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ON INTERCHANGE GRAPHS

BENJAMIN L. SCHWARTZ

The interchange graph I(G) for an unoriented graph G
has been defined by Ore as follows: The vertices of I(G) are
the edges of G; and two vertices of /((?) are connected by an
edge if and only if they are adjacent (i.e., have a vertex in
common) in G. In 1962 Ore raised the problem of deter-
mining those graphs for which

(1) I(G) = G.

This paper solves this problem for finite connected graphs
with loops and parallel edges, extending earlier work on the
problem.

A loop (an edge whose two ends coincide in a single vertex)
is considered adjacent to itself, and hence generates another
loop under the / mapping. If two edges of G connect the
same two vertices, the corresponding vertices of I(G) are also
connected by two distinct edges.

A natural generalization of (1) is the problem of finding the graphs
for which, for some fixed positive integer k,

( 2 ) P(G) = G .

Prior work, has shown that for graphs without loops, (1) and (2) are
equivalent, and hold if and only if G is a cycle. When loops are
present, the result is different and new methods are required. A
typical noncycle graph satisfying (1) and (2) is a loop with a line
adjoined. It is proved below that the only finite solutions to (2) are
either graphs of this type or cycles.

The first step toward solving Ore's original problem [7] and its
generalization seems to have been made by Anna Maria Ghirlanda [3],
who solved the case in which G has no loops and no multiple edges.
Menon [5], using different methods, removed the latter restriction to
show that if multiple edges are admitted the same conclusion holds:
viz., G must be a cycle. Harary [4] remarked in 1967 that this result
"is now well known".

This paper comprehends both these earlier results and extends
them to include the case of graphs with loops, for which the new
answer does not appear to be so well known, (although B. Clark [2]
discovered in 1964 that noncycle solutions to (1) exist). Moreover,
whereas the above named earlier studies use techniques that are to
some extent advanced, one of the most striking aspects of the
demonstration that follows is that in extending and unifying these
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earlier results, it has been possible to limit the methods entirely to
elementary procedures. At present further extensions, e.g., to oriented
and/or disconnected graphs, appear to pose a more challenging problem.
Some partial results occur in [6], but the difficulties are illustrated
by the fact that (1) and (2) are not equivalent for oriented graphs.

2* Notations* Terminology in graph theory is not standardized.
This paper will use primarily that of [1], Upper case Latin letters
will be used for graphs, Greek for their edges and vertices, and lower
case Latin for nonnegative integers. Graphs with more than one edge
allowed between the same two vertices are called s-graphs. Figures
1 and 2 are examples of a graph and an s-graph respectively, each

FIGURE 1
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G

FIGURE 2

with its interchange graph. A k-vertex of a graph means a vertex
of degree k, i.e., a vertex at which k edges meet. (By convention,
a loop contributes 1 to the degree of its vertex.) If the highest
degree vertex of a graph G is of degree k, we shall say that G is of
degree k.

For brevity the term line will be used to denote an elementary
path, i.e., a connected chain of edges that does not meet the same
vertex twice. The number of edges in a line will be called its length.
By convention, a line of length zero is an isolated vertex; and a line
of negative length is the empty graph. It is easy to show that for
length greater than 1, an equivalent definition is that a line is a tree
of degree 2.

3* Preliminaries* In this section let G be an arbitrary nonempty
unoriented finite connected s-graph of m edges.

LEMMA 1. / / G has a p-vertex, ay with p ^ 3, then I(G) contains
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a cycle generated by a. This is immediate from the definition of the
/ mapping.

LEMMA 2. // G contains a cycle C, then I(G) contains a cycle
generated by C. This is also trivial from the definition of /.

COROLLARY 1. If G contains a cycle, then so does P(G) for k > 0.

THEOREM 1. If G is a tree, then Ik(G) Φ G for any k > 0.

Proof, a. For graphs of degree 0 and 1 the assertion is trivial.

b. If G is of degree 2, it is a line of length m. By definition
of the / mapping, P(G) is a line of length m — k Φ m.

e. If G is of degree p > 2, then by Lemma 1, I(G) has a cycle.
By Corollary 1, Ik(G) also has a cycle and hence is not a tree.

4* The main results* In this section let G be an arbitrary
nonempty unoriented finite connected s-graph such that P(G) = G for
some (known, fixed) k > 0. Let the number of edges and vertices of
Ij(G) be denoted respectively mό and nά.

THEOREM 2. m3- = nd.

Proof. Since (2) is true for G, it is also true for Ij(G) for all
j . Hence G and Ij(G) are all not trees, by Theorem 1. Now it is
well known that m3- + 1 ̂  % for any graph K[l; p. 28], But equality
holds if and only if if is a tree [l; p. 152]. Hence, in the present
case m5 ^ nό.

But by definition of the / operation, w H = nd. Hence {mό} is a
monotone nondecreasing sequence. But since mk = m0, we can conclude
that {TΠJ} is actually a constant. Hence, in particular, m3- — mί _1 = %.

COROLLARY 2. G and Ij(G) each contain exactly one cycle [1; p.
29].

THEOREM 3. The degree of G is ^ 2 .

Proof. Since G contains a cycle, so does /(G), by Lemma 2. But
if G also had a vertex of degree p, p ϊ> 3, then /(G) would have
another cycle, by Lemma 1, contrary to Corollary 2.

THEOREM 4. If G contains no loops, then G is a cycle. This
follows immediately from Theorem 3 and Corollary 2. This is Menon's
previous result [5].
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THEOREM 5. // G contains loops, then it contains exactly one
loop and consists of that loop with a line adjoined to its {only) vertex.
See Figure 3. (The line may be of length zero.)

FIGURE 3

Proof. A loop is a cycle. Hence by Corollary 2, there can be
only one. By Theorem 3, any additional part of G can attach to the
vertex of the loop by only one other edge, and all other vertices
must be of degree 2 or 1. Hence the additional part can only be a
line.

It follows that only graphs of the type described are eligible
candidates to satisfy (2). By direct calculation, we verify that for
such graphs, (1) holds, and hence (2) follows.
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