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SINGULAR INTEGRALS AND POSITIVE KERNELS

C. R. PUTNAM

Let k(x, t) be a C1 kernel of a positive integral operator
on L2(E) where E is compact. It is shown that certain sin-
gular self-adjoint operators A on LZ(E)9 consisting of the sum
of a multiplication operator and a generalized Hubert trans-
form integral operator with Kernel ik(x9t)(x — t)-\ are an-
alogous to—sometimes even to the extent of unitary equiva-
lence—operators, about which a good deal more is known, of
the same structure as A but with k(x, t) of the special form
ψ(x)φ(t).

Let E be a set of real numbers of positive measure and suppose
that

(1.1) h(x) is essentially bounded, real and measurable on E and
that

(1.2) k(x, t) is essentially bounded, measurable and satisfies k(x, t) =
ϊc(t, x) on E x E. Then the transformation /—* Af, where

(1.3) (Af)(x) = h(x)f(x) + i\ k{x, t)(x - t)-ιf(t)dt ,
JE

the integral being interpreted as a Cauchy principal value, is a bounded,
self-adjoint operator on L\E). Concerning such integrals, see
Muskhelishvili [4], also Calderόn [1], Putnam [7, 8], Schwartz [13,14].
The spectral theory of A when k(x, t) is of the form

(1.4) k(x, t) - φ(x)φ(t) ,

where

(1.5) φ(x) is essentially bounded and measurable on E, has been
extensively investigated. See, in particular, Koppelman [3], Pincus
[5,6], and Rosenblum [11], the latter containing a treatment of the
theory for E arbitrary.

Let K denoted the self-adjoint integral operator defined on L2(E)
by

(1.6) (Kf)(x) = [ k(x, t)f(t)dt, fe Dκ c L\E).
JE

An important property of K which will be studied in this paper is
that of positivity, K ^ 0, that is

(1.7) ( i Γ / , / ) ^ 0 for feDK.

It is seen that operators K with kernels k(x, t) given by (1.4) satisfy
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(1.7). It will be shown in this paper that for certain K satisfying
(1.7), in many respects, the operator A of (1.3) is similar to a corres-
ponding operator in which k(x, t) has the special form (1.4). It will
be convenient to recall first a few of the known properties of the
singular integral operators in question.

If B is defined by

(1.8) (Bf)(x) = h(x)f(x) + i\ Φ(x)Φ(t)(x - t)~ιf(t)dt
JE

for feL\E), and if

(1.9) Φ(x) Φ 0 a.e. on E ,

and if

(1.10) (—°°, °°) — E has positive measure ,

it is known that B is absolutely continuous. (Recall that a self-ad joint

operator H with spectral resolution H = YλdEλ is said to be absolutely

continuous if \\Eλf\\2 is an absolutely continuous function of λ for

all / in the underlying Hubert space.) For the general case, in which

E is arbitrary, see Rosenblum [11]. If E is assumed to satisfy, in-

stead of (1.10), the stronger relation

(1.11) E Π J has measure 0

for some open interval /, the absolute continuity of B was established,
by means of commutator theory, in Putnam [7]. More generally, it
was shown there that if h(x) and Jc(x, t) satisfy (1.1), (1.2) and (1.7)
and if, in addition,

(1.12) Jc(xf ί) = 0 a.e. on E x F implies F has measure 0,

where F is any measurable subset of E, and if, finally, (1.11) holds, then
A of (1.3) is absolutely continuous. Whether this last result holds
for such a function k(x, t) if (1.11) is weakened to (1.10) (as is the
case if k(x, t) is of the special form (1.4)) is apparently not known.

There will be proved the following:

THEOREM. Let E be a compact set and suppose that h(x) satisfies
(1.1) and that k(x, t) is of class C1 on E x E (that is, on some closed
rectangle containing E x E) and satisfies (1.2). In addition, suppose
that

(1.13) k(x, x) > 0 a.e. on E .

Define the bounded, self-adjoint integral operator Ak on L\E) by

(1.14) (Akf)(x) = h(x)f(x) + i\ fc*(a>, s)fc*(ί, t)(x - t)-χf(t)dt.
JE
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Then Ak is absolutely continuous and A of (1.3) satisfies

(1.15) A = Ak + M ,

where M is a Hilbert-Schmidt operator (hence, in particular, the es-
sential spectrum of A and the spectrum of Ak coincide). If, in
addition, it is assumed that (1.7) holds, then A is also absolutely
continuous.

As a consequence of the above results and the Rosenblum-Kato
perturbation theory (Kato [2], Rosenblum [10]; see, e.g., Putnam [8])
one has the following:

COROLLARY. Let E be a compact set and suppose that h(x) satis-
fies (1.1) and that k(x, t) is of class C1 on E x E and satisfies (1.2),
(1.7) and (1.13). If M of (1.15) is of trace class then A is unitarily
equivalent to Ak, so that

(1.16) A= UAkU* for some unitary operator U.

REMARK. It may be noted that if (1.7) holds then necessarily
k(x, x) ;> 0 a.e. on E (k being continuous), so that the operator Ak of
(1.14) is certainly defined in this case. Of course, the relation k(x,x) ^ 0
a.e., or even (1.13), may hold even though (1.7) does not.

The theorem will be proved in §2. Some lemmas will be given
in § 3 and an example discussed in § 4. Finally, a few applications
of the results to operators A of (1.3) when k(x, t) is of the form

(1.17) k(x, t) = [a(x) - a(t)](x - ty1

will be given in §5.

2* Proof of theorem* It will first be shown that

(2.1) k(x, t) = kh(x, x)ki(ty t) + m(x, t)(x - t) ,

where m(x, t) is bounded on E. To this end, note that in view of
the C1 hypothesis on k(x, t), one has k(x, t) = k(x, x) + Ox(l)(x — t),
where 0̂ (1) denotes here and below a factor which is bounded as ί->ίc
(x, fixed). Suppose first that k(x, x) > 0 (x fixed). Then

kh(x, x) - Λ*(ί, t) + O.(l)(a? - ί) ,

again by the C1 hypothesis on k(x, t) and, consequently,

k(x, t) = fc*(s, x)ki(t, t) + 0β(l)(a - t) .

If k(x, x) = 0 however, it is clear that this last relation still remains
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valid. Since E is compact, it is clear that the 0^(1) factor can be
replaced by a factor m(x, t) bounded on E and (2.1) then follows.

According to the definitions of A, Ak in (1.3) and (1.14), one has
(1.15), where the bounded, self-ad joint operator M is given by

(2.2) (Mf)(x) = ί\ m(x, t)f(t)dt ,
JE

and m(x, t) is defined in (2.1). In view of (1.13) (cf. (1.9)), then, as
noted above, when k(x, t) has the form (1.4), Ak is absolutely continu-
ous. Since m(xf t) is bounded and E has finite measure, it is clear
that M is a Hilbert-Schmidt operator.

Since k(x, t) is continuous on E, relation (1.12) is a consequence
of (1.13). Since (1.11) surely holds in the present case, then, as noted
earlier, relation (1.7) implies the absolute continuity of A in (1.3).
This completes the proof of the Theorem.

REMARKS. Both the theorem and its corollary permit certain obvi-
ous generalizations in which the smoothness and compactness hypotheses
on k(Xy t) and E respectively may be relaxed. For instance, suppose
that E satisfies (1.11), that (1.1) and (1.2) hold and also that k(x, t)
is continuous on E x E. (The continuity assumption assures in particu-
lar that the evaluation of k(x, t) on the diagonal x = t, x in E, is at
least meaningful, as contrasted with the situation when, say, k{x, t)
is only measurable.) Suppose in addition that (2.1) holds with

m(x, t) e L\E x E) .

It is seen that with these modified hypotheses, along with the earlier
one (1.3) and, in the latter part of the Theorem, also (1.7), generali-
zations of the theorem, and corollary are easily formulated.

3* Some lemmas* For later use it will be convenient to have
the following lemmas:

LEMMA 1. Let b(x) be measurable and satisfy b(x) ^ const. > 0
on E. Then the operator K of (1.6) with kernel

(3.1) k(x, t) = [6(α?) + δ(ί)]-1

satisfies (1.7).

Proof. It is clear that e~
ίb{x)+b{tUλ is bounded and of the type (1.4)

for every λ ^ 0 and hence [°e~ίhix)+HtmdX = [b(x) + b{t)]~ι yields a
Jo

kernel for which (1.7) holds.
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LEMMA 2. Let E be a compact set and suppose that k(x, t) and
j(x, t) are continuous kernel functions on E x E for which the cor-
responding integral operators satisfy (1.7). Then the product n(x,t) =
k(x, t)j(x, t) is also a kernel for which the corresponding integral
operator satisfies (1.7).

Proof. One has

(3.2) k(x, ί) = Σ KΦn(x)ΦΛt) and j(x, ί) = Σ μ^Λ^tΛt) ,

where the φ's and ψ's are continuous, λw, μm >̂ 0, and where the series
of (3.2) converge uniformly, even absolutely uniformly on E x E; cf.
Riesz and Sz.-Nagy [9, p. 245]. Hence n(x, t) = Σ Σ KμJnΛ^LΛt),
where ζnm(x) = φn(%)Ψm(%), has similar properties. The nonnegative
property of the integral operator with kernel n(%, t) follows from
λΛ, μm ^ 0 and the separable structure of the above double series.

LEMMA 3. Let E be a compact set and suppose that k(x, t) is
continuous on E x E and is the kernel of an integral operator K
satisfying (1.7). Then

(3.3) ί k(x, x)dx = Σ K ,
JE

where the Xn's are the eigenvalues of K.

Proof. This fact is well-known; cf. Riesz and Sz.-Nagy [9, p. 245].

4* An example* Let k(x, t) be defined by

(4.1) k(x, t) = (x + t)-1

on E x E, where E is a compact subset of (0, oo). It follows from
Lemma 1 that the associated integral operator K satisfies (1.7). Since
k(x, x) = 1/2$, then m(x, t) of (2.1) satisfies

(4.2) m(x, t) - - — ( r * - x~*)(x* + t^-'ix + ty1 .

If h(x, t) = (»* + Φ)~\x + ί)-1 then relation (4.2) states that the
operator M of (2.2) is of the form

(4.3) M - — i(x~hH - HOT*), where (Hf)(x) - ( λ(»
2 J ^

Now H ^0 (Lemmas 1, 2) and 1 h(x, x)dx < oo; hence, by Lemma 3,
JE

H is of trace class. Since the product of a bounded operator and a
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trace class operator as well as the sum of trace class operators all
belong to this class (cf. Schatten [12]) it follows from (4.3) that M is
of trace class. Consequently, (1.16) holds in this case.

5* Differential quotient kernels* Suppose that k(x, t) has the
special form (1.17) where a(x) is of class C2 on the compact set E.
Then it is clear that k(x, ί), where k(x, x) = af{x), is of class C1 on
E x E. (For a similar integral, see Calderόn [1, p. 435].) In case it
is also assumed that

(5.1) a'(x) > 0 a.e. on E ,

then the theorem of § 1 is applicable. The operator Ak of (1.14) now
becomes

(5.2) (Aa,f)(x) - h(x)f(x) + i[ [a\x)a'(t)]Hx - t)~ιf(t)dt

and, by (1.15),

(5.3) A = Aa, + M (k given by (1.17)) .

In case a(x) = x then k(x, t) = 1 and the integral operator portion
of A reduces to a constant multiple of the Hubert transform. In
particular, the kernel satisfies (1.7) and also A — Ak in this case. It
is not so apparent however just what other functions a(x) will yield
kernels k(x, t) of the type (1.17) satisfying (1.7). (It is clear though
that if a(x) Φ 0 has this property then so does —l/a(x)). Some ex-
amples will be considered below.

It will be convenient to suppose from now on that E is a compact
subset of (0, oo).

That (5.1) is not sufficient to guarantee that k satisfy (1.7) is
clear if one chooses

(5.4) a(x) = x2.

A simple direct verification shows that K of (1.6), with k defined by
(1.17) and (5.4), fails to satisfy (1.7). On the other hand, it is seen that
(1.13) holds and hence Aa, of (5.2) is absolutely continuous. Further-
more, the operator M of (1.15) belongs to trace class. In fact, m(x, t)
of (2.2) is now given by m(x, t) = (a?* — ί*)(a?* + ί*)-1. Hence, by an
argument like that of §4, the result follows.

Although it has not been shown that A of (1.3), with k(x, t)
defined by (1.17) and (5.4), is absolutely continuous, nevertheless it
does follow from the Rosenblum-Kato theory that, in view of relation
(5.3), the fact that Aa, is absolutely continuous, and that M is of
trace class, that A has an absolutely continuous part which is unitarily
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equivalent to AΛ,. Whether A itself is absolutely continuous will
remain undecided however.

In case α(x) is given by

(5.5) α(x) = x*

though, then the integral operator K of (1.6) with k(x, t) defined by
(1.17) and (5.5) satisfies (1.7). In fact, Jc(x, t) = (α* - ί*)(α? - t)~ι =
(x* + Φ)~ι and the assertion follows from Lemma 1. Again, it is easily
shown that the operator M of (5.3) belongs to trace class. For now,

m(Xf t) = — L ( r * - χ~i)[(χ4 + Φ)~\x* + rt)-1] .

Since the multiplication operator ar* is bounded on L\E) and since
[•••] is the kernel of an operator satisfying (1.7) (Lemmas 1,2) and
which belongs to trace class (Lemma 3), it follows, as in §4, that M
is of trace class. Thus, in this case, A of (1.3) is unitarily equivalent
to Aβ, of (5.2).

It follows from Lemmas 1, 2 that any function of the form

(5.6) kn(x, t) = (xll2n - tιl2n)(x - t)~ι

is the kernel of an operator K satisfying (1.7). (This can be seen by
factoring (x — ί).) Since

2%(x1/2% - tll2n) = (x1/2% - l)/2~w - (tίl2n -

tends to log x — log t as n —> oo, it is clear that

(5.7) k(x, t) = (log x - log t)(x - ί)" 1

is also a kernel for which K satisfies (1.7). Thus, Jc(x, t) of (1.17) is
such that K satisfies (1.7) whenever a(x) = xlβn (n = 0,1, 2, .) or
α(x) = log x. Use of the lemmas can produce other examples of func-
tions α(x) for which k(x, t) of (1.17) is the kernel of an operator K
satisfying (1.7). Thus, if E is now a compact subset of (1, oo), then
(Lemmas 1, 2), the product of k(x, t) of (5.7) and ((logo?)* + (logί)*)-1,
that is, ((logx)^ — (logt)*)(x — t)~ι, is also such a kernel. An argu-
ment like that used above shows that α(x) = log (log x) is another such
kernel. Similarly, α(x) = log (log (log x)), •••, also serve, with appro-
priate restrictions on the set E.

In view of the possible applications of the Theorem, especially if
k(xf t) is such that K satisfies (1.7), it would be useful to have some
general criterion assuring that a kernel k(x, t) of the type (1.17) is
one for which (1.7) holds.
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