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QUASI-BLOCK-STOCHASTIC MATRICES
W. KuicH

The quasi-block-stochastic matrices are introduced as a
generalization of the block-stochastic and the quasi-stochastic
matrices. The derivation of theorems is possible which are
similar to those derived for block-stochastic matrices by W,
Kuich and K, Walk and for quasi-stochastic matrices by
Haynsworth, Among other theorems the theorem on the
group property, the reduction formula and its application to
nonnegative matrices holds in a modified manner. An example
illustrates the definitions and theorems,

NoTtATION
A = (a) quasi-block-stochastic matrix
A;; block of A
aly element of A"
a™ vector of generalized row sums of A"
a™ 7" generalized row sum of A"
S, = (s;;) matrix of the generalized row sums of the blocks
sy element of S7
stm vector of row sums of S%
s 1™ row sum of S%
I x1 dimension of A
l; x1; dimension of A;;
kxk dimension of S,
I, identity matrix of order [
P permutation matrix
1
. o
e; =| - of dimension I;
d”j+1
U; 7 unit vector of dimension [
v; 1® unit vector of dimension k
mj+1
fi= . > da,
i=n i+l
A eigenvalue
)7 greatest eigenvalue
0;;, =1 for 1 =7
=0 otherwise
%) null matrix
n, =S 1, no=0,
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354 W. KUICH

1. Introduction. A matrix 4 = (a;) (¢, =1, .--,1) is called
quasi-block-stochastic if it may be partitioned into rectangular blocks
(submatrices) A;; with dimension (I; x ;) (¢,5 =1, ---, k)

Au e Alk
(1.1) [ I
k1 ° Akk
and if
(1'2) Aijej = 8,;6; ('i’ j = 1’ cee, k)
where e; is the vector
1 n, = 0
d,.
(1.3) o, =| %
d”j+1 nj:ii_lli G=2,---,k+1)

I
-

k]

with dimension [;, and e; the vector (1.3) with dimension I; (,7 =
1, .-, k)

If there exists a permutation matrix P such that P—AP has the
form (1.1) in connection with (1.2), A is called quasi-block-stochastic,
too. In the following we restrict our attention to matrices which
may be partitioned immediately into blocks.

s;; is some sort of row sum, we call it generalized row sum of
the block-matrix A4;; (1,7 =1, ---, k). Associated with the matrix A
is the matrix of the generalized row sums of its blocks S, = (s;;)
(7:7.7. =1, ""k):

S * 0 S
1.4) S,=:ceeeees
Sk1 *** S

Let f; (=1,+++,k) be an (I x 1) vector with blocks (I; x 1)
(t=1,---,k)

0

nj41 °

fi= 2 du;=|e;
i='nj+1 .

0

and F be the (I x k) matrix whose columns are f; (j =1, ---, k).
If we let AF=C=(C;;) (4,5 =1, ---, k), we have
A11A12 b Alk 610 <0
C=AF = A21A22"’A2k Oe; -+ 0

..................
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The matrix C has blocks C;; which are the (I; x 1) vectors
Ci; = Aije; @, i=1,---,k).
But by (1.2)
Ci; = es;;
which is the block in the (¢, 5) position of the product F'S,.
Thus we have
(1.5) AF = F8S,

which is equivalent to (1.2), but can be used to great advantage in
shortening the proofs of several of the theorems.

Two square matrices of I-th order, A and B are said to be quasi-
block-stochastic in the same manner, if they both may be partitioned
into (I; x l;) block matrices A;;, B;;, respectively, which satisfy (1.2):

(1.6) A,;jej = S.,;je,; and Bijej = t,;jei (7:,.7. = 1, ey, k) .

The quasi-block-stochastic matrices are a generalization of the
block-stochastic-matrices considered by Haynsworth [2] and Kuich,
Walk [6], as well as of the quasi-stochastic matrices, considered by

Haynsworth [3].
Block-stochastic matrices originate from the quasi-block-stochastic
ones by specialization of the vectors e;:

1
1
e;=|: (G=1,---,k).
1
1

Quasi-stochastic matrices consist of only one block which is the
matrix itself

Ae, = s, e,

where ¢, is the vector

61::




356 W. KUICH

In the following section several results on quasi-block-stochastic
matrices are presented which are generalizations of the results ob-
tained by Kuich, Walk [6] and Haynsworth [3].

2. Group properties of quasi-block-stochastic matrices.

THEOREM 1. The set of all mnomsingular matrices which are
quasi-block-stochastic in the same manner forms a group.

Proof. The assumption that A = (4;;) and B = (By;) (¢,5 =1,
-++, k) are quasi-block-stochastic is expressed by (1.5):
AF = FS, and BF = FS;.

Hence

(AB)F = A(F'S;) = F(S,Sk)
so that if we let
2.1) S.Ss = Sz
we have AB quasi-block-stochastic in the same manner. Also

LF = FI,

and

F = A7 (AF) = A™(F'S,)
which yields

A7'F = FS;.

This proves theorem 1.

With (2.1) there follows

THEOREM 2. The transformation mapping the group of matrices
that are quasi-block-stochastic im the same manner onto the group
of matrices of its generalized row sums ts a homomorphism.

3. Powers of quasi-block-stochastic matrices. We denote the
1th generalized row sum of the quasi-block-stochastic matrix A" by
a™:

3.1) ™ = EI‘J ad,; (1=1,+-+,10)

j=1

with
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3.2) d, = d’n1+1 = dn2+1 == dnk+1 =1,

the ¢* (usual) row sum of the matrix S{ by s{™:
k k
(3.3) s =3 8iPd, 0 =3, 87 .
i=1 j=1
We define two series of vectors:

l
a” =Y du;, al"t = Ag™
=1
(3.4) .
8(0) — Zl 5, 3(n+1) — SAS(’IL)
&

where u; and v; are the ¢ unit vectors of dimension ! and k%, respec-
tively.

LEmMMA 1. The ™ component of the vector a™ 1is ai™, 1i.e.,
a™ = A".a'”, the ™ component of the vector s™ 14s s, 1.e., s =
Szs® (n = 1).

Proof. By induction. The lemma is valid for » =1,
Assume

o™ = A

then

a™tt = A e |
Similarly holds
st = S4s
With Theorem 1
(3.5) A"F = FS;

holds.
Because of

A"Fs©® = FS1s®

we get the following.
COROLLARY.
k
(3.6) a® = 3 s,
=1

for all n.
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The corollary admits no immediate converse, since the property
(3.6) does not imply the quasi-block-stochastic structure. We are
interested in matrix properties which, combined with the property
(3.6) assure the quasi-block-stochastic structure.

We now state the following:

LEMMA 2. Linear relations which hold among the vectors
Vyy oo, Vg, SO, 8D, 0ee B
also hold among the vectors
Fis ooy o, @@, a®, oo a®

Proof. We consider the vector equation

k k _
Qe+ > 85 =0
i=1 i=o

which implies that

k

im5i,~+26is§”:0 forj=1,---,k

and
ga@J}+ZBw%~ﬁ for j=1, .-,k
> (S aduss + 3 6 f) -
3 0 + 3803 5
S, é A =0.

THEOREM 3. If the gemeralized row sums of a matric A satisfy
the condition (3.6)

.k
=3, s,

for all n, and if in addition the k vectors

FONFICIN gk—1)
are linearly independent, then the matrixz A s quasi-block-stochastic.

Proof. According to the assumption, we may introduce the
following representations:
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V= 7=0 af‘is(j) (7: = 1’ °t k)
3.1 -
S(k) —_ kzl Bjs(])
=0

and therefore, due to Lemma 2:

k—1
fi::iz_:)ajia(j) (1=1,--+,k)
(3.8) _
a® = kz'l B,a'
i=o

With (3.4)

k=1 k-1
Afi =3 a;Aa? = 3 a;a
j=0 j=0
k=2 ) k=1 )
= ;a9 + o, >, Bial?
0 =0

J=

k=1
= .80 + Z’l (s + @y iB5)at?
=

k=1 ) k=1 ko
= 2, Vua = Z Vi 2 S Sm
J=0 =0 m=1
k

k=1 . k
= meZ%'\/uS%) = Zl Smifm .
i= m=

m=1

The representation Af; = s,;fi + +++ + 8. f, for i =1,

that A is quasi-block-stochastic:

0
An ° A“ A1k
Afi = ceevevenieennnn e;
Apvoe Aieoe Ay .
0
Ali $1:61
=l : Ja={ : (t=1,
Ay SkiCr

This condition is equivalent to condition (1.2).
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4. A reduction formula for quasi-block-stochastic matrices.

We refer to the following theorem of Haynsworth [2]:

Suppose the

(n; x n;) blocks A;; (1,5 =1, ---, t) of the partitioned (N x N) matrix

A satisfy

") AiiXa‘ = X;B;;
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where B;; is a square matrix of order »,0 < » < n,;, with strict in-
equality for at least one value of 7, and X; is an (»; X 7) matrix with
a nonsingular matrix of order », X, in the first » rows. Let the
last n»;, — r rows of X, be X{, and let

Y (A;:ﬂ Ai;“)
iy T .s .
A A

where A{i¥ is square, of order . Then A is similar to the matrix

B D
= (@ c )
where B is a partitioned matrix of order ¢r with blocks B;;, as defined
in (*), and C has blocks
Cis = (A5 — XP(X)AE)
with dimensions (n; — 7) X (n; — 7). If either n; or n; = r, the cor-

responding block C;; does not appear.

THEOREM 4. A quasi-block-stochastic matric A 1is similar to

S, D
(4.1) R= (@ c)'

Proof. Theorem 4 is a special case of the theorem of Haynsworth
[2] cited above. For proof take

N=Lt=kr=1

n=10,X;=e =1 ---k)
Bij = (Sii) (7:’.7 = 17 ""k)
B = SA

and X9, X9, A9, AP, A9, AP in an obvious manner.
The (I — k) x (I — k) matrix C of (4.1) has blocks

Cij = (Al — XPAG) (4,5 =1,+-+,k)
with dimensions (I; — 1) x ({; —1). If either I, or I; =1, the cor-

responding block C;; does not appear.

5. Eigenvectors of quasi-block-stochastic matrices. There is a
simple way of finding an eigenvector of A for each eigenvector of S,,
as is stated in

THEOREM 5. If
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(5.1) T = Zf: T0;

18 an eigenvector belonging to the eigenvalue N, with regard to the
rows of S,, then

(5.2) Y= Zj‘, z; f;

18 an eigenvector belonging to the etgemvalue N with regard to the
rows of A.

Proof. From S,x = Az, there follows by (1.5)
A(Fx) = F(S,x) = MFx) .

Hence y = Fx = 3\t @, f; is an eigenvector belonging to A with regard
to the rows of A.

6. Eigenvalues of nonnegative, irreducible, primitive quasi-
block-stochastic matrices. For the following we consider only quasi-
block-stochastic matrices whose elements are nonnegative and for
which there is no permutation matrix P such that

11 A
(6.1) P—AP = (A )

AZZ
with square sub-matrices A, and A4, or such that

@ A @0
(6.2) PAP=|0 @ A - Q
A © @@

It has been proved by Wielandt [7] that under these conditions,
the irreducibility (6.1) and the primitiveness (6.2), the matrix A has
a positive eigenvalue which is greater than the absolute values of all
other eigenvalues of A and which is associated with a positive eigen-
vector which is the only positive eigenvector of A. We use this
result to prove the following:

THEOREM 8. If the quasi-block-stochastic matrix A and the
matriz S, are nonnegative, further A irreducible and primitive, the
components d(j =1,--,1) of f; (t =1, ---, k) are positive, then the
greatest etgenvalue of A is equal to the greatest eigenvalue of S,.
This means that the eigenvalues of the matriz C (Theorem 4) are
smaller than the greatest eigenvalue of A and S,.
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Proof. The greatest eigenvalue ¢ of S, corresponds to the only
positive eigenvector x,

k
Ty = D Lpil; 2, =0,
i=1
According to Theorem 5 is
k
Yp = ; Luifs
eigenvector of A for the eigenvalue p. g is the greatest eigenvalue
of A, since y, is positive. All other eigenvalues of A have to be
smaller than g, so that all eigenvalues of C are smaller than p.
7. Example. We construct a quasi-block-stochastic matrix by

help of Theorem 3.
Our assumptions are

1 -1 1
S(o) — (1) s(l) — 9 8(2) o 1) ll = 2, lz = 3

1 0
(7.1) 1 1 -1 0
€, = (_1) €, = 1) f1= 0 fz'— 1
-2 0 1
0 -2
We get following representations:
(7.2) s® =359, v, = —g—s“’ — %—s“’ , Vy, = %s“” + %s‘” ;
and due to Lemma 2:
(7.3) a® = aq©® fi= %a,“” %am , fi= _l_am) + —]'—a‘“
Af, = A(—g—a“” - %a‘“) = -g—a“’ — %a“’ =—fith
(7.4)
0 1 1
Afy = A(%a‘ '+ —é—a(“> = Ea( '+ %a‘” = Je
which yields
sy = —1 S =0 -1 0
7.5 = ]
(7.5) $y= 1 S =1 Sa ( 1 1)

By solving the system (7.4) or equivalently A;e; = s;e; (4,7 = 1,2),
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we can get following matrix:

1 213 5 4
2 1|1 5 3
(7.6) A=|1 of1 2 1
2 1(3 0 1
0 2[4 0 3

According to Theorem 4 we can transform A by a similarity trans-
formation to:

-1 0 2 5 4
11 0 21
(7.7) G'AG=| 0 O 3 10 7
00 1 -2 0
0 0 2 4 5
with
1 0/ 0 0 O 1 00 00
-1 1} 0 0 0 0 01 0O
G = 0 0p 1 0 O 01 0 00
0 0f 1L 1 0 0 0 010
0 0|—2 0 1 0 0 0 01
1 0 0 0O
-1 01 00
=| 0 1 0 0 0f.
0 1 010
0 -2 0 0 1

By the reduction formula (7.7) we get the characteristic equation
(7.8) WV —1)(\* — 60 — 25N + 24) = 0.

Eigenvalues which belong to both A and S, are

(7.9) M=1, A=-1

and the eigenvectors with regard to the rows of S, are

7.10 _(° (2
(7.10) le—(l) xzz—(_l>.

According to Theorem 5 we get the eigenvectors with regard to the
rows of A by (7.10);
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Y, = 0-fi+1-f.=

= = O O

(7.11)

Yo, = 2-fi — 1-f, = | —1}.

Thanks are due to Professor O. Taussky Todd who called my
attention to the “Quasi-Stochastic Matrices” of Prof. E. V. Haynsworth.

The author is very indebted to the referee who pointed out rela-
tion (1.5) which shortened and simplified several proofs.
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