QUASI-BLOCK-STOCHASTIC MATRICES

W. Kuich

The quasi-block-stochastic matrices are introduced as a generalization of the block-stochastic and the quasi-stochastic matrices. The derivation of theorems is possible which are similar to those derived for block-stochastic matrices by W. Kuich and K. Walk and for quasi-stochastic matrices by Haynsworth. Among other theorems the theorem on the group property, the reduction formula and its application to nonnegative matrices holds in a modified manner. An example illustrates the definitions and theorems.

Notation

$A=\left(a_{i j}\right)$	i-block-stochastic matrix
$A_{i j}$	block of A
$a_{i j}^{(n)}$	element of A^{n}
$a^{(n)}$	vector of generalized row sums of A^{n}
$a_{i}^{(n)}$	$i^{\text {th }}$ generalized row sum of A^{n}
$S_{A}=\left(s_{i j}\right)$	matrix of the generalized row sums of the blocks
$s_{i j}^{(n)}$	element of S_{4}^{n}
$s^{(n)}$	vector of row sums of S_{A}^{n}
$s_{i}^{(n)}$	$i^{\text {in }}$ row sum of S_{4}^{n}
$l \times l$	dimension of A
$l_{i} \times l_{j}$	dimension of $A_{i j}$
$k \times k$	dimension of S_{A}
I_{l}	identity matrix of order l
P	permutation matrix
$e_{j}=\left(\begin{array}{c} 1 \\ d_{n_{j}+2} \\ \vdots \\ d_{n_{j+1}} \end{array}\right)$	of dimension l_{j}
u_{i}	$i^{\text {in }}$ unit vector of dimension l
v_{i}	$i^{\text {th }}$ unit vector of dimension k
$f_{j}=\sum_{i=n_{j}+1}^{n_{j+1}} d_{i} u_{i}$	
λ	eigenvalue
μ	greatest eigenvalue
$\delta_{i j}=1$	for $i=j$
$=0$	otherwise
\varnothing	null matrix
$n_{j}=\sum_{i=1}^{j-1} l_{i}$	$n_{1}=0$ 。

1. Introduction. A matrix $A=\left(\alpha_{i j}\right)(i, j=1, \cdots, l)$ is called quasi-block-stochastic if it may be partitioned into rectangular blocks (submatrices) $A_{i j}$ with dimension $\left(l_{i} \times l_{j}\right)(i, j=1, \cdots, k)$

$$
A=\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \tag{1.1}\\
\cdots & \cdots & \cdots \\
A_{k 1} & \cdots & A_{k k}
\end{array}\right)
$$

and if

$$
\begin{equation*}
A_{i j} e_{j}=s_{i j} e_{i} \quad(i, j=1, \cdots, k) \tag{1.2}
\end{equation*}
$$

where e_{j} is the vector

$$
e_{j}=\left(\begin{array}{c}
1 \tag{1.3}\\
d_{n_{j}+2} \\
\vdots \\
d_{n_{j+1}}
\end{array}\right) \quad \begin{aligned}
& n_{1}=0 \\
& n_{j}=\sum_{i=1}^{j-1} l_{i}
\end{aligned} \quad(j=2, \cdots, k+1)
$$

with dimension l_{j}, and e_{i} the vector (1.3) with dimension $l_{i} ;(i, j=$ $1, \cdots, k$)

If there exists a permutation matrix P such that $P^{-1} A P$ has the form (1.1) in connection with (1.2), A is called quasi-block-stochastic, too. In the following we restrict our attention to matrices which may be partitioned immediately into blocks.
$s_{i j}$ is some sort of row sum, we call it generalized row sum of the block-matrix $A_{i j}(i, j=1, \cdots, k)$. Associated with the matrix A is the matrix of the generalized row sums of its blocks $S_{A}=\left(s_{i j}\right)$ $(i, j=1, \cdots, k)$:

$$
S_{A}=\left(\begin{array}{ccc}
s_{11} \cdots & s_{1 k} \tag{1.4}\\
\cdots & \cdots & \cdots \\
s_{k 1} & \cdots & s_{k k}
\end{array}\right)
$$

Let $f_{j}(j=1, \cdots, k)$ be an $(l \times 1)$ vector with blocks $\left(l_{i} \times 1\right)$ $(i=1, \cdots, k)$

$$
f_{j}=\sum_{i=n_{j}+1}^{n_{j+1}} d_{i} u_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
e_{j} \\
\vdots \\
0
\end{array}\right)
$$

and F be the $(l \times k)$ matrix whose columns are $f_{j}(j=1, \cdots, k)$. If we let $A F=C=\left(C_{i j}\right)(i, j=1, \cdots, k)$, we have

$$
C=A F=\left(\begin{array}{cccc}
A_{11} A_{12} & \cdots & A_{1 k} \\
A_{21} A_{22} & \cdots & A_{2 k} \\
\cdots & \cdots & \cdots & \cdot \\
A_{k 1} A_{k 2} & \cdots & A_{k k}
\end{array}\right)\left(\begin{array}{ccc}
e_{1} 0 & \cdots & 0 \\
0 e_{2} & \cdots & 0 \\
\cdots \cdots & \cdots & \cdot \\
00 & \cdots & e_{k}
\end{array}\right)
$$

The matrix C has blocks $C_{i j}$ which are the $\left(l_{i} \times 1\right)$ vectors

$$
C_{i j}=A_{i j} e_{j} \quad(i, j=1, \cdots, k)
$$

But by (1.2)

$$
C_{i j}=e_{i} s_{i j}
$$

which is the block in the (i, j) position of the product $F S_{A}$.
Thus we have

$$
\begin{equation*}
A F=F S_{A} \tag{1.5}
\end{equation*}
$$

which is equivalent to (1.2), but can be used to great advantage in shortening the proofs of several of the theorems.

Two square matrices of l-th order, A and B are said to be quasi-block-stochastic in the same manner, if they both may be partitioned into ($l_{i} \times l_{j}$) block matrices $A_{i j}, B_{i j}$, respectively, which satisfy (1.2):

$$
\begin{equation*}
A_{i j} e_{j}=s_{i j} e_{i} \text { and } B_{i j} e_{j}=t_{i j} e_{i}(i, j=1, \cdots, k) \tag{1.6}
\end{equation*}
$$

The quasi-block-stochastic matrices are a generalization of the block-stochastic-matrices considered by Haynsworth [2] and Kuich, Walk [6], as well as of the quasi-stochastic matrices, considered by Haynsworth [3].

Block-stochastic matrices originate from the quasi-block-stochastic ones by specialization of the vectors e_{i} :

$$
e_{i}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right) \quad(i=1, \cdots, k)
$$

Quasi-stochastic matrices consist of only one block which is the matrix itself

$$
A e_{1}=s_{11} e_{1}
$$

where e_{1} is the vector

$$
e_{1}=\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
p \\
\vdots \\
p
\end{array}\right)
$$

In the following section several results on quasi-block-stochastic matrices are presented which are generalizations of the results obtained by Kuich, Walk [6] and Haynsworth [3].
2. Group properties of quasi-block-stochastic matrices.

Theorem 1. The set of all nonsingular matrices which are quasi-block-stochastic in the same manner forms a group.

Proof. The assumption that $A=\left(A_{i j}\right)$ and $B=\left(B_{i j}\right)(i, j=1$, \cdots, k) are quasi-block-stochastic is expressed by (1.5):

$$
A F=F S_{A} \quad \text { and } \quad B F=F S_{B}
$$

Hence

$$
(A B) F=A\left(F S_{B}\right)=F\left(S_{A} S_{B}\right)
$$

so that if we let

$$
\begin{equation*}
S_{A} S_{B}=S_{A B} \tag{2.1}
\end{equation*}
$$

we have $A B$ quasi-block-stochastic in the same manner. Also

$$
I_{l} F=F I_{k}
$$

and

$$
F=A^{-1}(A F)=A^{-1}\left(F S_{A}\right)
$$

which yields

$$
A^{-1} F=F S_{A}^{-1}
$$

This proves theorem 1.
With (2.1) there follows

Theorem 2. The transformation mapping the group of matrices that are quasi-block-stochastic in the same manner onto the group of matrices of its generalized row sums is a homomorphism.
3. Powers of quasi-block-stochastic matrices. We denote the i th generalized row sum of the quasi-block-stochastic matrix A^{n} by $a_{i}^{(n)}$:

$$
\begin{equation*}
a_{i}^{(n)}=\sum_{j=1}^{l} a_{i j}^{(n)} d_{j} \quad(i=1, \cdots, l) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{equation*}
d_{1}=d_{n_{1}+1}=d_{n_{2}+1}=\cdots=d_{n_{k}+1}=1 \tag{3.2}
\end{equation*}
$$

the $i^{\text {th }}$ (usual) row sum of the matrix $S_{A}^{(n)}$ by $s_{i}^{(n)}$:

$$
\begin{equation*}
s_{i}^{(n)}=\sum_{j=1}^{k} s_{i j}^{(n)} d_{n_{j}+1}=\sum_{j=1}^{k} s_{i j}^{(n)} \tag{3.3}
\end{equation*}
$$

We define two series of vectors:

$$
\left.\begin{array}{ll}
a^{(0)}=\sum_{i=1}^{l} d_{i} u_{i}, & a^{(n+1)}=A a^{(n)} \\
s^{(0)}=\sum_{i=1}^{k} v_{i}, & s^{(n+1)}=S_{A} s^{(n)} \tag{3.4}
\end{array}\right\}
$$

where u_{i} and v_{i} are the $i^{\text {th }}$ unit vectors of dimension l and k, respectively.

Lemma 1. The $i^{\text {th }}$ component of the vector $a^{(n)}$ is $a_{i}^{(n)}$, i.e., $a^{(n)}=A^{n} \cdot a^{(0)}$, the $i^{\text {th }}$ component of the vector $s^{(n)}$ is $s_{i}^{(n)}$, i.e., $s^{(n)}=$ $S_{A}^{n} s^{(0)}(n \geqq 1)$.

Proof. By induction. The lemma is valid for $n=1$.
Assume

$$
a^{(n)}=A^{n} a^{(0)}
$$

then

$$
a^{(n+1)}=A^{n+1} a^{(0)} .
$$

Similarly holds

$$
s^{(n)}=S_{A}^{n} s^{(0)} .
$$

With Theorem 1

$$
\begin{equation*}
A^{n} F=F S_{A}^{n} \tag{3.5}
\end{equation*}
$$

holds.
Because of

$$
A^{n} F s^{(0)}=F S_{A}^{n} s^{(0)}
$$

we get the following.
Corollary.

$$
\begin{equation*}
a^{(n)}=\sum_{j=1}^{k} s_{j}^{(n)} f_{j} \tag{3.6}
\end{equation*}
$$

for all n.

The corollary admits no immediate converse, since the property (3.6) does not imply the quasi-block-stochastic structure. We are interested in matrix properties which, combined with the property (3.6) assure the quasi-block-stochastic structure.

We now state the following:
Lemma 2. Linear relations which hold among the vectors

$$
v_{1}, \cdots, v_{k}, s^{(0)}, s^{(1)}, \cdots, s^{(k)}
$$

also hold among the vectors

$$
f_{1}, \cdots, f_{k}, a^{(0)}, a^{(1)}, \cdots, a^{(k)}
$$

Proof. We consider the vector equation

$$
\sum_{i=1}^{k} \alpha_{i} v_{i}+\sum_{i=0}^{k} \beta_{i} s^{(i)}=0
$$

which implies that

$$
\sum_{i=1}^{k} \alpha_{i} \delta_{i j}+\sum_{i=0}^{k} \beta_{i} s_{j}^{(i)}=0 \quad \text { for } j=1, \cdots, k
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{k} \alpha_{i} \delta_{i j} f_{j}+\sum_{i=0}^{k} \beta_{i} s_{j}^{(i)} f_{j}=0 \quad \text { for } j=1, \cdots, k \\
& \sum_{j=1}^{k}\left(\sum_{i=1}^{k} \alpha_{i} \delta_{i j} f_{j}+\sum_{i=0}^{k} \beta_{i} s_{j}^{(i)} f_{j}\right)=0 \\
& \sum_{i=1}^{k} \alpha_{i} \sum_{j=1}^{k} \delta_{i j} f_{j}+\sum_{i=0}^{k} \beta_{i} \sum_{j=1}^{k} s_{j}^{(i)} f_{j}=0 \\
& \sum_{i=1}^{k} \alpha_{i} f_{i}+\sum_{i=0}^{k} \beta_{i} a^{(i)}=0
\end{aligned}
$$

Theorem 3. If the generalized row sums of a matrix A satisfy the condition (3.6)

$$
a^{(n)}=\sum_{j=1}^{k} s_{j}^{(n)} f_{j}
$$

for all n, and if in addition the k vectors

$$
s^{(0)}, s^{(1)}, \cdots, s^{(k-1)}
$$

are linearly independent, then the matrix A is quasi-block-stochastic.
Proof. According to the assumption, we may introduce the following representations:

$$
\left.\begin{array}{rl}
v_{i} & =\sum_{j=0}^{k-1} \alpha_{j i} s^{(j)} \quad(i=1, \cdots, k) \\
s^{(k)} & =\sum_{j=0}^{k-1} \beta_{j} s^{(j)}
\end{array}\right\}
$$

and therefore, due to Lemma 2:

$$
\left.\begin{array}{rl}
f_{i} & =\sum_{j=0}^{k-1} \alpha_{j i} a^{(j)} \quad(i=1, \cdots, k) \tag{3.8}\\
a^{(k)} & =\sum_{j=0}^{k-1} \beta_{j} a^{(j)}
\end{array}\right\}
$$

With (3.4)

$$
\begin{aligned}
A f_{i} & =\sum_{j=0}^{k-1} \alpha_{j i} A a^{(j)}=\sum_{j=0}^{k-1} \alpha_{j i} a^{(j+1)} \\
& =\sum_{j=0}^{k-2} \alpha_{j i} a^{(j+1)}+\alpha_{k-1, i} \sum_{j=0}^{k-1} \beta_{j} a^{(j)} \\
& =\alpha_{k-1, i} \beta_{0} a^{(0)}+\sum_{j=1}^{k-1}\left(\alpha_{j-1, i}+\alpha_{k-1, i} \beta_{j}\right) a^{(j)} \\
& =\sum_{j=0}^{k-1} \gamma_{j i} a^{(j)}=\sum_{j=0}^{k-1} \gamma_{j i} \sum_{m=1}^{k} s_{m}^{(j)} f_{m} \\
& =\sum_{m=1}^{k} f_{m} \sum_{j=0}^{k-1} \gamma_{j i} \delta_{m}^{(j)}=\sum_{m=1}^{k} s_{m i} f_{m} .
\end{aligned}
$$

The representation $A f_{i}=s_{1 i} f_{1}+\cdots+s_{k i} f_{k}$ for $i=1, \cdots, k$ indicates that A is quasi-block-stochastic:

$$
\begin{aligned}
A f_{i} & =\left(\begin{array}{c}
A_{11} \cdots A_{1 i} \cdots A_{1 k} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
A_{k 1} \cdots A_{k i} \cdots A_{k k}
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
e_{i} \\
\vdots \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
A_{1 i} \\
\vdots \\
A_{k i}
\end{array}\right) e_{i}=\left(\begin{array}{c}
s_{1 i} e_{1} \\
\vdots \\
s_{k i} e_{k}
\end{array}\right) \quad(i=1, \cdots, k)
\end{aligned}
$$

This condition is equivalent to condition (1.2).
4. A reduction formula for quasi-block-stochastic matrices. We refer to the following theorem of Haynsworth [2]: Suppose the $\left(n_{i} \times n_{j}\right)$ blocks $A_{i j}(i, j=1, \cdots, t)$ of the partitioned $(N \times N)$ matrix A satisfy

$$
\begin{equation*}
A_{i j} X_{j}=X_{i} B_{i j} \tag{*}
\end{equation*}
$$

where $B_{i j}$ is a square matrix of order $r, 0<r \leqq n_{i}$, with strict inequality for at least one value of i, and X_{i} is an $\left(n_{i} \times r\right)$ matrix with a nonsingular matrix of order $r, X_{1}^{(i)}$, in the first r rows. Let the last $n_{i}-r$ rows of X_{i} be $X_{2}^{(i)}$, and let

$$
A_{i j}=\left(\begin{array}{ll}
A_{11}^{(i j)} & A_{12}^{(i j)} \\
A_{21}^{(i j)} & A_{22}^{(i j)}
\end{array}\right)
$$

where $A_{11}^{(i j)}$ is square, of order r. Then A is similar to the matrix

$$
R=\left(\begin{array}{ll}
B & D \\
\varnothing & C
\end{array}\right)
$$

where B is a partitioned matrix of order $t r$ with blocks $B_{i j}$, as defined in (*), and C has blocks

$$
C_{i j}=\left(A_{22}^{(i j)}-X_{2}^{(i)}\left(X_{1}^{(i)}\right)^{-1} A_{12}^{(i j)}\right)
$$

with dimensions $\left(n_{i}-r\right) \times\left(n_{j}-r\right)$. If either n_{i} or $n_{j}=r$, the corresponding block $C_{i j}$ does not appear.

Theorem 4. A quasi-block-stochastic matrix A is similar to

$$
R=\left(\begin{array}{ll}
S_{A} & D \tag{4.1}\\
\varnothing & C
\end{array}\right)
$$

Proof. Theorem 4 is a special case of the theorem of Haynsworth [2] cited above. For proof take

$$
\begin{array}{ll}
N=l, t=k, r=1 & \\
n_{i}=l_{i}, X_{i}=e_{i} & (i=1, \cdots, k) \\
B_{i j}=\left(s_{i j}\right) & (i, j=1, \cdots, k) \\
B=S_{A} &
\end{array}
$$

and $X_{1}^{(i)}, X_{2}^{(i)}, A_{11}^{(i j)}, A_{12}^{(i j)}, A_{21}^{(i j)}, A_{22}^{(i j)}$ in an obvious manner.
The $(l-k) \times(l-k)$ matrix C of (4.1) has blocks

$$
C_{i j}=\left(A_{22}^{(i j)}-X_{2}^{(i)} A_{12}^{(i j)}\right) \quad(i, j=1, \cdots, k)
$$

with dimensions $\left(l_{i}-1\right) \times\left(l_{j}-1\right)$. If either l_{i} or $l_{j}=1$, the corresponding block $C_{i j}$ does not appear.
5. Eigenvectors of quasi-block-stochastic matrices. There is a simple way of finding an eigenvector of A for each eigenvector of S_{A}, as is stated in

Theorem 5. If

$$
\begin{equation*}
x=\sum_{i=1}^{k} x_{i} v_{i} \tag{5.1}
\end{equation*}
$$

is an eigenvector belonging to the eigenvalue λ, with regard to the rows of S_{A}, then

$$
\begin{equation*}
y=\sum_{i=1}^{k} x_{i} f_{i} \tag{5.2}
\end{equation*}
$$

is an eigenvector belonging to the eigenvalue λ with regard to the rows of A.

Proof. From $S_{A} x=\lambda x$, there follows by (1.5)

$$
A(F x)=F\left(S_{A} x\right)=\lambda(F x)
$$

Hence $y=F x=\sum_{i=1}^{k} x_{i} f_{i}$ is an eigenvector belonging to λ with regard to the rows of A.
6. Eigenvalues of nonnegative, irreducible, primitive quasi-block-stochastic matrices. For the following we consider only quasi-block-stochastic matrices whose elements are nonnegative and for which there is no permutation matrix P such that

$$
P^{-1} A P=\left(\begin{array}{cc}
A_{11} & A_{12} \tag{6.1}\\
\varnothing & A_{22}
\end{array}\right)
$$

with square sub-matrices A_{11} and A_{22} or such that

$$
P^{-1} A P=\left(\begin{array}{ccccc}
\varnothing & A_{1} & \varnothing & \cdots & \varnothing \tag{6.2}\\
\varnothing & \varnothing & A_{2} & \cdots & \varnothing \\
A_{t} & \varnothing & \varnothing & \cdots & \varnothing
\end{array}\right)
$$

It has been proved by Wielandt [7] that under these conditions, the irreducibility (6.1) and the primitiveness (6.2), the matrix A has a positive eigenvalue which is greater than the absolute values of all other eigenvalues of A and which is associated with a positive eigenvector which is the only positive eigenvector of A. We use this result to prove the following:

Theorem 8. If the quasi-block-stochastic matrix A and the matrix S_{A} are nonnegative, further A irreducible and primitive, the components $d_{j}(j=1, \cdots, l)$ of $f_{i}(i=1, \cdots, k)$ are positive, then the greatest eigenvalue of A is equal to the greatest eigenvalue of S_{A}. This means that the eigenvalues of the matrix C (Theorem 4) are smaller than the greatest eigenvalue of A and S_{A}.

Proof. The greatest eigenvalue μ of S_{A} corresponds to the only positive eigenvector x_{μ}

$$
x_{\mu}=\sum_{i=1}^{k} x_{\mu_{i}} v_{i} \quad x_{\mu_{i}} \geqq 0
$$

According to Theorem 5 is

$$
y_{\mu}=\sum_{i=1}^{k} x_{\mu_{i}} f_{i}
$$

eigenvector of A for the eigenvalue $\mu . \mu$ is the greatest eigenvalue of A, since y_{μ} is positive. All other eigenvalues of A have to be smaller than μ, so that all eigenvalues of C are smaller than μ.
7. Example. We construct a quasi-block-stochastic matrix by help of Theorem 3.

Our assumptions are

$$
\begin{align*}
& s^{(0)}=\binom{1}{1} \quad s^{(1)}=\binom{-1}{2} \quad s^{(2)}=\binom{1}{1} \quad l_{1}=2, l_{2}=3 \\
& e_{1}=\binom{1}{-1} \quad e_{2}=\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right) \quad f_{1}=\left(\begin{array}{r}
1 \\
-1 \\
0 \\
0 \\
0
\end{array}\right) \quad f_{2}=\left(\begin{array}{r}
0 \\
0 \\
1 \\
1 \\
-2
\end{array}\right) . \tag{7.1}
\end{align*}
$$

We get following representations:

$$
\begin{equation*}
s^{(2)}=s^{(0)}, \quad v_{1}=\frac{2}{3} s^{(0)}-\frac{1}{3} s^{(1)}, \quad v_{2}=\frac{1}{3} s^{(0)}+\frac{1}{3} s^{(1)} ; \tag{7.2}
\end{equation*}
$$

and due to Lemma 2:

$$
\begin{equation*}
a^{(2)}=a^{(0)} ; \quad f_{1}=\frac{2}{3} a^{(0)}-\frac{1}{3} a^{(1)}, \quad f_{2}=\frac{1}{3} a^{(0)}+\frac{1}{3} a^{(1)} \tag{7.3}
\end{equation*}
$$

$$
\left.\begin{array}{l}
A f_{1}=A\left(\frac{2}{3} a^{(0)}-\frac{1}{3} a^{(1)}\right)=\frac{2}{3} a^{(1)}-\frac{1}{3} a^{(2)}=-f_{1}+f_{2} \tag{7.4}\\
A f_{2}=A\left(\frac{1}{3} a^{(0)}+\frac{1}{3} a^{(1)}\right)=\frac{1}{3} a^{(1)}+\frac{1}{3} a^{(2)}=f_{2}
\end{array}\right\}
$$

which yields

$$
\begin{array}{ll}
s_{11}=-1 & s_{12}=0 \tag{7.5}\\
s_{21}=1 & s_{22}=1
\end{array} \quad S_{A}=\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right)
$$

By solving the system (7.4) or equivalently $A_{i j} e_{j}=s_{i j} e_{i}(i, j=1,2)$,
we can get following matrix:

$$
A=\left(\begin{array}{cc|ccc}
1 & 2 & 3 & 5 & 4 \tag{7.6}\\
2 & 1 & 1 & 5 & 3 \\
\hline 1 & 0 & 1 & 2 & 1 \\
2 & 1 & 3 & 0 & 1 \\
0 & 2 & 4 & 0 & 3
\end{array}\right)
$$

According to Theorem 4 we can transform A by a similarity transformation to:

$$
G^{-1} A G=\left(\begin{array}{rrrrr}
-1 & 0 & 2 & 5 & 4 \tag{7.7}\\
1 & 1 & 0 & 2 & 1 \\
0 & 0 & 3 & 10 & 7 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 2 & 4 & 5
\end{array}\right)
$$

with

$$
\begin{aligned}
& G=\left(\begin{array}{rr|rrr}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & -2 & 0 & 1
\end{array}\right)\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & -2 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

By the reduction formula (7.7) we get the characteristic equation

$$
\begin{equation*}
\left(\lambda^{2}-1\right)\left(\lambda^{3}-6 \lambda^{2}-25 \lambda+24\right)=0 \tag{7.8}
\end{equation*}
$$

Eigenvalues which belong to both A and S_{A} are

$$
\begin{equation*}
\lambda_{1}=1, \quad \lambda_{2}=-1 \tag{7.9}
\end{equation*}
$$

and the eigenvectors with regard to the rows of S_{A} are

$$
\begin{equation*}
x_{\lambda_{1}}=\binom{0}{1} \quad x_{\lambda_{2}}=\binom{2}{-1} . \tag{7.10}
\end{equation*}
$$

According to Theorem 5 we get the eigenvectors with regard to the rows of A by (7.10);
(7.11)

$$
\begin{aligned}
& y_{\lambda_{1}}=0 \cdot f_{1}+1 \cdot f_{2}=\left(\begin{array}{r}
0 \\
0 \\
1 \\
1 \\
-2
\end{array}\right) . \\
& y_{\lambda_{2}}=2 \cdot f_{1}-1 \cdot f_{2}=\left(\begin{array}{r}
2 \\
-2 \\
-1 \\
-1 \\
2
\end{array}\right) .
\end{aligned}
$$

Thanks are due to Professor O. Taussky Todd who called my attention to the "Quasi-Stochastic Matrices" of Prof. E. V. Haynsworth.

The author is very indebted to the referee who pointed out relation (1.5) which shortened and simplified several proofs.

References

1. A. Brauer, Limits for the characteristic roots of a matrix IV, Duke Math. J. 19 (1952), 75-91.
2. E. V. Haynsworth, Applications of a theorem on partitioned matrices, J. Research NBS 62 B(1959), 73-78.
3. - Quasi-stochastic matrices, Duke Math. J. 22 (1955), 15-24.
4. —, A reduction formula for partitioned matrices, J. Research NBS 64 B(1960), 171-174.
5. -, Special types of partitioned matrices, J. Research NBS 65 B(1961), 7-12. 6. W. Kuich and K. Walk, Block-stochastic matrices and associated finite state languages, Computing 1 (1966), 50-61.
6. H. Wielandt, Unzerlegbare nicht negative Matrizen, Math. Z. 52 (1950), 642-648.

Received July 14, 1966.
IBM Laboratory
Vienna, Austria

