A NOTE ON SEMI-PRIMARY HEREDITARY RINGS

ABRAHAM ZAKS

We give an example of two nonisomorphic semi-primary hereditary rings, Ω and Σ with radicals M and N' respectively, such that $\Omega/M^2 = \Sigma/N'^2$.

Let Λ be a semi-primary ring i.e. its (Jacobson) radical N is nilpotent and $\Gamma = \Lambda/N$ is an Artinian ring. The problem of characterizing a semi-primary ring Λ all of whose residue rings have finite global dimension—was dealt in several papers. It turns out that Λ is such a ring if and only if Λ is a residue ring of a semi-primary hereditary ring Ω . It was suggested that Ω is uniquely determined up to an isomorphism by the condition $\Omega/M^2 \approx \Lambda/N^2$, where M is the radical of Ω .

One can prove that if Λ is an epimorphic image of a semi-primary hereditary ring Ω , then Ω is uniquely determined (up to an isomorphism) by the conditions (a) Ω admits a (semi direct sum) splitting, $\Omega = \Gamma + A + M^2$ and (b) $\Omega/M^2 \approx \Lambda/N^2$.

The following ring furnish a counter example to the uniqueness statement if we don't assume condition (a), even if Λ admits a splitting.

Let k be a field of characteristic $p \neq 0$, and let x be a transcendental element over k. Let $R = k(x^{1/p}) \bigotimes_{k(x)} k(x^{1/p})$ and let V be the radical of R. Then V contains the nonzero element $x^{1/p} \bigotimes 1 - 1 \bigotimes x^{1/p}$. Let Σ be a subring of the 3×3 matrix algebra over R, which consists of all matrices M for which:

$$egin{aligned} M_{11} &\in k(x^{1/p}) igotimes_{k(x)} 1 & M_{12} &= 0 & M_{13} &= 0 \ M_{21} &\in V & M_{22} &\in 1 igotimes_{k(x)} k(x^{1/p}) & M_{23} &= 0 \ M_{31} &\in R & M_{32} &\in 1 igotimes_{k(x)} k(x^{1/p}) & M_{33} &\in 1 igotimes_{k(x)} k(x^{1/p}) \;. \end{aligned}$$

It is obvious that Σ is an Artinian ring and its radical N' consists of all matrices M in Σ for which $M_{11} = M_{22} = M_{33} = 0$.

Let Λ be Σ/N'^2 , then one easily verifies that:

- (a) gl. dim $\Sigma = 1$
- (b) gl. dim $\Lambda = 2$
- (c) A admits a splitting
- (d) Σ does not admit a splitting (since V is not an R-direct summand in R).

From (b) and (c) it follows that $\Omega = \Gamma + A + A \bigotimes_{\Gamma} A$ —with $A = N'/N'^2$ —is a semi-primary hereditary ring $(A \bigotimes_{\Gamma} A \bigotimes_{\Gamma} A = 0)$ with radical $M = A + A \bigotimes_{\Gamma} A$. Also $\Lambda = \Gamma + A$ and $A^2 = 0$. Therefore gl. dim $\Omega = \text{gl. dim } \Sigma = 1$, $\Omega/M^2 \approx \Sigma/N'^2 \approx \Lambda/N^2$ (N is the radical of Λ).

Obviously Ω admits a splitting, but Σ does not, thus Ω and Σ are not isomorphic.

It is worth noticing that if Λ is a finite dimensional K-algebra (K a field) then the uniqueness of Ω follows from condition (b), since condition (a) holds whenever dim $\Gamma = 0$.

There still remains the problem of the existence of Ω satisfying (a) and (b). Ω is known to exist whenever Λ admits a splitting. Λ is known to admit a splitting whenever $N^2=0$.

REFERENCES

- 1. H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton Univ. Press, Princeton, 1956.
- 2. J. P. Jans and T. Nakayama, Algebras with finite dimensional residue algebras. Nagoya Math. J. 11 (1957) pp. 67-76.
- 3. A. Zaks, Residue rings of semi-primary hereditary rings. Nagoya Math. J. (to appear)

Received December 29, 1966.

TECHNION, HAIFA ISRAEL