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A NOTE ON SEMI-PRIMARY HEREDITARY RINGS

ABRAHAM ZAKS

We give an example of two nonisomorphic semi-primary
hereditary rings, Ω and Σ with radicals M and Nr respectively,
such that Ω/M2 = ΣjN'K

Let A be a semi-primary ring i.e. its (Jacobson) radical N is
nilpotent and Γ = A/N is an Artinian ring. The problem of charac-
terizing a semi-primary ring A all of whose residue rings have finite
global dimension—was dealt in several papers. It turns out that A
is such a ring if and only if A is a residue ring of a semi-primary
hereditary ring Ω. It was suggested that Ω is uniquely determined
up to an isomorphism by the condition Ω/M2 & A/N2, where M is the
radical of Ω.

One can prove that if A is an epimorphic image of a semi-primary
hereditary ring Ω, then Ω is uniquely determined (up to an isomorphism)
by the conditions (a) Ω admits a (semi direct sum) splitting, Ω =
Γ + A + M2 and (b) Ω/M2 ™ A/N2.

The following ring furnish a counter example to the uniqueness
statement if we don't assume condition (a), even if A admits a splitting.

Let fc be a field of characteristic p Φ 0, and let a; be a transcen-
dental element over k. Let R = k(xllP) ® A { s ) k(xllp) and let V be the
radical of R. Then V contains the nonzero element xιlP ® 1 — 1 ® x1/p.
Let 21 be a subring of the 3 x 3 matrix algebra over R, which consists
of all matrices M for which:
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It is obvious that Σ is an Artinian ring and its radical Nr consists
of all matrices M in Σ for which Mn = M22 = M33 = 0.

Let A be Σ/Nf2, then one easily verifies that:
(a) gl. dim2f = l
(b) gl. dim A = 2
(c) A admits a splitting
(d) Σ does not admit a splitting (since V is not an iϋ-direct

summand in R).
From (b) and (c) it follows that Ω = Γ + A + A ® Γ A—with A =

N'/N'2—is a semi-primary hereditary ring (A ® Γ A ® Γ A = 0) with
radical M = A + A <g)Γ A. Also J = /? + A and A2 = 0. Therefore
gl. dim Ω - gl. dim Σ = 1, β/M2 ** 2yiV'2 ^ yί/AΓ2 (JV is the radical of Λ).
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Obviously Ω admits a splitting, but Σ does not, thus Ω and Σ are not
isomorphic.

It is worth noticing that if A is a finite dimensional if-algebra
(K a field) then the uniqueness of Ω follows from condition (b), since
condition (a) holds whenever dim Γ = 0.

There still remains the problem of the existence of Ω satisfying
(a) and (b). Ω is known to exist whenever A admits a splitting. A
is known to admit a splitting whenever N2 = 0.
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