for all r e R then c is
called infinitesimal. If | c | < s for some seR then c is called finite.
In this case there is a unique complex number °ceC such that c — °c
is infinitesimal. We write ct ~ c2 if ^ - e2 is infinitesimal and it is
easily verified that this is an equivalence relation over *C. The proof
of the next theorem may be found in [11] or [13].

THEOREM 1.1. The S-sequence {sn} of standard real numbers
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converges to the standard real number s, lim sn = s, if and only if
n-*oo

\s — sω\ is infinitesimal for all infinite positive integers ω.

Let x be an element of *B. If x e B we say x is standard. If
|| x || < r for some r e R, x is called norm-finite. If || x || < r for all
r G iϋ, then α; is called infinitesimal. We write a? ~ y for two points
x,y e*B such that x — 7/ is infinitesimal and this is an equivalence
relation over *B. It is easy to verify that if x1 ~ yt and x2 ~ y2 then
xx + %2 ~ Vi + 1/2 a n ( i that cxx ~ cy1 providing c is a finite element of
*C. If there is a standard y e*B (i.e. 2/ e J?) such that a? ~ 2/ then a?
is called near-standard. In this case there is a unique such y and
we write 2/ = °x. *J3 will in general contain points which are norm-
finite but not near-standard.

THEOREM 1.2. Let xe*B be not near-standard. Then there is
a standard ε > 0 such that \\ x — b \\ > ε for all standard b in *J3.

Proof. Suppose that the conclusion of the theorem is false. For
each ke Z, we may therefore pick an element bk in B such that
II x - bk II < l/2k. Then if m, n > k,

£ £ £ ££
Thus {bn} is a Cauchy sequence and converges to some point b in B.
Now choose any standard ε > 0, and let neZ be greater than 1/ε and
such that II b - b \\ < ε/2 Thensuch that II b - bn \\ < ε/2. Then

This shows that 11 x — b \ \ is less than any standard ε > 0 and must
therefore be infinitesimal. Since 6 is standard, x is near-standard and
this contradiction proves the theorem.

THEOREM 1.3. Let S be a compact set of points of B. Then
every point of *S is near-standard.

Proof. Suppose there is a point x e *S which is not near-standard.
Using the previous theorem, let ε be a standard positive number such
that II x — 6II > ε for all standard points b. Since S is compact it
contains standard points bl9 b2, •••,&», ne Z, such that it is true in M
that "for every point ξ in S at least one of the numbers \\ζ — bλ\\y

II £ ~ Ml, ' •> II ί — bn II is smaller than ε". (We are excluding the
trivial case where S is empty.) The statement in quotes may be ex-
pressed as a sentence of L and therefore is true also in *M. Specifying



INVARIANT SUBSPACES OF POLYNOMIALLY COMPACT OPERATORS 449

ζ to x, we conclude that || x — 641| < ε for some i, I <^ i <. n. This
contradicts our assumption that ||a? — δ | | > ε for all standard points b
and completes the proof.

Let V be a relation of M of type (r) so that V is a set con-
sisting of elements of type τ. If the elements of V are described
by some common mathematical name then this name may be used
again to refer to the elements of * F . For example, if V is the set
of bounded operators on U, the set of projections on B, or the set of
linear subspaces of By then the elements of * V will be referred to as
"bounded operators on *2?", "projections on *J3", or "linear subspaces
of *JB". We may also use the expressions "Q-operator", "Q-projection",
etc.

Let W be the relation of M which is the set of all the bounded
operators on B. There is a real-valued norm function, || ||, defined
on elements T e W by

= sup-

As we pass to *ikf, this function extends to a function from *ΫF (the
set of bounded operators on *B) to *R which will again be denoted by
|| || and which has the property that || Tx || ^\\T\\\\x \\ for all Te * W
and all xe *J3. For Te W, we denote its extension to an operator on
* £ by *T as usual.

THEOREM 1.4. Let T be a bounded operator on B. Then *T
transforms every norm-finite point of *B into a norm-finite point.

Proof. If a? is a norm-finite point of *£>, then

since | | * Γ | | = | | Γ | | . Thus | |*Γa?|| is less than the finite element of
*R, || Γ | | || a: ||, and hence *Tx is norm-finite.

A bounded linear operator T on B is called compact (or completely
continuous) if it transforms every bounded set of points of B into a
conditionally compact set, i.e., a set whose closure is compact. Finally
we have the following fundamental characterization of compact oper-
ators given by Robinson.

THEOREM 1.5. Let T be a compact operator on B. Then *Tx
is near-standard for all norm-finite x in *J5.

Proof. If x is norm-finite then \\x\\ < r for some standard reR.
The set D = {ξ \ \ \ ξ \ | < r} in B is bounded and is therefore mapped by
T on a set whose closure, A, is compact. If the corresponding sets
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in *B are *D and *A respectively then *D contains x (since x satisfies
the defining condition of D) and so *A contains *Tx. But *A contains
only near-standard points, by 1.3, so *Tx is near-standard, proving 1.5.

2* Sεmi-bases in Banach space* Let X be a set of elements of
the infinite-dimensional complex Banach space B. The smallest closed
linear subspace S of B which contains all the elements of X is called
the subspace of B generated by X. Alternately we say X spans S
and write sp X = S. If X is a finite set, then sp X is just the set of
linear combinations of elements of X. Similarly, for a sequence {x^
of elements of B, we designate the smallest closed linear subspace
containing all the x^ by sp {x^.

The following results through (2.7) may be found in [l].
Let x be an arbitrary nonzero element of J3. The closed subspace

of B, sp{#, Tx, T*x,'"} Φ {0}, is clearly an invariant subspace for T.
Therefore we shall limit ourselves to the case where

(2.1) B = s p K Tx, T% . . . } .

In particular, (2,1) implies immediately that B is separable. Further-
more, since we are assuming B is infinite-dimensional it must be the
case that all the elements Tnx, n = 0, 1, 2, - , are unequal to zero
and are linearly independent.

A Banach space norm, || ||, is called strictly convex if for all x, y
in B, x Φ y and ||a;|| = | | 2 / | | ^ 0 imply that 11 x + y \ j is strictly less
than |j x || -f || y ||. By a theorem of Clarkson [4], one may define in
any separable Banach space an equivalent strictly convex norm. Since
the property of being a proper invariant subspace does not change upon
passage to an equivalent norm, we shall suppose hereafter that the
norm in B is strictly convex.

Consider any arbitrary finite-dimensional subspace S a B. For
each x e B we may consider the minimal distance p(x, S) from x to S.
Since S is finite-dimensional, the shortest distance is attained and by
the strict convexity of the norm it can be immediately shown that
there exists a unique point Px e S which realizes this minimal distance,
i.e.,

|| x - Px || = p(x, S) = min || x — y || .
yes

Px represents a bounded operation on B which in general is nonlinear.
P is called the metric projection on S. We list here a few properties
of P which are immediate consequences of its definition,

(2.2) P 2 - P

(2.3) P(Xx) = \ { P x ) f o r e v e r y λ e C , x e B .
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(2.4) P(x + y) = x + Py for every xe S, yeB.

(2.5) \\x - Px\\ ^ | | a? | | , | |Pa? | | ^ 2 | | a ? | | for every x e B .

(2.6) \\x - Px\\^\\x - v\\ + \\y - Py\\ for every x,yeB.

If S ' c S and P' is the metric projection on S', then

\\x - P x \ \ ^ \ \ x ~ P ' x || f o r e v e r y x e B .

DEFINITION. A sequence {ej, i = 1, 2, 3, of elements of B is
a semi-basis of β if

(2.8) 11̂ 11 = 1; i = 1 , 2 , 3 , . . .

(2.9) sp{e<} = 5 .

For each w > 1, Pn^en = 0 where P n - 1 is the metric

projection of i? onto sp {el9 e2, , en^}.

For a given semi-basis {ej of J3, we denote by i?w the subspace
sp {e19 e2, , ew} and by P n the metric projection of B onto !?„. Then

For any integer ne Z and any complex number aeC, if

z — x + α:βw+1 where & e i?%, then z — PW2 = aen+1.

Proof. By (2.4) and (2.3), Pnz = x + aPnen+1. But P,βw + 1 - 0 by
(2.10), so that Pnz = a?. Therefore ^ — Pnz = a? + αe% + 1 — a? — αeΛ + 1,
which establishes (2.11).

As in the preceding section we may now suppose that the elements
of B are individuals within a complete structure M which includes
also the field of complex numbers C, and within it, the field of real
numbers R and the set of positive integers Z, where CZDRZDZ. AS

we pass to an enlargement *M of M, B is extended to a set *B, and
C, E, and Z are extended to *C, *R, and *Z respectively, where *Cz>

Now let {βj be a semi-basis of B. As we pass to *Λf, {βj is ex-
tended to a sequence *{β<} of elements of *!?, where i now ranges
over *Z. If ft) is an infinite positive integer, then Bω will designate
the subspace of *B spanned by {eu e2, •• ,βω}. Bω consists of all ele-
ments of *B which can be expressed in the form χ^= 1 a^ with a{ e *C,
i = 1,2, « , ω . However this summation sign cannot now be regarded
as representing the iteration of the addition operation in the ordinary
manner, but must be regarded as defined by transfer from M. For
this purpose, let Sm(n, x) be a relation of M which is a function from
{ieZ\0 < i ^ m} into C, and let V be the set of all such relations
as m varies over Z. That is, V is the set of all finite sequences of
elements of C. Now let R(y> z) be the relation in M which holds just
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in case yeV, say y = Sm(n, x), and z = ΣΓ=i/3iβ;, where & is the
unique element of C such that Sm(ί, &) holds. Then the statement
that z = ΣϊU ô e* is equivalent to the statement that there is an ele-
ment y 6 * V such that *R(y, z) holds, and y = SJn, x) is a function
from W = {i e *Z | 0 < i <; ω} into *C such that for each i e W, Sω(i, «<)
holds.

The subspace J3ω of *J5 is "finite-dimensional" in the sense of non-
standard analysis. That is, Bω satisfies any sentence of L which is
true for all finite-dimensional subspaces of B. In particular we may
define a metric projection Pω from the whole space *2? onto Bω and
which satisfies (2.3)-(2.7) and (2.11), where of course we must replace
C, B, and Z by *C, *J3, and *Z. We then have the following two
theorems which are analogous to similar theorems concerning non-
standard Hubert space.

THEOREM 2.12. If x is a standard point of ^B (i.e., xeB), then
|| x — Pωcc|| is infinitesimal for all infinite integers a).

Proof. Let x e B. Then it follows from (2.9) that for any standard
ε > 0, there exists an ne Z and y e Bn such that || x — y \\ < ε. Since
Pn is the nearest point operator onto Bn, \\x — y\\ ̂  \\x — Pnx ||, and
therefore || x — Pnx || < ε. Now if m > n, then Bn c Bm and we may
use (2.7) to obtain || x — Pmx || < ε. Thus the ̂ -sequence {|| x — Pnx ||}
converges to 0, so by Theorem 1.1, \\x — Pωx\\ is infinitesimal for all
infinite integers α>.

THEOREM 2.13. If x is α near-standard element of *ί?, then x is
norm-finite and \\ x — Pωx \\ is infinitesimal for all infinite integers ω.

Proof. Let xe*B and suppose || x — °x \\ is infinitesimal for some
°x e B. Then by the triangle inequality,

which shows that x is norm-finite. Furthermore, it follows from (2.6)
that for any infinite integer ω,

II r — P r l l < M r — o ^ l ! 4 - II ° r — P ° r II
II ^ r ω Λ 11 = 1 1 ^ • ^ l i ' l i ^ •* ω ^ ii

Now II x — °x II is infinitesimal by assumption and \\°x — Pω°x \\ is in-
finitesimal by the previous theorem, thus \\x — Pωx\\ is infinitesimal,
proving (2.13).

It is interesting to note that (2.13) does not follow directly from
(2.12) as it would if Pω were a linear operator. Instead, we had to
use also the property (2.6) which Pω possesses since for ξ e B, PJ is
the point of Bω which is nearest to ξ.
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3* Infinite matrices* We start out by working in the standard
model M. Let [ajk] be an infinite matrix where j and k range over
Z and the entries ajk are in the field of complex numbers C. [ajk] is
called column-finite if for each k there is an n such that ajk = 0 for
all j > n.

Let [ajk] and [bjk] be column-finite matrices with entries in C. We
may form the matrix sum [djk] = [ajk] + [δiΛ] in the usual way where
the entries djk are given by the formula,

(3.1) djk = ajk + 6 iA;.

It is clear that [djk] must then also be column-finite. Similarly, we
may form the matrix product [cjk] = [ajk] [bjk] by means of the formula,

(3.2) cjk = £ ajfiik

Since for a given ά, δί/b = 0 except possibly for finitely many i, the
sum in 3.2 reduces to a finite sum and therefore the product matrix
is well-defined. It can easily be verified that if [ajk\ and [bjk] are
column-finite then [cjk] is likewise column-finite.

In what follows the infinite summation sign, Xf=1 ζi9 where ζt e B,
will be used only when all but a finite number of the f { are equal to
zero, in which case it denotes the sum of the nonzero terms.

Now let us choose an arbitrary but definite semi-basis {β̂ } of B.
(We shall see in §5 that there do exist semi-bases of B.) We shall
keep this choice fixed through the remainder of the section.

Let T be a bounded linear operator on B. Then we say the matrix
[ajk] represents T relative to {ej if

(3.3) [ajk] is column-finite and

CO

/o Λ\ f o r e a c h &> Tek = Σ α y * β i (where by (3.3) this reduces

to a finite sum).

The next theorem follows directly from the above definition and the
Definitions (3.1) and (3.2).

THEOREM 3.5. Let T and U be bounded linear operators on B
and suppose that [ajk] represents T and [bjk] represents U, both re-
lative to {e{}. Then (i) [ajk] + [bjk] represents T + U relative to {βj,
and (ii) [ajk] [bjk] represents T U relative to {βj.

If [ajk] is a column-finite matrix, we denote the matrix [ajk]
n (the

product of [ajk] taken n times) by [a$]. It follows from repeated use
of (3.5) that if [ajk] represents T relative to {βj, then [α$] represents
Tn relative to {*?;}.
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A matrix [ajk] is called almost superdiagonal if ajk = 0 for j >
k + 1. An almost superdiagonal matrix is thus column-finite.

THEOREM 3.6. Let [ajk] be an almost superdiagonal matrix.
Then for any positive integers s, m, n

(3.7) aϊlmtn = 0 if s<m.

(3.8) a{^m>n = Π 1 aΛ+i+ltn+i.
i = 0

Proof of 3.7. (by induction on s.) If s = 1, then for all n, a{^+m>n —
a>n+m,n = 0 if 1 < m since [ajk] is almost superdiagonal.

Now let s > 1 and assume that for any n, a{

n

s+^\n = 0 whenever
8 — 1 < m. Fixing n, the definition of matrix multiplication gives for
any m

(3.9) a{

n

slm>n = X αi+"*!ίαίtn .

Suppose s < m. Then s — 1 < m — 1 and by the induction hypothesis,
a>H+m,i = 0 for i ^ w + 1. But for i > n + 1, α i>n = 0 since [ajk] is
almost superdiagonal; hence all the terms under the summation sign
in (3.9) must be equal to 0, so a{

n

slm>n — 0, establishing (3.7).

Proof of 3.8. (by induction on m.) For the case m = 1,

n+, , 11 ,

Now let m > 1 and assume that for all n,

Fixing' w, we have by the definition of matrix multiplication,

oo

π{m) — V n(m~~l) n
^n+m.n — /LA Uyn+m,iU/i,n

i=l

For i ^n, a ^ * ^ 0 by (3.7), and for i > n + 1, α<fΛ = 0 since [αiA] is
almost superdiagonal. Therefore only the (n + l) s t term in the sum-
mation is nonzero, and using this together with the induction hypothesis,

a im) /γ(w—1) n — n(m—1) π

n+m,n — ^n+m^+l^n+ltn — ^n+l+m—l,n+lLϋn+l,n

(m-2 \

11 #Λ+l+*+l,Λ+l+t ) Un+Un

( m—1 \ m—1
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This establishes (3.8), proving (3.6).
We recall here that the spectrum of a bounded linear operator

T,σ(T), is defined to be the set of complex numbers λ with the
property that there does not exist a bounded linear operator on B
which is the inverse of (λJ — Γ), where I is the identity operator on
B. It is a standard fact (cf. [7], p. 567) that σ(T) is a nonempty
compact set and sup | σ(T) \ — lim%_iOO || Tn \\ίln. A bounded linear oper-
ator T is called quasi-nilpotent if σ(T) — {0} and this will be the case
if and only if l i m % _ | | Tn\\1/n = 0. We shall see in § 5 that the only
difficult case in the proof of the main theorem arises when T is quasi-
nilpotent.

An infinite matrix [ajk] may be regarded as a function / from
Z x Z into C and as such is represented by a relation of M. As we
pass to *M, f becomes extended to */ which is a function from *Z x *Z
into *C. We may then regard */ as an infinite matrix which we
denote by *[α i&], where now j and k range over *Z and the entries
ajk are elements of * C For any j,ke*Z we designate the (j, k)th

coordinate of *[αiA.], *f(j, k)> again by ajk. Since *f(j, k) = f(j, k) for
j , ke Z, this designation is unambiguous.

If {Xi} is a Q-sequence of elements of *J3 with the property that
there is an n e *Z such that α?4 — 0 for all i > n, then we use the
infinite summation sign, ]Γ<Γ=i χif to designate ]>>=1 xim The latter is
well defined in the manner described in §2.

Now if T is a bounded linear operator on B which is represented
by [ajk] relative to {ej, then *Γ is represented by *[αjΊb] relative to
*{βi}. That is, for any k e *Z, (i) there is a n ^ e *Z such that ajk — 0
for all j > n and (ii) *Tek = Σ ? = i α i Λ For any finite integer n, we
may consider the Q-operator (*T)n. (*T)% is represented by the matrix
*Wjk] whose coefficients afϋ satisfy the relations (3.7) and (3.8) for
infinite as well as finite integers by transfer from M. Similarly if v
is an infinite integer then we may consider the Q-operator (*T)V.
Here, however, (*Tr)v cannot strictly be regarded as the iteration of
the product operation but must be regarded as defined by transfer
from M in a manner similar to the way the sum of v terms was de-
fined in §2. Then || (*Γ) y | | 1 / v, the positive vth root of | | (*T) V || may
be similarly defined. It then follows from (1.1) that T is quasi-nilpotent
if and only if || (*T)U\\1IU is infinitesimal for all infinite y. (*T)y may
be represented by a matrix [α$], where j and k range over *Z and
the coefficients a$ again satisfy (3.7) and (3.8) for all j , k e *Z by
transfer from M.

THEOREM 3.10. Let T be a quasi-nilpotent bounded linear oper-
ator on B which is represented by an almost superdiagonal matrix
[ajk] relative to {βj. Then there exists an infinite integer ω such
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that aω+Uω is infinitesimal.

Proof. Let v be an arbitrary but definite infinite positive integer.
Then since T is quasi-nilpotent, || (*T)V ||1/p is infinitesimal. Next, let
μ be another infinite positive integer. The S-sequence {βj in B extends
to the standard sequence *{ei} in *B whose μth element is βμ. Trans-
ferring (2.8) to *M, || β< || = 1 for all i in *Z, in particular | | e μ | | = 1.
Then

Now since [a{$] represents (*τy relative to *{«<}, it follows from
3.7 that

Then denoting the metric projection of *B onto s p ^ , •••, βμ+b-i} by
Pμ+^i as usual, it follows from (2.11) t h a t

( 1 ) βμ, JΓμ-j-^—i^ 1 ) Θμ, : = aμίJrV>μβμJ-\-v

Hence using this together with (2.5),

We now use (3.8) to obtain

(3.13) I α;
ΐ = 0

— Π I α

Now suppose that for no i, 0 ^ i < v, is it the case that α μ + i + 1 > μ + i is
is infinitesimal. Then

minimum | α μ + ί + 1 > μ + ί | > δ > 0

for some standard d. Then by (3.13),

o <\ I a μ + 1 / t μ j i .

But then using (3.12),

δ = (δψv < \a^φ\
liv ^ || (*TY \\liι>.

But || (*Γ)V | |1 / V is infinitesimal, so it cannot be greater than the stand-
ard positive number δ. This contraction shows that for some k, 0 ^
k < v, αμ+Jfe+1,μ+Jfe is infinitesimal. Letting ω — μ + k, we obtain the
theorem.

4* Subspaces in nonstandard Banach space* Let {ê } be a semi-
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basis for B and let ω be an infinite integer. Defining Bω and P ω as
before, let E be an (internal) linear subspace of Bω. Define °E, a
subset of B, by: x e °E if and only if x e B and || x - x'\\ is infinite-
simal for some xr e E. E is "finite-dimensional" in the sence of non-
standard analysis because it is a subspace of the "finite-dimensional"
space j?ω, so there is a metric projection PE of *B onto E. Then
since PE is the nearest point operator onto E, \\ x — x' \\ ̂  || x — PEx \\
for all x in B and xr e E, and it follows that for x in B, x e °E if and
only if \\x — PEx\\ is infinitesimal.

The next three theorems can be proved in the same way as in the
Hubert space case ([3]).

THEOREM 4.1. Given E as above, °E is a closed linear subspace
of B.

Proof. Let x,ye°E and λ e C . There exist elements x'f yr in E
such that \\x — x'\\ and || y — y'\\ are infinitesimal. Then x' + y' eE
and

| | (x + y)- (x' + y') \\ S II x - xr II + || y - yf \\

so that the left hand side of this inequality is also infinitesimal. Hence
x + y belongs to °E. Also, \x' e E and

|| λx - λx' | | = | λ | || a? - x'\\

is infinitesimal, so Xx e °E. This shows that °E is linear in the alge-
braic sense.

Now let xn —> x where the xn are defined for standard n e Z and
belong to °E. In order to prove that °E is closed we have to show
that x belongs to °E. By 2.6, for each neZ,

\\ PEx-x\\£\\x- xn | | + | | x% - PExn | | .

For a given standard ε > 0, choose neZ such that || x — xn \\ < ε/2.
Since for each neZ, xne°E and consequently || xn — PExn|| is infinite-
simal, it follows that || PEx — x \\ ^ ε. Since ε was an arbitrary standard
positive number, || PEx — x \\ is infinitesimal, hence cc 6 °£Γ and the proof
is complete.

Let T be a bounded linear operator on J5 and let ω be an infinite
integer. We define the operator Tω on Bω to be the restriction of
PJTPω to Bω. Then | | Γ ω | | ^ || Pω | | 2 1 | * Γ | | ^ 4 | | * Γ | | = 4 | | Γ | | so that
Tω has finite norm.

THEOREM 4.2. Let E be an internal linear subspace of Bω which
is invariant for Tω, i.e., TωE^E. Then °E is invariant for T,
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Proof. Choose any x e °E. Then PEx ~ x and since * T has finite
norm, *TPEx ~ *Tx. Since *Tx is standard, *TPEx is near-standard
and we may apply (2.13) to conclude that Pω*TPEx ~ *TPEx. Putting
the last two relations together, TJPEx = Pω*TPEx ~ *Tx = Tx where
TωPEx is in E since E is invariant for Tω. Tx is thus infinitely close
to an element of E, so Tx e °E. This shows that °E is invariant for
T which proves the theorem.

The number of dimensions of Bω as defined within the language L
is ω, d(Bω) — ω. In this sense Bω is "finite-dimensional". Similarly,
with every (internal) linear subspace E of Bω there is associated an
integer d(E)e*Z (or d(E) = 0) which may be finite or infinite, and
which has the properties of a dimension to the extent to which these
can be expressed as sentences of L.

THEOREM 4.3. Let E, Eλ be linear subspaces of Bω such that
EaE1 and d(Eλ) = d(E) -f 1. Then °EgΞ°E1 and any two points of
°E1 are linearly dependent modulo °E.

Proof. Since EczEu it is trivial that °E^ °£r

1. Now let x,ye °E1.
There exist x\ y' in Et such that x ~ x' and y ~ y''. Since the dimen-
sion of Ex exceeds that of E only by 1 there is a representation

(3.4) xf = Xy' + z or vice versa, where λ e * C and ze E.

If λ is finite, then it possesses a standard part °λ and Xy' is in-
finitely close to the standard point °Xy. Therefore z = x' — Xy'\ being
the difference of two near-standard points must itself possess a stand-
ard part °z, °z ~ z. Now xr ~ x, Xy' ~ °Xy, and z ~ °z, so substituting
this in (3.4) we obtain x ~ °Xy + °z where °ze °E since ze E. But
two standard numbers cannot be infinitely close unless they are equal,
so x = °Xy + °z and therefore x and y are linearly dependent modulo °E.

If X is infinite then we may rewrite (3.4) as, y' — (1/X)x' + ( — 1/X)z.
Now 1/λ is infinitesimal, α-fortiori finite, and ( — l/X)zeE so we have
precisely the same case as was considered in the previous paragraph
with y and x interchanged. Therefore we again conclude that y and
x are linearly dependent modulo °£r, which completes the proof of the
theorem.

5* Proof of the main theorem* We shall first show that the
proof of the main theorem reduces to the case where T is quasi-
nilpotent, that is, we shall show that the following theorem implies
the main theorem.

THEOREM 5.1. Let T be a quasi-nilpotent bounded linear opera-
tor on B. Suppose there exists a polynomial p(X) Φ 0 with complex
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coefficients such that p(T) is compact. Then T leaves invariant at
least one closed linear subspace of B other than {0} or B.

Proof that (5.1) implies the main theorem. Suppose that (5.1) is
true. Let T be a bounded linear operator satisfying the hypothesis
of the main theorem, that is, suppose p(λ) Φ 0 is a complex polynomial
such that p(T) is compact. We wish to show that T has a proper
(i.e. ^{0}, φB) invariant (closed, linear) subspace.

We may restrict our attention to the case where o(T) is connected,
for suppose σ(T) is disconnected. Then σ = σt U o2 where σί and σ2

are disjoint nonempty sets, both open and closed in the relative topology
otσ(T). In other words σt and σ2 are nonempty disjoint spectral sets
in the sense of [6] and we may find proper subspaces of B which
actually reduce T; in particular then, T has a proper invariant sub-
space. Therefore we shall suppose that σ(T) is connected.

Since o(T) is connected, p(σ(T)) must again be connected since
3>(λ) is continuous on σ{T). By the spectral mapping theorem (cf. [15],
p. 263), p{σ(T)) = σ(p(T)), thus σ(p(T)) is connected. Now p(T) is
compact, so σ(p(T)) is at most denumerable and has no point of ac-
cumulation except possibly the point 0. Also since B is infinite-dimen-
sional, θ G φ ( Γ ) ) (cf. [5], p. 319). We wish to show that 0 is the
only point in σ{p{T)). Suppose that σ(p(T)) contains a point λ0 Φ 0.
Then since λ0 is not a point of accumulation of σ(p(T)), there is an
e > 0 such that the sphere {λ | | λ — λ01 ^ ε} contains no other points
of σ(p(T)). Then if we let

(5.2) ax = σ(p(T)) Π {λ | | λ - λ01 < ε}

(5.3) σ2 = σ(p(T)) Π {λ | | λ - λ01< ε},

we obtain σ(p(T)) = σx (J <?2 where σx and σ2 are nonempty disjoint sets,
both open and closed in the relative topology of σ{p(T)). This means
that σ(p(T)) is disconnected and this contradiction shows that 0 must
be the only point of σ(p(T)), i.e.,

(5.4) σ(p(T)) = p(σ(T)) = {0}.

Since p(λ) can have only finitely many zeros, it follows from (5.4)
that σ(T) must contain only finitely many points. Then since σ{T)
is connected, this means that o(T) contains only one point, say λ0.

Now let V = T - λol. Since σ(T) = {λ0}, σ(V) = {0}, so V is a
quasi-nilpotent bounded linear operator. Letting q(X) = p(X + λ0), we
have that q(V) = p(V + λo7) = p(T) which is compact. Furthermore
since p(X) Φ 0, we must have q(X) Φ 0. Then since we are assuming
(5.1) to be true, there must be a proper closed linear subspace E of
B such that VE g E. But then TE = (V + \I)E £ E, so that E is



460 ALLEN R. BERNSTEIN

a proper invariant subspace also for T. This completes the proof of
the fact that (5.1) implies the main theorem.

We shall now prove (5.1). Our method like that of [1] and [3] is
based on the elementary fact that in a finite-dimensional vector space
of dimension m, say, any linear operator possesses a chain of invariant
subspaces

(5.5) {0} = EQ c Et c E2 c - c Em where d(Eά) =j, 0 ^ j ^ m.

To begin with we work in the standard space B.
Let T be a bounded linear operator on B and let x be an element

of B of norm 1. We define a sequence {β̂ } of elements of B as follows.

(5.6) e, = x

<5 7> • - ι ι ? - 4 £ £ ^ ι ι f O T » > 1

where P f t - 1 is the metric projection of B onto sp{x, Tx, •••, Tn~2x).

As we remarked in the beginning of this chapter, the set

{x, Tx, T2x, •••} is linearly independent, so

Tn-'x ί sp {x, Tx, T2x, , Tn~2x}

therefore since P^T^x e sp {x, Tx, T2x, , Tn~2x), Tn~xx Φ P^T^x
and the above is a valid definition.

We shall now show by induction that for any ne Z,

(5.8) sp K ez, , en} = sp {x, Tx,.. , T^x}.

For the case n = 1, eA = # = Γ°α; by (5.6).
Now let w > 1 and assume that

sp K, ea, . ., en.!} = sp {α?, Γa?, , Tn~2x}.

Pn_1T
n~1xe sp{cc, To?, •••, Γw~2x}, therefore by (5.7), en is a linear com-

bination of elements of {x, Tx, , T^x}) hence using this together
with our induction hypothesis, sp {e19 e2, , en] S sp {x, Tx, , Γ71"1^}.
To obtain the reverse inclusion, observe that by (5.7) again, Tn~λx is
a linear combination of en and P^JΓ™-^. But

P^T^x e sp {a?, Tx, . . . , T ^ } = sp {β,, , e^}

by the induction hypothesis, so

sp {x, Tx, , T"-^} S sp K β2, , e J .

This establishes (5.8).
Next we shall show that {βj is a semi-basis for J5 by verifying

(2.8)-(2.10). To verify (2.8) we need only remark that
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( i ) || e< || = 1 for each ie Z, by construction.
(ii) Since (5.8) is valid for each neZ, sp {eu e2J e5, •} =

sp {x, Tx, T2x, •}. But by (2.1), sp {x, Tx, T2x, ...} = jβ, therefore
sp{ej- = B. This verifies (2.9).

(iii) Observe first that since

sp {eu e2y .--, en^} = sp {x, Tx, , Tn~2x},

PΛ_! is the metric projection onto Bn_1 = sp {β̂  e2, , eΛ-1} so that our
notation is consistent with that of (2.10). Now applying Pn_ι to both
sides of (5.7),

II 1 & Γ%_γl X jj

where we have used the properties (2.4) and (2.3) of Pn_1# This veri-
fies (2.10) and together with (i) and (ii) shows that {e^ is a semi-basis
for B.

For any integer k e Z, ek e sp {eu β2, , ek} — sp {x, Tx, , ϊ 7^ 1^},
so that

Tek e sp {Tx, T2x, , Tkx) s sp {eif e2, -., ek+1}.

Thus Tek = Σ i S ft ^ i for some βjke*C, 0 < j ^. k + 1. After choosing
such βάk for each /b e Z, we define the matrix [ajk] by (i) αyfc = βjk if
j ^ k + 1, and (ii) ajk = 0 if i > A: + 1. Then [αi&] is an almost super-
diagonal matrix which represents T relative to the semi-basis {e%}.

Now suppose that T is quasi-nilpotent and that

p(X) = c0 + cxλ + c2λ
2 + . . . + cwλ% , cΛ ^ 0 ,

is a complex polynomial such that p(T) is compact. Using (3.10), let
ω be an infinite integer such that aω+Uω is infinitesimal. For brevity
we denote by P the metric projection Pω of *B onto Bω and by Tf

the Q-operator P*TP. We next show by induction on finite integers
n that

(5.9) (*T)»£~ (T'Γ5

for norm-finite ζ e Bω, neZ. It will then follow by applying (5.9) to
the monomials of

p(* T) = co*I +cί*T+ c2(* T)2 + . + cn(* Γ)TO

and

p(Γ') - co*J + ClT' + ^(ΓO2 + + ^ ( T ' ) %

that
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(5.10) p(*T)ξ~p(T')ζ

for norm-finite ξ e Bω.
To establish (5.9) for the case n — 1, let ξ be a norm-finite ele-

ment of Bω; then ξ = Pξ = v,£=1

 a^k for some ak e *C, fc = 1, 2, , ω.
By (2.11) ξ - Pω_£ = aωeω, and using (2.5)

\ a ω \ = \\aωeω\\ = Wξ-P^ξW^ \\ξ\\

so that aω is finite. Now

since ajh — 0 for j , k satisfying k < co + 1 < j , where we are using
the fact that [ajk] is almost superdiagonal. Switching summation signs
we obtain

ω + 1 / ω
1 ^ — 2

But aωΛuk = 0 for k < ω so t h a t ^ ΐ = 1 α f cαω + l l f c = acωaω+Uω, thus

* Tξ = Σ> ( Σ akCtjL) eά + Λωαω + 1,ωeω + 1 .

Hence by (2.11),

*Tξ - P*Tξ = aωaω+Uωeω+1.

But I αω I and | | β ω + 1 | | are finite and aωΛUω is infinitesimal; thus

|| *Tς — P*Tξ II is infinitesimal, or since f was an arbitrary norm-finite
element of 5 ω and T = P*TP,

*Tξ ~ T'ζ for norm-finite ξ e Bω? proving (5.9) for

the case n = 1.

Now let w ̂  2 and assume that (*Γ)w-1ί - ( T ' Γ ^ ί for any norm-
finite ξ e Bω. Since *T has finite norm,

(5.12) (*2Tf - *Γ(*Γ)»-if ^ *r(Γ ')«-i | .

(T')w~]f is a norm-finite element of !?„> so we may apply (5.11) with
(TT" 1 ? in place of ξ to obtain

* rp/ rp/\n-.i £ ^^ rpr/ rp/\n—l£ (rΓr\n£

This together with (5.12) shows that (*T)nζ - {T')nξ, which establishes
(5.9) and also then (5.10).

We denote by Tω the restriction of T' to Bω. Tω is a linear
operator on Bω, for let y e Bω. Then
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y e sp {elf €*,••-, eω} = sp {x, * Ta, (* Γ)2^, . . . , ( * T)^x}

so 2/ = Σ r o ^ ( * 2 " ) % for some α^e *C, 0 £ i ^ ω - 1. Then using
(2,4) and (2.3), and the fact that Py = ?/,

This shows that Γω is linear. (An equivalent remark is made also in
[1].) Since Bω is "finite-dimensional" in the sense of nonstandard
analysis, there exists a chain of subspaces as in (5.5) with m = coy

such that TωE3 SEd9 j = 0,1, , ω. The Ej are internal linear sub-
spaces of *B and are "finite-dimensional" in the sense of nonstandard
analysis since they are subspaces of Bω. Let Qό be the metric projec-
tion from * £ onto Ed, j = 0,1, * , α>, so that Qω = P.

Choose any ξ e H, j | ξ | | = l . p(T)ξ = p(*T)ξ must be different
from zero, otherwise ζ, Tξ, •••, T%f would be linearly dependent con-
trary to what we have assumed (in (2.1)). By (2.12), ξ ~ Pζ and since
p(*Γ) and p(T') both have finite norm, p(*T)ξ - p(*T)Pξ and £>(Γ')f -
p(T')Pξ. But since we have chosen ω to satisfy the conclusion of
Theorem (3.10), by (5.10) p(*T)Pξ ~ p(T')Pξ; therefore putting the
last three relations together, p(*T)ξ - p(T')ζ. Now p(*T)ζ is a stand-
ard point unequal to 0, so p{Tf)ξ is not infinitesimal and consequently
HP(JΓ')£|I > r for some standard positive r .

Consider the expressions

(5.13) r, - || p(T')ξ ~~ p{T)Qόζ ||, j = 0,1, 2, . . . , α>

and note that ry g ll^ίΓ'XMIί - Q£ ||. We have n == II ̂ (Γ f)ί | | so
r0 > r. Also \\ζ ~QJ\\ = || f - Pf || is infinitesimal, hence rω < r/2.
It follows that there exists a smallest positive integer μ which may
be finite or infinite, such that rμ < r/2 but rμ^1 ^ r/2.

With every Ejf we associate the closed linear subspace °Eά of B
which was defined in § 4. Now °E^L cannot coincide with B, in parti-
cular it cannot include ξ. For if it did, then \{ξ — Q^\\ would be
infinitesimal, so rμ_u which is bounded by \\p(T') || ((ξ - Qμ̂ <f || would
be infinitesimal contrary to the choice of μ.

On the other hand °Eμ cannot reduce to {0}, Consider the point
7] = p(Tr)Q^ξ% ηeEμ since QμζeEμ and Eμ is invariant under #(2^)
and, equivalently, under p(T'). By (5.10), since QμξeBω1

η - p{T')Qμξ - p(*T)Qμξ = *(p(Γ))Qμί ,

where the right-hand side is near-standard, by 1.5 since Qμξ is norm-
finite and p(T) is compact. If follows that η possesses a standard
part, °η, and that °η belongs to Eμ. If °η = 0, then 57 would be in-
finitesimal and it would then follow from (5.13) that
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r^\\p(T')ξ\\ - \\p(T')Qμξ\\> r - ζ

where ζ = | | ^ | | is infinitesimal. This would imply that r^ > r/2, con-
trary to the choice of μ. We conclude that °Eμ contains a point
different from 0, namely °η.

Both °Eμ^1 and °Eμ. are invariant for T, by 4.2. If neither were
a proper invariant subspace of B for T we would have °Eμ__1 = {0},
°Eμ = B. But this contradicts (4.3), proving (5.1), and this in turn
establishes the main theorem.
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