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QUASI-BLOCK-STOCHASTIC MATRICES

W. KUICH

The quasi-block-stochastic matrices are introduced as a
generalization of the block-stochastic and the quasi-stochastic
matrices. The derivation of theorems is possible which are
similar to those derived for block-stochastic matrices by W.
Kuich and K. Walk and for quasi-stochastic matrices by
Haynsworth. Among other theorems the theorem on the
group property, the reduction formula and its application to
nonnegative matrices holds in a modified manner. An example
illustrates the definitions and theorems.

NOTATION

A = (αίy)

γ(Λ)

SA =

s(n)

I x I

h x lj
k x k

\dnjj

quasi-block-stochastic matrix

block of A

element of An

vector of generalized row sums of An

ith generalized row sum of An

matrix of the generalized row sums of the blocks

element of Si

vector of row sums of Si

ith row sum of Si

dimension of A

dimension of Ai3-

dimension of SA

identity matrix of order I

permutation matrix

of dimension lά

iίh unit vector of dimension I

ith unit vector of dimension k

fj

X

μ

(7)

= 1

- 0

eigenvalue

greatest eigenvalue

for i = j

otherwise

null matrix

t = 0 .
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l I n t r o d u c t i o n . A matr ix A = (<%) (i, j = 1, •••, i) is called
quasi-block-stochastic if it may be partitioned into rectangular blocks
(submatrices) Ai5 with dimension (l{ x Zi) ( ί , i = !,•••,&)

(1.1)

and if

(1.2) Atje

where βj is the vector

Ί \

(1.3) «,=

\Atί"ΆkJ

Ή (i, 3 = 1,

h. = 0

j = 2,

with dimension iy, and e4 the vector (1.3) with dimension l{; (i, i =
1, ...,fc)

If there exists a permutation matrix P such that P~XAP has the
form (1.1) in connection with (1.2), A is called quasi-block-stochastic,
too. In the following we restrict our attention to matrices which
may be partitioned immediately into blocks.

Sij is some sort of row sum, we call it generalized row sum of
the block-matrix Ais- (i,j = 1, •••,&). Associated with the matrix A
is the matrix of the generalized row sums of its blocks SA — (sίd)

Slk

Let fj (j = 1, •••,&) be an (ϊ x 1) vector with blocks (l{ x 1)
(ϊ = l, ...,fe)

y 0 \

i+i

Λ = Σ <*<«« =

\o/
and i77 be the (I x A;) matrix whose columns are /,- (j = 1,

If we let AF = C = (Cfi) (i, j = 1, , k), we have

(AnA12 ••Ά.Λ

C =

" λ ; l " A

efi
0e2

00

... o }

... o

••• ekl

,k).
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The matrix C has blocks Ci5 which are the (lt x 1) vectors

C{j = A i j β j ( i , j = 1 , • • • , & ) .

But by (1.2)

which is the block in the (i,j) position of the product FSA.
Thus we have

(1.5) AF = FSA

which is equivalent to (1.2), but can be used to great advantage in
shortening the proofs of several of the theorems.

Two square matrices of ϊ-th order, A and B are said to be quasi-
block-stochastic in the same manner, if they both may be partitioned
into (li x lj) block matrices Aih Bi3, respectively, which satisfy (1.2):

(1.6) Aiάeά = Sifr and Biάeά = t^ (i, j = 1, . , k) .

The quasi-block-stochastic matrices are a generalization of the
block-stochastic-matrices considered by Haynsworth [2] and Kuich,
Walk [6], as well as of the quasi-stochastic matrices, considered by
Haynsworth [3].

Block-stochastic matrices originate from the quasi-block-stochastic
ones by specialization of the vectors e{\

H\
1

1

1

Quasi-stochastic matrices consist of only one block which is the
matrix itself

where et is the vector

/ I \

1

P

\pl
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In the following section several results on quasi-block-stochastic
matrices are presented which are generalizations of the results ob-
tained by Kuich, Walk [6] and Haynsworth [3].

2* Group properties of quasi-block-stochastic matrices*

THEOREM 1. The set of all nonsίngular matrices which are
quasi-block-stochastic in the same manner forms a group.

Proof. The assumption t h a t A = (A^ ) and B = (JB^ ) (i,j = 1,
•••,&) are quasi-block-stochastic is expressed by (1.5):

AF = FSA and BF = FSB .

Hence

(AB)F = A(FSB) = F(SASB)

so that if we let

(2.1) SΛSB = SAB

we have AB quasi-block-stochastic in the same manner. Also

IiF = FIk

and

F - A-ι{AF) = A~\FSA)

which yields

A~XF - FSA

ι .

This proves theorem 1.

With (2.1) there follows

THEOREM 2. The transformation mapping the group of matrices
that are quasi-block-stochastic in the same manner onto the group
of matrices of its generalized row sums is a homomorphism.

3* Powers of quasi-block-stochastic matrices* We denote the
ith generalized row sum of the quasi-block-stochastic matrix An by

(3.1)

with
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(3.2) dι = d%1+1 — dn2+1 = = d%k+1 = 1 ,

the t t h (usual) row sum of the matrix S ϊ ) by s^°:

A;
(«) _ V

i

We define two series of vectors:

<3 4 ) 7
θ(0) — V 7? Q(« + 1) — Of Q(»)

where t6€ and ^̂  are the ith unit vectors of dimension I and &, respec-
tively.

LEMMA 1. The ith component of the vector a{n) is aln), i.e.,

α(») _ ^ . α ( o ) y ^ e ^h component of the vector s{n) is sin\ i.e., s{n) =

Proof. By induction. The lemma is valid for n = 1.
Assume

then

Similarly holds

β(») = S

With Theorem 1

(3.5) AnF =

holds.

Because of

AnFs{0) =

we get the following.

COROLLARY.

(3.6) a{n) = Σ

/or all n.
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The corollary admits no immediate converse, since the property
(3.6) does not imply the quasi-block-stochastic structure. We are
interested in matrix properties which, combined with the property
(3.6) assure the quasi-block-stochastic structure.

We now state the following:

LEMMA 2. Linear relations which hold among the vectors

v l f •••,%, s ( 0 > , s ( 1 > , • • - , * < * >

also hold among the vectors

Proof. We consider the vector equation

Σ ottvt +

which implies that

t = l 1=0

and

Σ <x$is + Σ Asf = 0 for j = 1, , k

Σ OL^fi + Σ βfiTfi = 0 for j = 1, , k

Σ
k k

Σ atft + Σ A«(i) = 0 .
» = 1 * = 0

THEOREM 3. If the generalized row sums of a matrix A satisfy
the condition (3.6)

α< > =
/or all n, and if in addition the k vectors

Q(0) Q . . .

are linearly independent, then the matrix A is quasi-block-stochastic*

Proof. According to the assumption, we may introduce the
following representations:
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Vt =

(3.7)

and therefore,

(3.8)

With (3.4)

s

due

a

(»>

to

(k)

i=o
k-1

Lemma 2:

k-l

— Σ cί o}j

i=o

J f c - 1

i=o

J f c - 1

— y a-
i=o
fe-2

i=o

= « * ! < /

k-1

— y 7..
/ J I JZ

i=o

A /Ύ (
k-ί

j) — y <
i=o

fc-l

fe-l

— y 7.

k-

k

. Σ
fe J f e - l fc

— V f V Ύ Q '̂) = V^ j J m / \ I ji°m s '

The representation Aft = s^^ +
that A is quasi-block-stochastic:

( A n ••• A ^ ••• A U

N

γ ( i )

for i — 1, , k indicates

\ 0

IAH /Siiβi

This condition is equivalent to condition (1.2).

4* A reduction formula for quasi-block-stochastic matrices*
We refer to the following theorem of Haynsworth [2]: Suppose the
(Ui x ns) blocks Ai3- (ί, j = 1, , ί) of the partitioned (N x N) matrix
A satisfy

( * )
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where Bi3 is a square matrix of order r, 0 < r ^ ni9 with strict in-
equality for at least one value of i9 and X{ is an (% x r) matrix with
a nonsingular matrix of order r, Xlί], in the first r rows. Let the
last Πi — r rows of X{ be X2

(ί), and let

( J^iij) J^iij)

where AJĵ  is square, of order r. Then A is similar to the matrix

(B D'

where JS is a partitioned matrix of order tr with blocks JS^ , as defined
in (*), and C has blocks

with dimensions (n{ — r) x (n3- — r) . If either nt or % = r, the cor-
responding block Ci3 does not appear.

THEOREM 4. A quasi-block-stochastic matrix A is similar to

(4.1) R =

Proof. Theorem 4 is a special case of the theorem of Haynsworth
[2] cited above. For proof take

and Zi ( ί ), JΓ2

(ί), Aί;y), Aίii}, AίfJ"}, A^J>) in an obvious manner.
The (I - k) x (I - k) matrix C of (4.1) has blocks

CiS = (ilίίJ) - X2

(<)Aίί^) (i, i = 1, , k)

with dimensions (lζ — 1) x (ld — 1). If either l{ or Ϊ5 = 1, the cor-
responding block Ci:} does not appear.

5* Eigenvectors of quasi-block^stochastic matrices* There is a
simple way of finding an eigenvector of A for each eigenvector of SA,
as is stated in

THEOREM 5. / /
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k

(5.1) x = Σ av<

is an eigenvector belonging to the eigenvalue λ, with regard to the
rows of SA, then

(5.2) y = Σ> Vifi

is an eigenvector belonging to the eigenvalue λ with regard to the
rows of A.

Proof. From SAx — Xx, there follows by (1.5)

A(Fx) = F(SAx) = X(Fx) .

Hence y = Fx = 2JJ= 1 a?../̂  is an eigenvector belonging to λ with regard
to the rows of A.

6+ Eigenvalues of nonnegative, irreducible, primitive quasi'
block-stochastic matrices* For the following we consider only quasi-
block-stochastic matrices whose elements are nonnegative and for
which there is no permutation matrix P such that

(6.1) f
\0

with square sub-matrices An and A22 or such that

(6.2) P~ιAP = 1 0 0 Λ 0

0 •••

It has been proved by Wielandt [7] that under these conditions,
the irreducibility (6.1) and the primitiveness (6.2), the matrix A has
a positive eigenvalue which is greater than the absolute values of all
other eigenvalues of A and which is associated with a positive eigen-
vector which is the only positive eigenvector of A. We use this
result to prove the following:

THEOREM 8. // the quasi-block-stochastic matrix A and the
matrix SA are nonnegative, further A irreducible and primitive, the
components dό{j = 1, , I) of /< (i = 1, , k) are positive, then the
greatest eigenvalue of A is equal to the greatest eigenvalue of SA.
This means that the eigenvalues of the matrix C (Theorem 4) are
smaller than the greatest eigenvalue of A and SA.
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Proof. The greatest eigenvalue μ of SA corresponds to the only-
positive eigenvector xμ

%μ =

According to Theorem 5 is

k

Vμ = Σ Xμifi

eigenvector of A for the eigenvalue μ. μ is the greatest eigenvalue
of A, since yμ is positive. All other eigenvalues of A have to be
smaller than μ, so that all eigenvalues of C are smaller than μ.

7 Example* We construct a quasi-block-stochastic matrix by
help of Theorem 3.

Our assumptions are

(7.1)

e, = - 1

- 1

2
I, = 2, Z, = 3

1'
- 1

0

0

o,

fi —

01

0

1

1

- 2

We get following representations:

(7.2) s(2) = s(0) , v, = — s(0) - — s
o o

and due to Lemma 2:

{ί.ό) a —a , Jι = —a — —
o o

^L/i — ^LI —-α — — α i — -

s < 0 ) —
3

(7.4)

which yields

(7.5) S u = ~\

/2 = ±-a
o

- | α - = - f ι

s12 = 0

s22 = 1

-1 0

1 1

By solving the system (7.4) or equivalently = 8 ^ (ΐ, j = 1, 2),
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1
2

1

2

0

2
1

0

1

2

3
1

1

3

4

5
5

2

0

0

4
3

1

1

3,

we can get following matrix:

(7.6)

According to Theorem 4 we can transform A by a similarity trans-
formation to:

(7.7)

with

(

=

1

- 1

0

0

0

l-'AG

1

- 1

0

0

, 0

0

0

1

1

- 2

0

1

0

0

0

0

1

0

0

0

- 1
1

0

0

0

0

0

1

1

- 2

0

0

0

1

0

(
]

(

(

(

0

0

0

1

0

01

0

0

0

1

)

L

)

)

)

0

0

0

0

1

2
0

3

1

2

1

0

0

0

0

5
2

10

- 2

4

0

0

1

0

0

4'
1

7

0

5

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

By the reduction formula (7.7) we get the characteristic equation

(7.8) (λ2 - l)(λ3 - 6λ2 - 25λ + 24) - 0 .

Eigenvalues which belong to both A and SΛ are

(7.9) ^ = 1 , λ, = - 1

and the eigenvectors with regard to the rows of SA are

(0\ I 2\
(7.10)

- 1

According to Theorem 5 we get the eigenvectors with regard to the
rows of A by (7.10);



364 W. KUICH

(7.11)

-!•/,=

Thanks are due to Professor 0. Taussky Todd who called my
attention to the "Quasi-Stochastic Matrices" of Prof. E. V. Haynsworth.

The author is very indebted to the referee who pointed out rela-
tion (1.5) which shortened and simplified several proofs.
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