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ON MATRICES ASSOCIATED WITH GENERALIZED
INTERPOLATION PROBLEMS

DougrAs N. CLARK

Two classical interpolation theorems, due to Carathéodory
—Fejér and Nevanlinna—Pick, deal with classes of functions
analytic in the unit disk which take certain prescribed values
at finitely many points there. The theorems express certain
extrema of these classes as eigenvalues of finite matrices.
In this paper, there is given a generalization of this type of
interpolation, which involves inner functions. It is seen that
a certain theorem about Hankel matrices and projections of
Toeplitz matrices generalizes both of the above interpolation
theorems, The theorem also provides a generalization of some
recent work of the author on meromorphic interpolation and a
continuous analogue of a theorem on Toeplitz forms and inter-
polation, Finally, the theorem has some consequences in the
theory of infinite Hankel matrices.

In 1957, Nehari [8] obtained the norm of the infinite Hankel ma-
trix

1.1) H = @) G k=1,2,---, X [a;[* < o0)

as the infimum of the expressions
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where 0 < ¢ < 27 and {b;} runs over all square-summable seguences.
Nehari’s theorem can be considered as a generalization of a theorem
of Carathéodory and Fejér: given n + 1 complex numbers ¢, ¢, - -, c,,
let S be the set of all functions f(z) analytic in |2]| < 1 and with a
power series of the form f(z) =¢, + ¢, + +-+ + ¢,2" + 2"*'(---). Then
inf || f(e%) || for feS is the norm of a finite matrix .o~ which is
unitarily equivalent to SZ5#* (ef. [2]).

To make it clear why we want to call Nehari’s theorem a general-
ized interpolation theorem, we adopt a definition similar to that of
Sarason [11]:

DEFINITION 1.1. Let f(?), fi(2) € H* (Hardy space of the unit disk),
f, an inner function (i.e.,|f)(¢**)| =1, a.e.). A function W(z)e H?
will be said to interpolate f(z) at f, if there exists a function
g.(z) € H*® such that
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(1.2) f(2) = W(z) + 0.(2)fo(?) .

If o7 is given by (1.1), let us write 27 = 227(¢'*F) for any

function F(e¢) e L¥0, 27) satisfying

1 (= o .

a; = —-g F(e¥)e'*dep j=1,2 .-

2z Jo
In this notation, if f, f, are as in Definition 1.1, the norm of
277 (6% f, f) is given, according to Nehari, by || .57 (e¥f,f)]|| = inf
[| h(¢**) || for h running over the class of functions which interpolate
fat f,.

In a recent paper, Sarason [11] showed how this type of theorem
can also be made to include the classical Nevanlinna-Pick theorem
(i.e., concerning Definition 1.1 when f, is a finite Blaschke product
with distinct zeros).

Our main theorem (Theorem 2.1 below) can be considered as the
right half-plane analogue of the theorems of Nehari and Sarason.
Actually, it is a simple consequence of Nehari’s theorem and of a
generalization of [1, Corollary 2.1]. It seems to give a more direct
approach to both the Carathéodory—Fejér and Nevanlinna-Pick theo-
rems, and it allows us to write down the analogue of the Nevanlinna-
Pick matrix for the case in which f, is a Blaschke product with mul-
tiple zeros (§ 3) (i.e., the case in which we want to interpolate f and
certain of its derivatives at finitely many points).

With this approach, we are also able to generalize the interpola-
tion theorems of [2] to this situation (§ 4).

In §5, we consider certain integral operators of the Wiener-Hopf
type and obtain a continuous analogue of Carathéodory-Fejér’s theorem.

In §6, we apply our resuts to the theory of infinite Hankel ma-
trices.

2. Main theorem. Let <& be a linear operator on a Hilbert
space X. Throughout this section, we make the following.

Convention. By “<% is onto” we understand “<7Z is onto the
closure of its range, R(<#).” By <% we understand the generalized
inverse of <7, ie., FZ o =01if ¢ 1 R(<¥) and if e R(=#), & &
is the (unique) element y in the pre-image of = such that y L N(<#),
the nullspace of 7.

For a function f(¢¢) € L¥0, 27), we define the Laurent operator
A(fHon L* by <~(f)r = fx, on the set of x e L* for which zfe L
If also fe H?, we define the analytic Toeplitz operator .7 (f) as the
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restriction of &~ (f) to H?, i.e., the operator .o~ with domain D( ")
= {x e H* zf € H* and satisfying .9 = fx for x e D(.97).

The action of the matrix 57 (¢*F') (F e L*) on H* (with respect
to the basis 1, ¢, e, --. 0of H? can be described as follows: For
x € H?, the function 2F belongs to L' and has a Fourier series zF ~

» 6. Now xe D(5# (¢“F)) whenever y(e**) = >,=Lx,e"¢ e L? in
which case 7 (¢"*F)x = e **y(e™*¥) e H.
For F(e**)c L?, we will use the operator & (F') defined by
Z(e¥F) = 57 (e F )7 (e F)* .
Furthermore, the operator Z/_ is defined on L* by
Z_x(p) = 2(—p) .

If f,e H? is an inner function, the subspace of all H* functions
of the form f,(2)x(z), x € H? will be denoted f,H*.

Finally, for z(p) € L?, 2*(p) will denote the function Z(— ).

We need the following generalization of [1, Corollary 2.1].

LEeMMA 2.1, Let f(z) € H* be an inmner function. Let f(z), g(2)
be H* fumctions, at least one of which belongs H*. Then
(2.1) SE€4Fof9) D SEE )% 57 (€% fg)
where

' = (e f (e ) = L(ef) % %, xc H? .

Actually, for the remainder of this section, we will be assuming
both f and g belong to H>=. The full force of Lemma 2.1, however,
will be used in § 6.

Proof. For

w(e*) e D(SZ (e fof VO S (€ Fo9)),
let y(e**) = 27 (ef.9)x. Thus

e fo(€*)g(e*)a(e?) = y(e ™) + ey (e'), y, e H*
= Z_y(e*) + ey, (e”) .
g(e¥)w(e”) = e *fo) 7 _y(e*) + fu(e™)y.(e*)
e fufgr = e fif 7y + ey f

where either y, e H* (if ge H*) or fe H*. Thus, in either case,
ey, fe H', so that

S fofg)e = S (@ fo f)Z Y
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which proves (2.1).

LeEMMA 2.2, Let f,F,G, We H*, f, inner. Let G-W interpo-
late F at f,. Suppose further that 57 (¢*f,G)™" is bounded. Then

2.2) (I — W) *
= Z (¢ [T (6 FG) — E(e“fuF)SF (€ f @™ .

In particular, iof F=1—J, G=1+J, where |L + J|>¢>0 in
2] <1, then W(2) = F|Ge H*, 57 (¢*f,G)" is bounded and

2.3) U(SF — G f W) u*
= 257 (e“fG) " P(T (J*) + T (J*) )P (¢ F.G)
on K = (ffH?%*, where &P is the orthogonal projection onto K.

For more about the invertibility of 57 (¢*f,G), see §6 below.

Proof. Since GW interpolates F' at f,, we have F = WG + f.9..
Thus, by Lemma 2.1, S£(e“f,F) D 57 (e f,G)% 57 (e“f,W) and the
two are equal, since the right side is bounded. Now, since R(%) =
(fLHY)* = N(&Z(e¥fG))*, we see that 57 (¢¥f,G) invertible implies

S FG) S (e f F) = (61, W).

Taking adjoints,

(e ) S (€ G = SE(e“f,W)*a* .
Multiplying the last two relations gives
(2.4)  SF(FGTE(EF )€ fF G = & (e f W) ™ .
But now it is easy to see that

U * = (6 F Q) E (e f G (€ f &) .
Adding this to (2.4) gives (2.1).

In case F=1—-J, G=1+J, it is easily seen from Lemma 2.1
applied with g =1+ J, f= (1 + J)™ that S£(e¢**f,G) is invertible.
Z (e f(l — J)) — (efol + J)) = 2(T(J*) + 7 (J*)*) follows easi-
ly from the characterization .7 (J*)*x = <?,J*x, where zc H* and
., is the orthogonal projection from L* to H* (cf. [2]).

Now we can state our main result.

THEOREM 2.1. Let f(z), f(2)e H”, f, an inner function. Let S
be the set of H*® functions which interpolate f at f,. Let & be the
orthogonal projection on K = (f¥H?**. Then
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Yo, = sup inf Re A(z)

heS |z|<1

1s the smallest point of the spectrum of
THf) = 5 PTG + T (),

the restriction of 2.7 (f*) + .7 (f*)*] to K.

REMARK. The classical interpolation theorems mentioned above,
do not include the requirement S ¢ H® This requirement is neces-
sary if we are to consider interpolation with respect to an inner fune-
tion which is not a Blaschke product. In case f, is a Blaschke pro-
duct, however, the requirement may more conveniently be dropped
(cf. Corollary 3.1).

Proof. Let ¢ >0 and suppose S contains an h(z) e H? with
Re(z) > pt, — ¢ in |z| < 1. Let h.(2) = h(z) — tt, + ¢. Then

g£(z) = (1 - hs(z))/(l + he(z)) eHw ’
and
(2.5) | 57 (e g.(e) fule) || < 1
by Nehari [8]. Now we can apply Lemma 2.2 with W(z) = g.(z) and
J(z) = h.(z), and obtain
2.6) - E(fg) = 2% * B F(T (h*) + T (WNNNTF F *%

where <% = S7(éf(1 — h.))™". Thus (2.5) implies || & (e*fig.) || < 1,
so that the right side of (2.6) is a nonnegative operator. It is easy
to see that this implies

0< + Falh) = 2 (TR~ (o = 7).

Thus, if we note that & interpolating f at f, implies . 7x(h) = Fx(f),
we see that

2.7 % Tx(f) = .

To complete the proof of the theorem. Choose an he S with
Reh(z) > pt, — 6 in |2| < 1, for some 0 < 6 < 1. It is easily seen that
(2.6) holds with ¢ = 0 and that all operators involved are bounded.
Now if the strict inequality holds in (2.7), we see from (2.6) with
e =0 that || Z(€¥9.f,)]] <1 and by Nehari’s Theorem there is a
g(z)e H*, |g(¢'¥)| < C <1 and g interpolates g, at f,. Let

g,=1—-9 1A+ g9 cH"



246 DOUGLAS N. CLARK

Notice that
g —h=0L—-91+9)" =1 —go)@ +g)7" = (g — PIT + DA + g)]*

so ¢, interpolates %, (and hence f — ) at f,. But Re g, =¢ >0
which contradicts the definition of ,.

3. The classical interpolation theorems. In this section, we
deal with the instance of Theorem 2.1 in which f, is a finite Blaschke
product. First, we make a simple observation.

COROLLARY 3.1. In case f, is a Blaschke product (finite or in-
finite) Theorem 2.1 is correct if the class S 1is replaced by the class
of functions analytic in |z| < 1 which vanish at the zeros of f,.

The proof is clear from that of Theorem 2.1.

Now we turn to the case in which f, is a finite Blaschke product.
We will consider separately the cases in which (a) f,(z) = 2", (b)
fo(?) has distinct zeros and (c) the general case.

(a) Theorem 2.1 (i.e., Corollary 3.1) with fy(z) = 2"** is precisely
the classical Carathéodory-Fejér theorem in the following form:

THEOREM 3.1. (Carathéodory-Fejér). Given m + 1 constants c,,
€y *, Cuy Co Teal, let S be the set of all functions f(z) analytic in
2] <1 and with a power series of the form f(z) = ¢, + 2¢,2 + - -+
+ 2¢,2" + 2" (+++). Then sup;.sinf,, ., Re f(z) is the smallest etgen-
value of the Toeplitz matrix (c;_y), J,k=0,--+, 0, c_, = C,.

See [11] for references.

(b) Let fo?) = [I*(z — &,)/(1 — &,2), «, distinet. In this case,
K = (fyH** is spanned by the functions p,(z) = (1 — a;2)"'. These
functions do not form an orthonormal basis for K, but the matrix
for . 7x(f) is nonnegative definite if and only if the matrix (¢;) =
(F%(f)p;, pi)) is. An easy computation yields

¢ = (T (S, 00) + (05, T (F*)pi)
= (/"D Du) + (Ds, J*D2)
= fHa)1 — ;@)™ + @)1 — a;@)™
= (fla) + flay)/(1 — a,;@,)

and we have
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THEOREM 3.2. (Nevanlinna-Pick). Let S be the class of functions
analytic in |z| < 1 which interpolate f(z) at f,. Then S contains a
9(z) with Reg(z) =0, |2]| <1, if and only if the matrix (c;) is non-
negative.

See [11] for references.

(¢) In the general case, we take as basis for (f¥H?* the set of
elements 2,,(2) = (1 — a2)™, Pu(e) = (2 — &L — ARY, -+ +, Pjald) =
(z — &) /(1 — a;z)*, where j =1, ---,%n and where a = a(j) is the
multiplicity of «,; as a zero of fy(2). A computation similar to the
above, only using Cauchy’s formula for the derivatives of an analy-
tic function gives

(TR P} = e T (CZ 8 (1 - a17(@)

XL

b —1! dz'* \ (1 — a;2)*
1 A (=)'t 1 o e
(@ — 1)! dz=? ((1 — @z’ (1 = az) f(z)) a

where A~ denotes A.

4. Interpolation by meromorphic functions. In this section,
we indicate how analogues of the results of [2] may be obtained for
the operators .7(f).

We need a generalization of Definition 1.1.

DEFINITION 4.1. Let f(2), fi(?), f«(?), fu(z) € H?, f, inner. We will
say that the function W(z) = fi(2)/fx(2) interpolates f(z) at f,, provided

(&) = W(2) + 9.(2)

for |z| < 1 such that f,(z) = 0, where g,(z) is a meromorphic function
in |z| < 1 which satisfies f,(2)g.(z) € f(H".

Let f(2), fi(z) € H?, f, inner. We define the class S.(f,, f) = Si(f)
as the set of functions w(z) = fi(R)/fx(?), f:lR) = ® — @) -+ (z — @),
|a;| < 1, which interpolate f(2) at fi(z). Si(f, f) will denote the set
of G(z) € Si(f,, f) such that the image of [2| = 1 under G(z) is con-’
tained in one of the disks D;,, = {|z — {| < ¢}, for some real {,d < 1.
Thus the class S,(f,, f), for example, is the set of w(z) of the form

w(z) = f(z) + fu(RIR)N(z — a) -+ (2 — a)]
where ge H?, |a;| < 1,5 =1,2,--+, k.

We will also need the notion of the enumeration of the lower
part of the spectrum sp .7~ of an operator .7~ on a Hilbert space X.
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Suppose .7 is self adjoint and bounded below. In case dim X = oo,
let ¢,(7") denote the smallest real number which is either a cluster
point of sp.Z~ or an eigenvalue of .7~ of infinite multiplicity. The
enumeration of the lower part of sp.7 1is then to mean the sequence

(@) oy M1y + vy Mt (Where sp 7 ={y, < ¢, < --- = p,}) in case
n +1=dim X < co.

(b) o, fay =+ oy Mysy (T ), #(T7), - - In case there are k points
o= =<+ =p_, of spJ (counting multiplicities) such that
t; < (") (where 0 < k < o), ’

(¢) o, &y, --- in case there are infinitely many points g, < ¢, <
-+ (including multiplicities) in sp .7~ satisfying p; < p.(9).

Now we can state

THEOREM 4.1. Let S;= Sif, f) for v a positive real number.
Let p,, tt,, -+ - be an enumeration of the lower part of sp Zx(f), where
the Hilbert space X = K. Then

p=supsup (£ —0) — (1 — (1 + 1)~

where ¢ =7 (V1 + 7* — 1) and where the second supremum is taken
over all circles D;,(L,0 real, 0 < 0 < 7v) which contain the tmage
under G of |z| = 1.

The theorem is a straightforward generalization of the case fy(z)
= z"* (cf. [2]) and its proof will only be sketched here. It is also
an easy matter to write down the analogue of Theorem 2(b) of [2]
for the present situation. This will be left to the reader.

Sketch of proof. The first step of the proof is to obtain the ana-
logue of Theorem 2(a) of [2] for Si(f,, f). This follows easily from
Theorem 2(a) of [2] and from the considerations of §4 of [1].

The next step is to let N = sup sup ({ — d) for D;,, Dh(|z| = 1),
h e Si(f,, f), and consider

9) = 1 — p(h — Y1 + (b — )™
where 7 =X — (1 — #)(L + )™ — e. As in [2], one can prove that
g(2) has k poles in |z2| < 1 and |g(2)| is bounded (by 1) in 1 —4 <
|z| =1, for sufficiently small 6 > 0. Thus g(z) has the form
9() = 0.(2) + %Az — @) - -+ (z — )]

where g¢,, g.€ H* and |«;| < 1. Now observe that g(z) is interpolated
at fi(z) by the H> function

G&) = 0.2) + 0u(&) 1T [1 — S@A@) e — ) -+ (& — )] -
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Thus ¢(2) € Si(fo, G(z)). The inequality f; =X — (1 — )1 + p)™* now
follows by applying step one to the class S,(G(z)). The proof of the
reverse inequality follows the lines of the proof in [2] with modifica-
tions similar to the above.

5. Finite section Wiener-Hopf operators. In this section, we
consider the case in which f, is the singular inner function given by

(6.1) fo(z) = expr{(z — 1)z + D],

7 a nonnegative real number. Throughout this section, we will write
H*D) for H* of D = {|z] < 1} (instead of just H*) because it will be
convenient to map H%D) onto H¥E) (E = {Imz > 0}) and take Fourier
transforms. We will define the various unitary maps and state the
result; details may be found, e.g., in Hoffman’s book [7].

With this aim, let C denote the unit circle and

71: L*(C) — L=(— o0, o)
the isometry defined by 97g(e¥) = g([z — ][z + 4]~") and let
%4+ HY(D) — H*E)

be defined by h(w) = 7;(9(z)) = V2 (w + 1)~ Zg(z). Then Z;is a uni-
tary operator. For A(w) ¢ H*(E) or, more generally, for i(x) € L*(— o0, c0),
the Fourier transform £ is defined by

bty = L r e h(w)da .
21 J-o

The map h — h maps L*— oo, o0) isomorphically onto L*— co, o) and
sends the subspace H*E) onto L*0, o). (Here we use the convention
that, if I is a real interval, L*I) denotes the subspace of functions
in L — oo, o0) which vanish off 1.) Let

2. H¥D)— L*0, )

denote the unitary map 2/¢(z) = ( 7:9)".
The reason for presenting these operators is that, as is easily
seen, if .77 (f) is an analytic Toeplitz operator on H* D),

w7 (9) =2(T () + T (f*Nz*

is the Wiener-Hopf operator
#(ae®) = | ot — Dale)ds = g7

where g(t) = [ Z{(f*(€**) + f*(¢**))]*. Furthermore, the operator . 7.(f),
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where K = (f#H*D))*, f, given by (5.1) also takes a recognizable form
under 2. In fact, if .&” is the projection of H* D) onto K,

& =2 PU*

is the projection of L*0, co) onto L*0, »), cf., Sarason [10, p. 246],
and thus

2 T )™ = &% (D) r20m

where 97.(g) is the “finite section” Wiener-Hopf operator on L*0, r)
7at) = [ ols — Hateds .

The operator %#,(g9) has been studied in some detail, cf. [6] and the

bibliography there.
With this notation, we can state Theorem 2.1 for the case at

hand.

THEOREM 5.1. Let g(t)e L*(—r,r), g(—t) = g(t) and let
Mo = sup inf Re h(w) Imw >0

where the supremum 18 taken over the set of fumctions h(w) in
H*(FE) such that h agrees g on [0, r]. Then p, is the smallest point
of the spectrum of #,(9).

In contemporary language, this theorem is the “continuous ana-
logue” of the Carathéodory-Fejér Theorem 3.1.

From the above considerations and Theorem 4.1 above, one can
immediately deduce the continuous analogues of Theorem 2(b) of [2].
This is straightforward and will not be included here.

It can be noted that, in the case of analytic kernels (i.e., g¢(¢)
supported on [0, 7]), the theorem of Nehari [8] has a very simple ana-
logue for %#,(9). By an obvious generalization of Lemma 2.1 of [1],
we see that, if fe H=, 5£(6“f,f) = % *P.7 (f ")k, K= (fH D))*.
In particular, || 227 (¢ /o f) || = | 7 5(f) |l, where 7 %(f) = F.T (f) .
It follows at once that

THEOREM 5.2. Let g(t) € L0, r) and let
N = inf || (W) || Imw >0

where the infimum is taken over the set of functions h € H(E) such
that h agrees with g on (0,r). Then \, is the norm of #,(g).
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6. Invertibility of Hankel matrices. In the proof of Lemma
2.2, we used a consequence of Lemma 2.1 about the invertibility of
S (e“f,f). In this section, we will set down this invertibility cri-
terion and investigate its consequences.

Before we proceed to the invertibility result, a few comments are
in order. First, Hankel matrices are never invertible, with bounded
inverses defined on all of H? In fact, 0 belongs to the essential
spectrum of every bounded, Hermitian Hankel matrix; Hartman-Wintner
[5,p. 366]. To extend this result to non-Hermitian and even unbound-
ed Hankel matrices is a triviality, In fact, 5# cannot be invertible
since if S#7x(e*) =1, it is easily seen that S#e*a(e’?) = 0. Similarly,
7 y(e*) = 0 implies that S#¢™*y(e®¥) =0, n = 1,2, ..+ Thus for any
Hankel matrix 57, 0 is either a cluster point of the spectrum or an
eigenvalue of infinite multiplicity. For this reason, we need consider
only Hankel matrices 57 with nontrivial nullspaces N(5#) and look
for their inverses as operators on N (S£)*.

Suppose & (F'), F e L* is a Hankel matrix with N(S#(F)) + {0}.
As was noted above, x(¢¥) e N(SZ(F')) implies e**x(e?) e N(S£(F'))
and therefore, by a well-known theorem of Beurling, there is an inner
function f(¢**) € H® such that

Nz (F)) = fH* .

In particular, F(e)f(¢%) = 3.7 y.6* = e*y(e*), ye H? so that
F'is of the form F' = ¢*fy(e**). This implies F*(¢¥?) = e**f,(e=**)y*(¢**),
so that RS#(F)) = (f¥H?»*. Thus the set of Hankel matrices we
have been considering in earlier sections is the class of Hankel matri-
ces having 0 as an eigenvalue. For various conditions on an L*® func-
tion F' that 2#°(F') should belong to this class, see Putnam [9, p. 657]
and Douglas, Shapiro and Shields [3].

We now state a consequence of Lemma 2.1.

THEOREM 6.1. Let f, W, foe H* f, inner. Let W interpolate
1/f at f& and suppose at least one of the functions, f, W is in H™.
Then, on K = (f¥H?*.

(6.1) TN fof )7 = U * I (e f e VW% .

Proof. The theorem follows easily from Lemma 2.1 with g = W,
if one notices that in the three occurrences of f, on the right side
of (2.1):

N fo S )L e f)% 5 (e W) ,

f» could be replaced respectively by any three inner functions g, g,
9o satisfying f, = §ugeufos-
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From Sarason’s Theorem 1 [11], we can obtain a variant of The-
orem 6.1, which will be more useful for our purposes.

THEOREM 6.2. Let f, f,€ H?, f, inner and suppose that 57 (¢*f,f)
has a bounded inverse on (fEH?)*. Then there exists a We H* which
satisfies (6.1).

Proof. If the functions v, ¢ are replaced by f,, W respectively,
Theorem 1 of Sarason, loc. cit., states: a bounded operator 7~ on
K' = (f,H?"* commutes with 7' £ (e*) |x (F°’ the projection onto K’)
if and only if there exists a We H* such that .7 = % 57 (e f, W),
Z is given in Lemma 2.1 above. Let 7 = ( SF(ef,f))" =
SF(e¥f,f)"*% *. By assumption, .7~ is bounded and as is easily veri-
fied .9~ commutes with &' &7 (€*)|,’. Thus

e f) " = e (e f W) .

(6.1) follows by the observation made in the proof of Theorem 6.1.
From Theorem 6.2, we obtain

COROLLARY 6.1. Let FeL® and suppose SZ(F) is self-adjoint
(not necessarily bounded), then 0 is an isolated point of sp SZ(F') if
and only if there exist functions f, fo€ H?, f, inner and We H> such
that F = éf,f and W interpolates 1/f at f,. In this case (2.1) holds
and |N|, the smallest absolute value of a nonzero point of the spec-
trum of SZ(F') is given by

(6.2) I = (inf [[ g ]].)™"

where the infimum s taken over the set of ge H> which interpolates

11 at fi.

Proof. If 0 is an isolated eigenvalue, S#(F)~' is bounded on
(f¥H**, so Theorem 6.2 applies. (6.2) follows from Nehari [8]. All the
other statements are obvious.

The results of [1] may now be used to obtain a representation
similar to (6.2) for the j** smallest absolute value of an eigenvalue
of 27 (F). The details are easy and will not be given.

As a final application of Theorem 6.1, we give

COROLLARY 6.2. Let f, f,e H?, f, inner, 57 (% f.f) self adjoint.
Then S7(e“f,f) restricted to (fFEH?' has a completely continuous
inverse if and only if 1/f can be interpolated at f, by a function
W (z) € H such that fy(e¥*)W(e*¢) can be extended as a continuous,
periodic function.

The corollary is a simple consequence of Corollary 6.1 and of a
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theorem of Hartman [4]. To construct examples of functions satisfy-
ing the conclusion of Corollary 6.2, it suffices to take an inner func-
tion f, whose support has measure zero (cf. [3]) and a function
f(e¥) € H* such that 1/f(z) is continuous in the closed unit disk, ana-
lytic in its interior and 1/f(z) = 0 on the support of f,. It follows
that f,/f is continuous since an inner function is continuous off its
support.

REMARK. A sequence of points z,, z,, --- in the unit disk is cal-
led an interpolating sequence if, for any bounded sequence W,, W,,
... of complex numbers, there is a function g(z) e H~ such that g(z;)
=W; 5=1,2,.--+ (cf. [7,pp. 194 ff.]). We hope to show in a sepa-
rate paper that the assumption that f,(z) is a Blaschke product
whose zeros form an interpolating sequence is a useful assumption
when dealing with the Hankel matrices 57 (¢*°f,f), and the Toeplitz
matrices 7 x(f).
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