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ON MATRICES ASSOCIATED WITH GENERALIZED
INTERPOLATION PROBLEMS

DOUGLAS N. CLARK

Two classical interpolation theorems, due to Carathέodory
—Fejέr and Nevanlinna—Pick, deal with classes of functions
analytic in the unit disk which take certain prescribed values
at finitely many points there. The theorems express certain
extrema of these classes as eigenvalues of finite matrices.
In this paper, there is given a generalization of this type of
interpolation, which involves inner functions. It is seen that
a certain theorem about Hankel matrices and projections of
Toeplitz matrices generalizes both of the above interpolation
theorems. The theorem also provides a generalization of some
recent work of the author on meromorphic interpolation and a
continuous analogue of a theorem on Toeplitz forms and inter-
polation. Finally, the theorem has some consequences in the
theory of infinite Hankel matrices.

In 1957, Nehari [8] obtained the norm of the infinite Hankel ma-

trix

(1.1) ^f = (aj+k^) (j, k = 1, 2, .. , Σ I dj I2 <

as the infimum of the expressions

where 0 < φ <; 2π and {bj} runs over all square-summable sequences.
Nehari's theorem can be considered as a generalization of a theorem
of Caratheodory and Fejer: given n + 1 complex numbers c0, cu , en9

let S be the set of all functions f(z) analytic in | z | < 1 and with a
power series of the form f(z) = c0 + cλz + + cnz

n + zn+ί(- •). Then
inf \\f(eiψ) ||L for feS is the norm of a finite matrix j^f which is
unitarily equivalent to ^ T J T * (cf. [2]).

To make it clear why we want to call Nehari's theorem a general-
ized interpolation theorem, we adopt a definition similar to that of
Sarason [11]:

DEFINITION 1.1. Let f(z), fo(z) e H2 (Hardy space of the unit disk),
f0 an inner function (i.e., \fo(eiφ) \ = 1, a.e.). A function W(z)eH2

will be said to interpolate f(z) at f0 if there exists a function
e H2 such that
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(1.2) fiz) = W(z) + g^Uz) .

If ^f is given by (1.1), let us write 2tf = ,2T(e^F) for any
function F(eiφ) e L2(0, 2π) satisfying

2τr Jo

In this notation, if /, f0 are as in Definition 1.1, the norm of
r^(eiφfof) is given, according to Nehari, by \\e%f(eiψfQf)\\ = mί
|| A(βίί0) ||oo for h running over the class of functions which interpolate
/ at U

In a recent paper, Sarason [11] showed how this type of theorem
can also be made to include the classical Nevanlinna-Pick theorem
(i.e., concerning Definition 1.1 when f0 is a finite Blaschke product
with distinct zeros).

Our main theorem (Theorem 2.1 below) can be considered as the
right half-plane analogue of the theorems of Nehari and Sarason.
Actually, it is a simple consequence of Nehari's theorem and of a
generalization of [1, Corollary 2.1]. It seems to give a more direct
approach to both the Caratheodory—Fejer and Nevanlinna-Pick theo-
rems, and it allows us to write down the analogue of the Nevanlinna-
Pick matrix for the case in which f0 is a Blaschke product with mul-
tiple zeros (§3) (i.e., the case in which we want to interpolate / and
certain of its derivatives at finitely many points).

With this approach, we are also able to generalize the interpola-
tion theorems of [2] to this situation (§ 4).

In § 5, we consider certain integral operators of the Wiener-Hopf
type and obtain a continuous analogue of Caratheodory-Fejer's theorem.

In § 6, we apply our resuts to the theory of infinite Hankel ma-
trices.

2* Main theorem* Let £@ be a linear operator on a Hubert
space X. Throughout this section, we make the following.

Convention. By " . ^ is onto" we understand "& is onto the
closure of its range, R(&)" By .^~ 1 we understand the generalized
inverse of ^ , i.e., .^~ιx = 0 if x JL R(&) and if xeR(&), ^~'x
is the (unique) element y in the pre-image of x such that y 1 N(0f)9

the nullspace of &.

For a function f(ei(p) e L2(0, 2π), we define the Laurent operator
J*f(f) on L2 by j*f(f)x = fx, on the set of x e L2 for which xfeL2.
If also feH\ we define the analytic Toeplitz operator ^ " ( / ) as the
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restriction of £?(f) to H2, i.e., the operator j ^ ~ with domain
= {x G H2: xfeH2} and satisfying jrx = fx for x e D{^~).

The action of the matrix £έf(ei(?F) (FeL2) on H2 (with respect
to the basis 1, eiφ, e2iψ, of H2, can be described as follows: For
x 6 ίP , the function ^ F belongs to L1 and has a Fourier series xF ~
Σ-ooXneίnφ. Now xeD(£^(eiφF)) whenever y{eiψ) = Σ=«»ne<W9> e L8, in
which case ge?(βiφF)x = e"iφy(e"^) e H2.

For F(eiψ) e L2, we will use the operator ^(F) defined by

Furthermore, the operator ^f_ is defined on L2 by

If /0 G if2 is an inner function, the subspace of all H2 functions
of the form fo(z)x(z), xeH2, will be denoted f0H

2.
Finally, for x(φ)eL2, x*(φ) will denote the function x{ — φ).
We need the following generalization of [1, Corollary 2.1].

LEMMA 2.1. Let fo(z) e H2 be an inner function. Let f(z), g(z)
be H2 functions, at least one of which belongs H°°. Then

(2.1)

where

L#, x G H2 .

Actually, for the remainder of this section, we will be assuming
both / and g belong to H°°. The full force of Lemma 2.1, however,
will be used in § 6.

Proof. For

x(e^) e

let y(e**) = β^(e^fQg)x. Thus

)x(e^) = y{e~i<p) + e^y^η, y.eH1

eiψfofgx = e

where either y^H2 (if geH00) or feH°°. Thus, in either case,
eH\ so that
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which proves (2.1).

LEMMA 2.2. Let fQ,F,G, WeH*3, f0 inner. Let G W interpo-
late F at f0. Suppose further that ^ίf{eiψf0Gγι is hounded. Then

(2.2)

In particular, if F = 1 — J, G = 1 + J, where 11 + J | > c > 0 in
\z\ < 1, then W(z) = F/GeH00, £έf{ei(?f0GYι is bounded and

(2.3) ^ ( ^ - ΐ f (β /̂o W)W

on K = (/cfiϊ2)1, where & is the orthogonal projection onto K.

For more about the invertibility of <^f{eiφfQG), see §6 below.

Proof. Since GW interpolates F at /0, we have F — WG + fQgL.
Thus, by Lemma 2.1, β^(eiφf0F) => Sίfifi^G^Sίfiβ^W) and the
two are equal, since the right side is bounded. Now, since R(^) =
(/off2)1 = N{^f{eiφfG)Y, we see that ^f{eiφfG) invertible implies

Taking ad joints,

Multiplying the last two relations gives

(2.4) β^(ei^foGY1^(eiψfoF)^

But now it is easy to see that

Adding this to (2.4) gives (2.1).

In case F = 1 — J, (? = 1 + J, it is easily seen from Lemma 2.1
applied with g = 1 + J, / = (1 + J)" 1 that ^f(e^f0G) is invertible.
if(β4*/o(l - J)) - ^(e^/o(l + J)) - 2(jΓ-(J*) + ^"(J*)*) follows easi-
ly from the characterization ^"(J*)*ίc = έ^+J*x, where xeH2 and
^ + is the orthogonal projection from L2 to H2 (cf. [2]).

Now we can state our main result.

THEOREM 2.1. Let f(z), fo(z) e H°°, f0 an inner function. Let S
be the set of H2 functions which interpolate f at f0. Let & be the
orthogonal projection on K — (ffH2)1. Then
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μQ = sup inf Re h(z)
heS | z | < l

is the smallest point of the spectrum of

the restriction of &*[^~(f*) + J^~(/*)*] to K.

REMARK. The classical interpolation theorems mentioned above,
do not include the requirement S c H2. This requirement is neces-
sary if we are to consider interpolation with respect to an inner func-
tion which is not a Blaschke product. In case fQ is a Blaschke pro-
duct, however, the requirement may more conveniently be dropped
<cf. Corollary 3.1).

Proof. Let ε > 0 and suppose S contains an h(z) e H2 with
Re h(z) > μ0 — ε in | z j < 1. Let hε(z) = h(z) — μ0 + ε. Then

and

<2.5)

by Nehari [8]. Now we can apply Lemma 2.2 with W(z) = gε(z) and
J(z) = hε(z), and obtain

(2.6) J?- W{e^fogε) = 2^*<^<^(jr(h*) + ^(h.*)*)&>.^ *<Zf

where & = &r(e**fo(l - hε))~ι. Thus (2.5) implies || ^(e^fogε) || < 1,
so that the right side of (2.6) is a nonnegative operator. It is easy
to see that this implies

0 < 4 4

Thus, if we note that h interpolating / at f0 implies ^~κ{h) =
we see that

<2.7) J_^^(/)>^ 0 .
Δ

To complete the proof of the theorem. Choose an h e S with
Ee h(z) > μQ - δ in | z \ < 1, for some 0 < δ < 1. It is easily seen that
(2.6) holds with ε = 0 and that all operators involved are bounded.
Now if the strict inequality holds in (2.7), we see from (2.6) with
ε = 0 that l l^β^o/o)! ! < 1 and by Nehari's Theorem there is a
g(z) e H°°, I g(eiψ) \ < C < 1 and g interpolates g0 at fQ. Let
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Notice t h a t

Qι _ ho = (1 - g)(l +g)-> - (1 -go)(l + g^1 = (<7o - </)[(l + flr)(l + 9o)Γ

so gx interpolates h0 (and hence / — μQ) at /0. But Re g1 >̂ c' > 0
which contradicts the definition of μ0.

3* The classical interpolation theorems* In this section, we
deal with the instance of Theorem 2.1 in which f0 is a finite Blaschke
product. First, we make a simple observation.

COROLLARY 3.1. In case f0 is a Blaschke product (finite or in-
finite) Theorem 2.1 is correct if the class S is replaced by the class
of functions analytic in | z \ < 1 which vanish at the zeros of f0.

The proof is clear from that of Theorem 2.1.

Now we turn to the case in which fQ is a finite Blaschke product*
We will consider separately the cases in which (a) fo(z) = zn+ί, (b)
fo(z) has distinct zeros and (c) the general case.

(a) Theorem 2.1 (i.e., Corollary 3.1) with fo(z) = zn+1 is precisely
the classical Caratheodory-Fejer theorem in the following form:

THEOREM 3.1. (Caratheodory-Fejer). Given n + 1 constants cQr

Cu *' i cm <?o τeal, let S be the set of all functions f(z) analytic in
I z I < 1 and with a power series of the form f(z) = c0 4- 2cγz + •
+ 2cnz

n + zn+1(- >). Then sup / e 5 inf | z | < 1Re/(2) is the smallest eigen-
value of the Toeplitz matrix (cό_k), j , k — 0, , n, c_k — ck.

See [11] for references.

(b) Let fo(z) = ΠIU(2 — oίv)l(l — άuz), av distinct. In this case,
K = (ftH2)L is spanned by the functions pά(z) = (1 - aάz)-1. These
functions do not form an orthonormal basis for K, but the matrix,
for J7~κ{f) is nonnegative definite if and only if the matrix (cjk) —

Pk)) is. An easy computation yields

1 + f*(Sj)(l - a&

- asah)

and we have
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THEOREM 3.2. (Nevanlinna-Pick). Let S be the class of functions
analytic in \ z | < 1 which interpolate f(z) at /0. Then S contains a
g(z) with Ueg(z) Ξ> 0, | z| < 1, if and only if the matrix (cjk) is non-
negative.

See [11] for references.

(c) In the general case, we take as basis for {f^H2)1 the set of
elements pSί(z) = (1 - aάz)~\ pj2(z) = (z - δy)/(l - aάz)\ , pja(z) =
(z — ctjY^HX - a, z)a, where j = 1, , n and where a = a(j) is the
multiplicity of aά as a zero of fo(z). A computation similar to the
above, only using Cauchy's formula for the derivatives of an analy-
tic function gives

(6 - 1)!

(α — 1)! dza~

where A~ denotes Ά.

4* Interpolation by meromorphic functions* In this section,
we indicate how analogues of the results of [2] may be obtained for
the operators J7~κ{f).

We need a generalization of Definition 1.1.

DEFINITION 4.1. Let f(z), fx(z)f f2(z), fo(z) e H\ f0 inner. We will
say that the function W{z) — fί(z)/f2(z) interpolates f(z) at /0, provided

f(z) = W(z) + Ql(z)

for I z I < 1 such that f2(z) φ 0, where g,(z) is a meromorphic function
in \z\ < 1 which satisfies f^g^z) efoH1.

Let f(z), Uz) e H\ f0 inner. We define the class Sk(fQ, f) = Sk(f)
as the set of functions w(z) = /i(2)//2(£), fz{z) — (z — aλ) (z — ak),
aό I < 1, which interpolate f(z) at fo(z). Sr

k(fQ, f) will denote the set
of G(z) e Sk(f0, f) such that the image of | z \ — 1 under G(z) is con-
tained in one of the disks Dζ9δ = {| z — ζ | ^ δ}, for some real ζ, δ < 7.
Thus the class Sk(f0, / ) , for example, is the set of w(z) of the form

w(z) = f(z) + fQ(z)g(z)[(z -aj.- iz- a,)]-1

where g e H\ | αy | < 1, j = 1, 2, . , fc.

We will also need the notion of the enumeration of the lower
part of the spectrum sp ̂ " of an operator ^~ on a Hubert space X.
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Suppose J7~ is self adjoint and bounded below. In case d imX= oo,
let μe{^~) denote the smallest real number which is either a cluster
point of s p ^ " or an eigenvalue of ^~ of infinite multiplicity. The
enumeration of the lower part of sp ^ is then to mean the sequence

(a) μ0, μu , μn (where sp ^ = {μ0 ^ μL ^ ^ μn}) in case
n + 1 = dimX < oo.

(b) μ0, μly , μk-19 μe(^~), μ.(^~), in case there are k points
μ0 <L μι <̂  ^ μk_^ of sp ^ " (counting multiplicities) such that
μ3- < μλ^) (where 0 ^ fc < oo).

(c) μ0, μ19 in case there are infinitely many points μQ ^ μx ^
• (including multiplicities) in sp J7~ satisfying μi < μe(^).

Now we can state

THEOREM 4.1. Let S's — Srj(f0, f) for γ a positive real number.
Let μ0, μu be an enumeration of the lower part of sp Jf~κ{f)i where
the Hubert space X — K. Then

μs - sup sup (ζ - δ) - (1 - μ)(l + ^)"1

GeS'.

where μ — Ί~\Vl + τ2 — 1) and where the second supremum is taken
over all circles Dζfδ(ζ, 8 real, 0 < δ < 7) which contain the image
under G of | z \ — 1.

The theorem is a straightforward generalization of the case fo(z)
= zn+1 (cf. [2]) and its proof will only be sketched here. It is also
an easy matter to write down the analogue of Theorem 2(b) of [2]
for the present situation. This will be left to the reader.

Sketch of proof. The first step of the proof is to obtain the ana-
logue of Theorem 2(a) of [2] for Sr

k(f0, / ) . This follows easily from
Theorem 2(a) of [2] and from the considerations of §4 of [1].

The next step is to let λ = sup sup (ζ — δ) for Dζfδ Όh(\z\ = 1),
h e Sί(/0> / ) , and consider

g(z) - (1 - μ(h - V))(l + μ(h - 7))Γ

where η = λ — (1 — μ)(l + μ)~ι — e. As in [2], one can prove that
g(z) has k poles in | z \ < 1 and | (̂2;) | is bounded (by 1) in 1 — δ <
I z I ̂  1, for sufficiently small δ > 0. Thus g(z) has the form

0(3) = gx{z) + flra(3)[(3 -« ! )•••(«- tf*)]""1

where gu g2e H°° and | as \ < 1. Now observe that ^(^) is interpolated
at fo(z) by the H°° function

G(z) = Qι(z) + gt(z) Π [1 - /o
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Thus g{z) e Sk(fQ, G(z)). The inequality μ5 ̂  λ - (1 - μ)(l + μ)~ι now
follows by applying step one to the class Sk(G(z)). The proof of the
reverse inequality follows the lines of the proof in [2] with modifica-
tions similar to the above.

5* Finite section Wiener-Hopf operators* In this section, we
consider the case in which f0 is the singular inner function given by

(5.1) fo(z) = exp r[(z - l)(z + I)"1] ,

r a nonnegative real number. Throughout this section, we will write
H\D) for H2 of D = {| z \ < 1} (instead of just H2) because it will be
convenient to map H\D) onto H\E) (E = {Im z > 0}) and take Fourier
transforms. We will define the various unitary maps and state the
result; details may be found, e.g., in Hoffman's book [7].

With this aim, let C denote the unit circle and

>L~(-oo,oo)

the isometry defined by ^g(eiφ) = g([x — i][x + ΐ]"1) and let

% H\D) > H\E)

be defined by h(w) = ^i(g(z)) = l/2 (w + i)~ι Ψlg(z). Then % is a uni-
tary operator. For h(w) e H\E) or, more generally, for h(x) e U( — oo,oo),
the Fourier transform h is defined by

h(t) = — Γ e~itxh(x)dx .
2ττ J-oo

The map h—>h maps L2( — oo, oo) isomorphically onto L2( — oo, oo) and
sends the subspace H\E) onto L2(0, oo). (Here we use the convention
that, if / is a real interval, L2(l) denotes the subspace of functions
in L2{ — co, oo) which vanish off /.) Let

> L2(0, oo)

denote the unitary map %/g{z) = (
The reason for presenting these operators is that, as is easily

seen, if ^~(f) is an analytic Toeplitz operator on H2(D),

is the Wiener-Hopf operator

Ύ^(g)x{t) - [°g(8 - t)x(s)ds = g*x
Jo

where g(t) = [ 9^(f*(eiφ) + f*(eiφ))]A. Furthermore, the operator
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where K — (f$H\D))L, f0 given by (5.1) also takes a recognizable form
under gΛ In fact, if & is the projection of H\D) onto K,

is the projection of L2(0, oo) onto L2(0, r), cf., Sarason [10, p. 246],
and thus

where "WXg) is the "finite section" Wiener-Hopf operator on L2(0, r)

(s - t)x(s)ds .

The operator tWr(g) has been studied in some detail, cf. [6] and the
bibliography there.

With this notation, we can state Theorem 2.1 for the case at
hand.

THEOREM 5.1. Let g(t) e L2(-r, r), g(-t) = g(t) and let

μ0 = sup inf Re h(w) Imw > 0

where the supremum is taken over the set of functions h(w) in
H2(E) such that h agrees g on [0, r]. Then μQ is the smallest point
of the spectrum of

In contemporary language, this theorem is the "continuous ana-
logue" of the Caratheodory-Fejer Theorem 3.1.

From the above considerations and Theorem 4.1 above, one can
immediately deduce the continuous analogues of Theorem 2(b) of [2].
This is straightforward and will not be included here.

It can be noted that, in the case of analytic kernels (i.e., g(t)
supported on [0, r]), the theorem of Nehari [8] has a very simple ana-
logue for cW~Xg). By an obvious generalization of Lemma 2.1 of [1],
we see that, if feH-^(e^fJ) = ̂ *^J7~(f*)\κ, K - (fZH\D))\
In particular, || ̂ {e^fj) \\ = \\jTκ(f) ||, where J T
It follows at once that

THEOREM 5.2. Let g(t) e L2(0, r) and let

λ0 = inf || 7̂ (w) lloo Imw > 0

where the infimum is taken over the set of functions h e H\E) such
that h agrees with g on (0, r). Then λ0 is the norm of
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6* Invertibility of Hankel matrices* In the proof of Lemma
2.2, we used a consequence of Lemma 2.1 about the invertibility of
£έf(βiψfj)* In this section, we will set down this invertibility cri-
terion and investigate its consequences.

Before we proceed to the invertibility result, a few comments are
in order. First, Hankel matrices are never invertible, with bounded
inverses defined on all of H2. In fact, 0 belongs to the essential
spectrum of every bounded, Hermitian Hankel matrix; Hartman-Wintner
[5, p. 366]. To extend this result to non-Hermitian and even unbound-
ed Hankel matrices is a triviality. In fact, Sίf cannot be invertible
since if gifx(ei<P) = 1, it is easily seen that Zίf&vxip*) = 0. Similarly,
Sίfy{Φ) = 0 implies that βέfeίn<py(eiφ) = 0, n = 1, 2, . - Thus for any
Hankel matrix gίf, 0 is either a cluster point of the spectrum or an
eigenvalue of infinite multiplicity. For this reason, we need consider
only Hankel matrices Sίf with nontrivial nullspaces N(£έf) and look
for their inverses as operators on N(£ίfy.

Suppose £ίf(F), FeL2 is a Hankel matrix with N(£έf{F)) Φ {0}.
As was noted above, x{ei(p)£N(£έf{F)) implies ei*x{eiψ)εN(gί?{F))
and therefore, by a well-known theorem of Beurling, there is an inner
function fo(eiφ) e H2 such that

N{^(F)) = fQH2 .

In particular, F(e**)fo(eiφ) = ΣΓ yjnφ = ei<py(ei(p), yeH2, so that
F is of the form F = ei<pfoy(ei<p). This implies F*(e^) = eiφfo(e-iφ)y*(eiφ),
so that Rc^f{F)) = {fZHy. Thus the set of Hankel matrices we
have been considering in earlier sections is the class of Hankel matri-
ces having 0 as an eigenvalue. For various conditions on an L2 func-
tion F that <%f(F) should belong to this class, see Putnam [9, p. 657]
and Douglas, Shapiro and Shields [3].

We now state a consequence of Lemma 2.1.

THEOREM 6.1. Let /, W, fQeH\f0 inner. Let W interpolate
1// oΛ> / * &nd suppose at least one of the functions, f, W is in H°°.
Then, on K= (fZH2)1.

(6.1) ^fie^JJY1 = ^*&f{ei*fle-i*)W)<?S .

Proof. The theorem follows easily from Lemma 2.1 with g — W,
if one notices that in the three occurrences of f0 on the right side
of (2.1):

/ 0 could be replaced respectively by any three inner functions g01,
gQZ satisfying f0 =
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From Sarason's Theorem 1 [11], we can obtain a variant of The-
orem 6.1, which will be more useful for our purposes.

THEOREM 6.2. Let f, f0 e H2, f0 inner and suppose that £ίf(eiψfj)
has a bounded inverse on (f*H2)L. Then there exists a WeH™ which
satisfies (6.1).

Proof. If the functions ψ, φ are replaced by fQ, W respectively,
Theorem 1 of Sarason, loc. cit., states: a bounded operator ^ on
K' = (foH2)1 commutes with &*'£?(eiφ) \κ {&' the projection onto K')
if and only if there exists a WeH~ such that ^ = %rβ£f{eiψfQW)>
^ is given in Lemma 2.1 above. Let JT' = {^^f(eiψfQf))~ι =
£t?{eiψfjylc:z&*. By assumption, ^~ is bounded and as is easily veri-
fied y commutes with ^'^(e^) \κ'. Thus

(6.1) follows by the observation made in the proof of Theorem 6.1.
From Theorem 6.2, we obtain

COROLLARY 6.1. Let FeL2 and suppose 3ίf(F) is self-adjoint
(not necessarily bounded), then 0 is an isolated point of sp J%f(F) if
and only if there exist functions f, foe H2, f0 inner and W e H°° such
that F = eiψfof and W interpolates 1/f at f0. In this case (2.1) holds
and I λ I, the smallest absolute value of a nonzero point of the spec-
trum of έ%f(F) is given by

(6.2) Iλ l- ( in f l^ lU)- 1

where the infimum is taken over the set ofge H°° which interpolates
1/f at U

Proof. If 0 is an isolated eigenvalue, ^fiF)"1 is bounded on
(f%H2)L, so Theorem 6.2 applies. (6.2) follows from Nehari [8]. All the
other statements are obvious.

The results of [1] may now be used to obtain a representation
similar to (6.2) for the j t h smallest absolute value of an eigenvalue
of J%f(F). The details are easy and will not be given.

As a final application of Theorem 6.1, we give

COROLLARY 6.2. Let f,foeH2,fo inner, Sff{fiiφfJ) self adjoint.
Then £έf{eiψfof) restricted to (f*H2)L has a completely continuous
inverse if and only if 1/f can be interpolated at f0 by a function
W(z) e H°° such that fQ{eiφ) W{eiψ) can be extended as a continuous,

periodic function.

The corollary is a simple consequence of Corollary 6.1 and of a
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theorem of Hartman [4]. To construct examples of functions satisfy-
ing the conclusion of Corollary 6.2, it suffices to take an inner func-
tion /o whose support has measure zero (cf. [3]) and a function
f(eίφ) 6 H2 such that l/f(z) is continuous in the closed unit disk, ana-
lytic in its interior and l/f(z) = 0 on the support of /0. It follows
that fo/f is continuous since an inner function is continuous off its
support.

REMARK. A sequence of points zl9 z2, in the unit disk is cal-
led an interpolating sequence if, for any bounded sequence Wlf W2f

• of complex numbers, there is a function g(z) e H°° such that g(zό)
= Wji i = If 2, (cf. [7, pp. 194 ff.]). We hope to show in a sepa-
rate paper that the assumption that fQ(z) is a Blaschke product
whose zeros form an interpolating sequence is a useful assumption
when dealing with the Hankel matrices ^f{eiψfj), and the Toeplitz
matrices J7~κ(f).
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