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CHARACTERIZING PRIMES IN SOME
NONCOMMUTATIVE RINGS

HAROLD G. RUTHERFORD

For a ring R with identity 1, a preprime is a nonempty
subset T of R which is closed under the two binary operations,
addition and multiplication, of R and with - 1 0 T. A prime
of R is a preprime of R which is maximal with respect to set
inclusion. A field K is locally finite if every member of K is a
member of some finite subfield of K. For a finite dimensional
vector space V over K let © = Hom^ (V, V) denote the full ring
of linear transformations of V over K. Let W and L be sub-
spaces of V with WaLaV aud W Φ L. Let T(L,W) =
{ae@>la Lc:W}. Then T(L9 W) is a preprime of ©. Let

= {T(L, W)IW, L are subspaces of V, WaL,W Ψ L]

We will show that the primes of (S are exactly those preprimes
T(L, W)e^~ with dim* L = 1 4- dim* W.

There is also an associative monoid with zero element reminiscent
of a value group for a valuation of a field. One actually finds that
this monoid is independent of which prime is used to define it. How-
ever, this shows rather that while this concept yields an abelian group
when the ring is commutative, it may not be the proper concept in
noncommutative rings, see [1, Prop. 2.2],

A number field is a finite field extension of the field Q of rational
numbers. In [1, Prop. 3.4, 3.5, 3.6], Harrison has shown that for a
number field K, the primes are exactly the useful prime divisiors of
algebraic number theory and all of them when if is a normal exten-
sion of Q. Since the definition of primes is made in arbitrary rings
with 1, it is desirous to investigate the concept for nonfields. Com-
mutative rings have been investigated considerably in [1] and [3]. A
locally finite field has no primes but {0} (see [1, Lemma 1.4]). Thus
one would expect @ = Hom^ (V, V) to be one of the simplest noncom-
mutative rings to investigate.

All rings are assumed to have an identity. If A and B are sub-
sets of a ring R and d a member of an iϋ-module, dA denotes
{daIA e A}, Ad denotes {ad/a e A), A*B denotes {abja eA,beB} and —A
denotes { — a/aeA}. K will denote a locally finite field, V a finite
dimensional vector space over K, and % — Horn* (V, V) is the ring of
all Z-linear transformations of V.

!_• P-productive* A prime P of a ring is called finite if — 1 g P
infinite otherwise. P is finite if and only if —Pa P. Since the
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characteristic of K is not zero, every prime of © is finite. Let P be
a finite prime of ©. Let

BP = {ae®la-PaP},CP = {/3e©/P /3cP} .

We can define AP = BP Π CP since P is a finite prime. For reference
see [l, Prop. 1.2, Prop. 1.3].

DEFINITION. Let P be a prime of ©. An element x of V is called
P-productive if x&Px. Here F is considered as a ©-module by the
operation a v = a(u) for ae®,v eV.

Let P be a prime of ©. We consider K as embedded in © by
the isomorphism which sends k into k 1F for every ke K,lv the identity
linear transformation of F. A straight forward generalization of
Prop. 2.1 in [1] gives that if a and 6 in K and their product ab is in
AP, then αeA P or be P. This gives the following:

LEMMA 1.1. Let Pbe a prime of ©. Then KaAP and Kf] P = {0}.

Proof. For any α e iΓ, a Φ 0, there is a least positive integer m
with am = 1 since α is contained in a finite subfield F of iΓ. Now
suppose aeKΠP, a Φ 0. Then αw = 1, m a positive integer. Then
1 = am e P since P is closed under multiplication. But since every
prime of © is finite, this cannot happen. So, K f]P = {0}. Now for
any aeK, a Φ 0, am = 1 for some least positive integer m. Then if
α ί i p , αw~ι 6 P and also K so αm - 1 = 0 and a — 0 a contradiction. So
αe^lp. Thus KaAP.

PROPOSITION 1.2. Let P be a prime of ©. Then there is an
element xeV which is P-productive.

Proof. For each a e ©, define Va = {xe 7/(1 + α) a? = 0}. Va is
easily checked to be a subspace of V. The dimension of V over K
is finite so the dimension of Va over K is finite also. Among all a e P
choose a β e P with dim^ Vβ ̂  dim^ F« for all aeP. Just suppose
Vβ = F. Then (1 + £)a = 0 for all x e V and so 1 + β = 0. Thus
- l = β e P a contradiction.

Since F^ ̂  F, there is a c e F with c $ Vβ. Let d = (1 + β)c.
Then d is P-productive. For if not, we would have d e Pd. So there
is a 7 e P with 7d = d. Then for any A: e K, (1 — 7)(1 + β)kc —
A (l - 7)(1 + /5)c = jfc(l - 7)eZ = &((Z - yd) = 0. Also, for any a? e F^,
(1 - 7)(1 + β)x = (1 - 7)0 = 0. Hence (1 + β - y - yβ)Vβ = 0 so,
Vβ c Vβ^r-γβ and c e Vβ_r_ΐβ and c & Vβ. So dim^ Vβ_r_rβ > dim^ F^
which is a contradiction for β — y — yβeP and dim# F/g ̂  dim^ F α

for all aeP.



CHARACTERIZING PRIMES IN SOME NONCOMMUTATIVE RINGS 389

2* Some preprimes of ©• Let W and L be subspaces of V with
WdL and W Φ L. Let Γ(L, TF) = {<*e @/αLc IF}. One may check
that T{L, W) is a preprime of ©. Let jT~ - {Γ(L, WO/W and L sub-
spaces of V, W(zL, W Φ L). Using the fact that © is transitive [2,
Chapter, II, §4] we can tell when two members of J7~ are equal.
The first step is given by

LEMMA 2.1. Let T(L, W) and T(U, W) be members of ^~.
T{U, W')aT(L, W) if and only if W <zWcLcL'.

Proof. By choosing a basis of V in such a way that it is the
•extension of a basis for proper subspaces, we will use transitivity to
assert the existence of linear transformations needed to give the
appropriate contradictions.

LaL'. For if not, there is an xeL with x$U. Since W(zL
and W Φ L, there is a y e L, y $ W. Thus there is an a e ® with
aU = {0} c W and ax = y$W. So, a e T(L', W) and a $ T(L, W)
a contradiction.

W c W. For if not, there is an x e W with x $ W. Then since
L c I/, we may find β e © with /3L' = iΓα; c TF' and βL = Kxςt W.
Thus βe T{U, W) and /3£ T(L, W), a contradiction.

Conversely, if W <zW and L c L ' , one easily verifies that
T(L\ FΓ')<=Γ(L, W).

The following corollary gives the desired criterion for equality.

COROLLARY 2.2. Let T(L', W) and T(L, W) be members of ^~.
Then T(L', W) = T(L, W) if and only if L = Lr and W = W.

3. The primes in ©• We remarked earlier that all primes of
<$ are finite since the characteristic of K is not 0. Thus

THEOREM 3.1. &* = {T(L, W)jW and L are subspaces of V,
Wa L, dimx L = 1 + dimκ W} is the set of all primes of ©.

Proof. Let P be a prime of ©. There is a v e V which is P-
Productive, Prop 1.2. So v & Pv. One checks that Pv is a subspace
of V. Let Pv = W and L = Kv + W. Now let α e P. Then
^TFc TΓ and av e Pv = PΓ. So αL c PΓ. Thus P c Γ(L, TΓ). But
Γ(L, W) is a preprime containing P a maximal preprime so P = T(L, TΓ).

Conversely, let T(L, W)e&*. Then an easy application of Zorn's
lemma gives that T(L, W) is contained in a prime P, since Γ(L, TΓ)
is a preprime. But then there are U and W of F with W c L'
and dim^ L' = 1 + dim* W" and we have Γ(L, TΓ) c P = T(L', W)
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So by Lemma 2.1, We W c 1/ c L. But dim^ L = 1 + dimx W gives
that W = W and L = 1/ since TF' Φ IΛ Hence by Corollary 2.2,
Γ(L, T7) = T(L', W) = P so Γ(L, TF) is indeed a prime.

4. The value monoid* For any prime P of a ring R, there is a
natural subring AΓ of i2 which contains P. In our case AP = BP Π CP

Then one can define for each x e R, P: x = {(y, z)/y, zeR, yxz e P} and
for a and b e R define a ~ 6 if P: a = P: b. This defines an equivalence
relation on R. Let [α] denote the equivalence class containing a and
let ΓP denote the set of equivalence classes of R. Define ΦP(a) = [a].
Then όP: R-+ΓP. When R is a commutative ring, ΓP is an abelian
group. See [1, 11 and Prop. 2.2], We first characterize BP and CFJ p .

LEMMA 4.1. Let P be a prime of ©. Then there are subspaces
W and L of V with dim,, L = 1 + dim* W and P = T(Ly W) by
Theorem 3.1. Then BP = {ae®/aWaW} = T(W, W) and CP -

, L), so £/m£ AP = T(L, L) Π Γ(TΓ, W).

Proof. Clearly T(L,L)cC P . Now let aeCP. Suppose
Let V = L φ D. Choose β e © with β-L = {0}, /S(i ) - 1; for all veD.
Then /S e P and /SαL ςz! L, a contradiction. Hence α e T(L, L) and

, L) - CP. Similarly BP = T( W, W). Hence AP = T(L, L) n Γ( W, W).

Now we can be more specific that in Lemma 1.1 and give a
characterization of AP in terms of P.

PROPOSITION 4.2. Let P be a prime of ©. Then AP = P φ i ί as-
iΓ-modules.

Proo/. We already know that KaAP and PnAΓ= {0}. Thus it
only remains to show that each ae AP is expressible as β + k, β e P,
fc G iΓ. Let P = Γ(L, PΓ) as Theorem 3.1 gives. Let L = KvφW.
Suppose a e AP. IΐaeP,a = a + 0,0eK. So if a £ P, ah ςt W while
aL c L. Thus α^ = kv + w, fc e K, w e W. Consider a — k. aWczW
gives (a — k)Wa W since keAP. Also,

(a — k)v — av — kv — kv -{• w — kv — w .

So (a - k)v e W. Thus a- ke T(L, W) = P. Hence

a = (a - k) + keP®K.

Hence AP = P@K.

We are now in a position to show that the monoids corresponding*
to each prime P of © are all the same monoid.



CHARACTERIZING PRIMES IN SOME NONCOMMUTATIVE RINGS 391

THEOREM 4.3. There is a natural associative monoid Γ with
zero element and a natural monoid homomorphism φ of © onto Γ
suck that for each prime P of ©, ΓP — Γ and φP = φ.

Proof. We will outline the proof in the form of a series of claims,
whose proofs are straight forward but often lengthy. We leave their
proofs to the reader.

First of all we will show that if a and β are in © and there is
<ι keK with β = ka then β ~Pa where ~P denotes the equivalence
relation determined by any prime P of @. For if (7, δ) e P: a then
7/5δ = ykaδ = kjaδ eKPaP since KaAP. So (7, S) e P: β. Thus
P:aaP: β. Similarly, P:βczP: a, so P: a = P: β and β ~p a.

Now if conversely we can show that if β ~Pa then β — ka for
some keK we will have shown that the equivalence relations ~P are
really all the same and hence the monoids ΓP and monoid homomor-
phisms φP are all the same for each P. To this end, let β ~ Pa.

Claim 1. Let Kv be any one-dimensional subspace of V. Then
βKv - aKv.

Proof. Let δ e © with δL = Kv, v e V. For (7, δ) to be in P: a,
we must have yaKv c W. So choosing 7 € © with this true, one gets
<7, δ) e P: a = P: β and so jβKv c W. If βKv Φ aKv, one could
redefine a 72 e © with (7i, δ)eP: β and (7i, δ) g P: a. This contradic-
tion proves that βKv — aKv, so long as βKv Φ 0. The similar agru-
ment beginning with β will then show that aKv — βKv.

This gives us that if veV, there is an a e K, possibly depending
upon v, with βv = aav. We will show that a is independent of the
choice of v.

Claim 2. If dim# aV > 1, then for any vx and v2 in V which are
linearly independent and βvι — bavx and βv2 = cav2, we get b ~ c.

Proof. If avt and av2 are linearly independent, consider βiv^ + v^ —
da(v1 + v2) and one finds that b = d = c. If not, there is a v e V with
<xv and avx linearly independent, since dim^ aV > 1. Then also av and
av2 are linearly independent. Consider βv = eav. Then one finds that
b = e and e = c so again b = c. This proves the claim.

Claim 3. If dim^ α F = 1, then Ker α: = Ker β and α 7 = i£v for
some v eV and β V = Kv also. In addition, if vf eV,v'£ Ker α, then
β'v = δα'y' and indeed /3 = δα.

Proof. For & e Ker α:, βx = cαα; for some c € if and ax = 0 so
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βx — 0 so Ker a c Ker β. By dimension arguments, Ker a = Ker βm

βV — aV by the Claim 1. Now any w e V is w = x + kv\ x e Ker a =
Ker β and k e K. Then one checks that /Sit; = kβv' = bkav' = 6αw
since ααx = 0 = ax. Thus /3 = ba.

Combining the last two claims, we see that if dimA, aV — 1, β = aoc
for some ae K. If dimA- aV > 1, then we showed α is independent of
the choice of v e V used to define it. Hence again β = aa. This
concludes the proof that if β ~Pa, then β = αα, aeK.

Sincere thanks are due David Harrison for his constant inspiration
while this work was being done. Few are able to transmit their
enthusiasm to students as well as he, at least it is difficult to conceive
of someone doing it better. I would also like to thank Merle Manis
for many informative conversations as well as his computations in
matrices which served as guidelines for my characterizations. Thanks
are also due to the Health, Education, and Welfare Department who
provided support for three years as an N.D.E.A. Fellow at New
Mexico State University and to the National Science Foundations who
provided support one year as an N.S.F. Trainee at the University of
Oregon. Without their aid, individuals who produce well at home
would be hard pressed to produce well mathematically.

BIBLIOGRAPHY

1. D. K. Harrison, Finite and infinite primes for rings and fields, Amer. Math. Soc.
Memoirs, No. 68, 1967.
2. N. Jacobson, Structures of Rings, Amer. Math. Soc. 1956.
3. M. Manis, Valuations on a commutative rings, Ph. D. thesis, University of Oregon,
1966.

Received September 21, 1967.




