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EXTENSIONS OF THE MAXIMAL IDEAL SPACE
OF A FUNCTION ALGEBRA

J-E. BJORK

Let A be a function algebra with its maximal ideal space
M,. Let B be a function algebra such that A c Bc C(M,).
What can be said about Mz? We prove that M, = Mjp if
every point x€ M, has a fundamental neighborhood system
{W} such that the topological boundary bW of each W is
contained in the Choquet boundary of A or if A is a normal
function algebra, The first condition is satisfied if M, is a
one dimensional topological space, Let H(A) be the function
algebra on M, generated by all functions which are locally
approximable in A. We prove that My, = M, and then we
try to generalize this result, If fcC(M,) is such that f is
locally approXimable in A at every point where f is different
from zero then M, is the maximal ideal space of the function
algebra generated by A and f. We also look at closed subsets
F of M, such that My, = F where H(F') is the function
algebra generated by restricting to F' all functions that are
defined and locally approximable in A in some neighborhood
of I, These sets are called natural sets, We prove that there
exists a smallest natural set B(F') containing a closed set F' in
M, and that the Silov boundary of H(B(F")) is contained in F.
We also find conditions that guarantee that a closed set in
M, is a natural set.

If X is a set and f is a complex-valued function defined on X
then | f|, = sup{| f(z)||xe V} for every VC X and f, is the restric-
tion of f to V. If V is a subset of a topological space X then bV
is the topological boundary of V in X. If A is a function algebra
we denote by M, its maximal ideal space, and S, its Shilov boundary.
A point x € M, is a strong boundary point in A if {x} = N P(f), where
P(f) are peak sets of A in M,. We shall use the wellknown fact
that S, is the closure of the strong boundary points of A in M,. If
F is a closed set in M, then Hull (F) ={xe M,||f(x)| < |f]|r for
every feA}. If xeHull ,(F) we say thet F' is a support of . A
minimal support of « is a support F' of z such that no proper closed
subset of F' is a support of x. Now we have the principle of minimal
supports. Let F' be a minimal support of . Suppose {f,} € A4 is such
that | f.|» < K for some constant K independent of #n and lim | f,|wnr =
0, where W is an open subset of M, such that W N F is not empty.
Then it follows that lim f,(x) = 0. If F is a closed set in M, then
A, is the function algebra on F' generated by functions f e C(F) such
that /' =g on F for some ge A. Now M, can be identified with
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Hull (F'). If F' is a closed set in M, such that F' = Hull ((F) we say
that F is an A-convex set. A is a convex function algebra if every
closed set in M, is A-convex. If B is a function algebra on M, such
that A C B then the maximal ideal space M, contains M, and S, c M,.
If e M, there exists a point y(x) e M, such that f(x) = f(y(x)) for
feA., If Visa subset of M, we put {V}; = {xe M;|y(x)e V}. The
set {V}; is called the fiber of V in M,. The correspondence between
points = in M, and the fibers {x}, is continuous in the following way:
Let W be an open neighborhood of {x}; in M, for some point xe M,.
Then there exists a neighborhood V of 2 in M, such that {V},c W.
If W is an open set in M, then H(W) = {f e C(W}| f is locally ap-
proximable in A at every point in W, i.e., if xe€ W there exists a
neighborhood V< W of # and {g,} € A such that lim|g, — f|, = 0.}.
We put H(A) = H(M,) and H(A) is the function algebra generated by
Hy(A)on M,. If Fisa closed setin M, then H(F)={feCF)|f =g
on F for some ge Hy(V), where V is some neighborhood of F'}. We
let H(F') be the function algebra on F' generated by H,(F). We shall
now discuss the results of this paper. The general problem which
interests us here is the following: Let A be a function algebra with
its maximal ideal space M,. Let B be a function algebra such that
AcBc C(M,). What can be said about M;? In Lemma 1 we give
the well-known construction which shows that M, in general is strictly
larger than M,. A point x e M, is a stationary point if {x}, = {«} for
every B such that Ac Bc C(M,). A is a resistent function algebra
if M, consists of stationary points. In Theorem 2 we prove that A
is a resistent function algebra if every point x € M, has a fundamental
neighborhood system { W} such that {b W} consist of stationary points.
We remark here that the Choquet boundary of A is contained in the
set of stationary points and that A is resistent if M, =][0,1]. A
function algebra A on a compact set X is regular if A separates
points from closed subsets of X. It is wellknown that if X = M,
then A is normal, i.e., A separates disjoint closed sets. In Theorem
4 we prove that if A is a regular function algebra on X then X
consists of stationary points when we consider X as a closed subset
of M,. We remark that if A is a normal function algebra on X then
X = M,. The rest of this paper is mostly devoted to a study of
relations between A and H(A). We have never introduced the general
concept of A-holomorphic functions as is done in [3]. We wish to
point out that our methods come almost entirely from [3] and [4].
Our proof of Theorem 5 uses an argument which is essentially the
same as in Lemma 3.1, p. 368, in [3]. We point out that Theorem 7
gives a proof of Rado’s Theorem: Let f e C(F') where F' is a poly-
nomially convex compact set in the complex plane. Assume that f is
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analytic if f is different from zero. Then it follows that f is analytic
in the interior of F' and hence f e P(F), i.e., f can be uniformly
approximated by polynomials on F. In Theorem 8 we prove that if
H(A) is a resistent function algebra then A is a resistent function
algebra. We also discuss the general problem of determining ‘domains
of holomorphy’ in general function algebras. A closed set F in M,
is a natural set if M, = F. The main result about natural sets is
contained in Theorem 10 which was essentially wellknown in [3].
Every closed subset- F' of M, is contained in a smallest natural set
B(F'), the barrier of F. We have also introduced the set F =
{ye M, {g}ue O My is not empty}. We know that Fc B(F) and
in general the inclusion is strict." Theorem 12 is essentially wellknown
in [5] but we believe our proof is different.

1. DEFINITION 1. A function algebra A is resistent if M, = M,
for every function algebra B such that A c Bc C(M,).

LEMMA 1. A resistent function algebra is convex.

Proof. Let A be a function algebra such that Hull (F') — F is
not empty for some closed set F' in M,. Let B={gecC(M,)! g€ As}.
Obviously Ac Bc C(M,) and now we prove that M, = M,. Let
xeHull (F) — F. If ge Bwecanfind{f,}e Asuchthatlim|g — f,|, =
0. Now we put Z(g) = lim f,(z). It is easily seen that % is a well
defined complex-valued homomorphism on B. Hence there exists a
point y e M, such that %(g9) = g(y) for ge B. In particular f(x) =
2f) = fly) for feA. If M, = M, it follows that Z(g9) = g(») for
ge B. But now we choose g€ B such that g(z) =1 while ¢ = 0 on
F and obtain a contradiction. Hence M, = M, and the lemma follows.

LEMMA 2. Let A be a convex function algebra and let
AcBcCM,) .

Then the fibers {x}, are connected in My for every point xe M,.

Proof. Suppose that some fiber (x), is disconnected in M;. Hence
there exists a closed component G of {z}, such that G M, — M,.
Now we can find a closed neighborhood W of G in M, such that
bW N {x}, is empty and Wc M, — M,. Let F={yeM,|{y}lsNdW
is not empty}. Obviously F is a closed subset of M, such that v ¢ F.
Let y € G, then the local maximum principle shows that |g(¥)| < |g|ww
for ge B. It follows that | f(x)] < |f | for f € A, hence x e Hull ,(F),

1 T am indebted to the referee for giving an example where F + B(I:‘)‘
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a contradiction to the fact that A4 is a convex function algebra.

THEOREM 1. Let V be a closed A-convex subset of M, such that

A, s resistent. Let feC(M,) be such that f =0 in M, — V, then
M4(f) = MA-

Proof. Assume that D = M, — M, is not empty. Let zeD
and choose a minimal support F' of x such that Fc M,. Now FcCV
is impossible since A, is a resistent function algebra. Because f =0
in M, — V the principle of minimal supports shows that f(x) = 0. Choose
ye M, such that g(x) = g(y) for ge A. Since y and x are different
points of M, it follows that f(y) must be different from zero, hence
ye V. We have now proved that D {V},,. Now Lemma 1 shows
that A, is a convex function algebra and Lemma 2 can be applied to
show that {2}, are connected in M, for every ze V. In particular
{y}as» has no isolated points in M, ,. Since D is an open subset of
M, we can find x, € DN {y}., such that x, == 2. But now we get

f(x) = f(x) =0 and then 2 and =z, are not different points in M,
a contradiction.

DEFINITION 2. A point x e M, is stationary if {x}, = {x} for every
function algebra B such that A c Bc C(M,).

THEOREM 2. Let A be a function algebra such that every point
xeM, has a fundamental meighborhood system {W?} such that each

bW consists of stationary points, them A 1s a resistent function
algebra.

Proof. Suppose that B is a function algebra such that
AcBcCM,)

and assume that D = M; — M, is not empty. Let ze D and choose
y € M, such that f(z) = f(y) for f e A. Choose an open neighborhood
V of y in M, such that bV consists of stationary points. Let W be
a closed B-convex neighborhood of z in M, such that W c D. Now
{V}sN W is open and closed in W. We apply Shilov’s Idempotent
Theorem to the function algebra B,. Hence we find {f,} e B such
that lim |/, — 1lyqp, = 0 while lim | £, |y_y), = 0. Choose a minimal
support F' of z such that FFcbW. It follows from the principle of
minimal supports that FC bW N {V},. Now we let V shrink to ¥ in
M, and it follows that ze Hull ,(6W N {y};). This holds for every
ze D N{y}; when W is a closed B-convex neighborhood of z such that
W< D. Now we choose a strong boundary point x€ D N {y}, of the
function algebra B, to obtain a contradiction.
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DEFINITION 4. A point x € M, is locally regular if there exists a
neighborhood V' of « such that to every y € V — {x} there exists fe A
with f = 0 in a neighborhood of y and f(x) = 1.

THEOREM 3. A locally regular point is a stationary point.

Proof. Let xe M, be a locally regular point. Let B be a function
algebra such that Ac B C(M,). Let D = M, — M, and assume that
{x}; N D is not empty. Let V be an open neighborhood of = in M,
such that to every ye V — {x} there exists feA with f =0 in a
neighborhood of v and f(x) = 1. Let ze{x}; N D and choose a closed
neighborhood W of z in M, such that Wc DN {V},. Let F be a
minimal support of z such that FcbW. It follows now that Fc {z};
holds. Hence z e Hull ;,(b W N {x};) and we obtain a contradiction if we
choose a suitable point ze D N {x};,. Hence {x}; N D must be empty
and it follows that x is a stationary point.

THEOREM 4. Let A be a regular function algebra on a compact
set X. Then every point x€ X N M, is a stationary point.

Proof. Let xe XN M, and put R(x) = {y € M,| there exists gc A
with ¢ = 0 in a neighborhood of ¥ and g(x) = 1}. We shall now prove
that R(x) = M, — {x} and then it follows from Theorem 3 that z is a sta-
tionary point. Let y e M, — {x} and choose g € A such that g(y) = 1 and
g(x) =0. Let V={2eM,|lg()| >1/2}and let W = {ze X||g(z) < 1/2}.
We choose feA suchthat f =0 on X — W and f(x) =1, If ze V
we can choose a minimal support F' of z such that Fc X. Obviously
FN(X — W) is not empty and the principle of minimal supports im-
plies that f(z) = 0. Hence f =0 on V and f(z) =1, i.e., y € R(x).

THEOREM 5. Let F be a closed subset of M, and let f e CM, be
such that f is locally approximable in A at every point in M, — F.
Then MA(f) - MA = {Hull A(F)}A(f)‘

Proof. Let D= M,; — M,. Let K= Hull ,,(bD) and let C =
A(f)x. We have Dc K = M, and bD contains the Shilov boundary
of C. Let xebD be a strong boundary point of C. Assume that
xeM, — F. Choose a closed neighborhood V of ¢ in M, such that
there exists {¢g,} € 4 with lim |¢g, — f |, = 0. Now we choose % € C such
that h(z) = |h|x =1 and {x € K|/ h(x)| = 1/2} < {V},;. Let

D, = {we D||h(z)| > 1/2} .

The topological boundary bD, of D, in K is obviously contained in
the set T = {x e bD||h(x)| = 1/2} U {x € K||h(x)| = 1/2}. Choose a point
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x,€D,. Now the local maximum principle shows that we can find a
minimal support F of x, in C such that F < T. Since [h(x)| > 1/2 it fol-
lows that F'N bD contains an open subset of F. Since FFC TC{V}iy
we have |g|, =< |g|, forge A. Now lim|g, — flrap = lim|g, — f|, =
0 and the principle of minimal supports shows that lim g,(x,) = f(2.)
holds. Now we also have 2, ¢e{y},, for some point y,€ V. Hence
f(y) =limg.(y) = ¢g.(x) = f(z,) and then z, and y, cannot be different
points in M, a contradiction. We have now proved that every strong
boundary point of C must belong to F'. It follows that S, C F and hence

M, — M,cHull ,,(F). This implies that M, — M, C {Hull (F) ..

LEMMA 3. Let A be a function algebra on a compact set X. Let
F be a closed subset of X. Then there exists a point x e F such that
if m 1s a representing measure of x in A with m(F') =1 then m = e,,
i.6., m 18 the unit point mass at x.

Proof. Choose a strong boundary point ve€ F of the function
algebra A,.

THEOREM 6. Let ACBC C(M,). Let fc B be such that fe H(A).
Then f is constant on each fiber {x}; for xe€ M,.

Proof. If xe M, we denote by y(x) the point in M, such that
ve{y(x)},. Let d(x) =|f(x) — f(y(x))| and assume that d(z) is differ-
ent from zero. Let F' = {x € M,|d(z) = ||d|| = sup d(z)}. Obviously F
is a closed subset of M, and FF'\ M, is empty. Let xe F and choose
an open neighborhood V of y(x) in M, such that there exists {g,}c A
with lim |g, — f|, = 0. Choose now a closed neighborhood W of «
in M, such that Wc {V}; N (M, — M,). Let T be a minimal support
of x such that TcbW. Now we can find a positive measure on

T such that g(x) = S gdm from g € B. It follows that | f(2) — g.(y(x))| =
[ f(@) — g @) £ Slf — g.|dm for every n. Hence we also get

| f@) — Fly@)] < g £2) — F()|dm) .

It follows that | f(z) — f(y(z))| = ||d]|| for every ze T, hence TC F.
We have now proved that x € Hull (bW N F') for every x € F' and every
closed neighborhood W of x such that W< (M, — M,). Now we derive
a contradiction from Lemma 3.

THEOREM 7. Let feC(M, and suppose that f 1is locally ap-
proximable in A at every point where f is different zero. Then
M, = M, and Hull (F) = Hull ,(F) for every closed subset F
of M,.
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Proof. Let F be a closed subset of M, such that F' = Hull ,,,(F).
Let us put G = Hull ,(F') and assume that D = G — F is not empty.
Let C = A(f)s,. We see that the Shilov boundary S, of C meets D.
Hence we can find x € D such that x is a strong boundary point of
C. Let us assume that f(x) # 0. Choose a closed neighborhood
VoM, - F) of x in M, such that there exist {g,}e A with lim
9. — fl»,=0. Now we choose ke C such that if P(h) = {x e G|h(z) =
|h|s;} then xe P(h) and P(h)C V with P(h) N bV empty. Since heC
we can find {k,} € A with lim |k, — k|, = 0. Now the local maximum
principle shows that |g(®)| =< |g|ovne for g € A. It follows that |h(x) =
lim |, (®)| < lim A, |,yhe = |Rlovns, contradiction to the fact that
P(h) N bV is empty. Hence we have proved that if xe D is a strong
boundary point of C then f(x) = 0. If xe D we can choose a minimal
support T of = such that T'c S.. Since F' = Hull ,,(F) it follows
that TN D is not empty. Since f =0 on S, N D it follows from the
principle of minimal supports that f(x) = 0. Hence we have proved
that f/ = 0 on D. But then A(f), = A, and it follows easily that
D cannot contain any strong boundary point of C. Hence S,C F
which shows that D must be empty. We have now proved that
Hull (F') = Hull ,,(F) for every closed subset F' of M,. In particular
we see that Z(f) = {xe M,| f(z) = 0} is an A-convex set and using
Theorem 5 it follows easily that M, = M, ;.

COROLLARY 1. M, = M, and Hull ,(F) = Hull ;,(F) for every
closed subset F of M,.

THEOREM 8. If H(A) is a resistent function algebra then A is a
resistent function algebra.

Proof. If A is not a resistent function algebra we can find
g, -+ g,€C(M,) such that ¢, --- g, have no common zero on M, while
gi2) = +-+ = g,(2) = 0 for some point z¢€ M,,,..,,,. Because H(A) is
resistent we can find &, - - - h,, where each A, is a polynomial in g, --- ¢,
with coefficients in H,(A), such that [h,g, + --+ + g — 1], < 1/2.
Let h; = 3 f..9°, where v runs over a finite set of multi-indices (v, « - - v,
and ¢° =g --- gix. Each f, € H(A) and we define f;, on M, ..,,, by
letting f,, be constant on each fiber of M,,,..,, over points of M,.
Each g¢° is defined on M,,,...,,, in the usual way. In this way we can
extend each h; to M,,,..,,,. Call these extensions H, --- H,. It is
easily seen that H = H,g, + --- + H,g, is locally approximable in
A(g, -+ g1) on Myq,,..,,. Now H(z) =0 while |H —1|,, <1/2 and
since M, contains the Shilov boundary of A(g,---g.) we derive a
contradiction from Corollary 1.

THEOREM 9. Let f e C(M,) be such that f*+a,f" "+ ++++a,=0
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on M, where a, -+ a,c A, then M, = M,;.

Proof. Let g=nf""'4+n— Da,f"*+ -+ +a,_,. It is well
known that f is locally approximable in A at every point x e M, where
g(x) is different from zero. (See [1], Th. 3.2.5, p. 71.) It follows that
¢ is locally approximable in A at every point where g is different
from zero. Now Theorem 7 shows that Z(g) is A-convex and then
Theorem 5 shows that M, — M, {Z(g)}.,,. Let us put B = A4,,,
then M; = Z(g) and the restriction of f to M, satisfies the equation
nf*t+ m— Db f"*+ -+ +b,_, = 0 where b, ¢ B are the restrictions
of a; to Z(g). Since M, — M, C{Z(g)}., we see that My, — M, is
not empty if M, — M, is not empty. Hence we can use induction
over n to prove that M, = M,.

Let A be a function algebra. If F is a closed subset of M, we
have defined the function algebra H(F'). We are now interested in
the maximal ideal space of H(F).

DEFINITION. If F is a closed subset of M, we put F =
{ye M, {¥}uwry N My is not empty}.

DEFINITION. A natural set in M, is a closed subset F of M,
such that F = M.

LEMMA 4. (NF.)"c NF, for every family {F.} of closed subsets
of M,.

Proof. Letyec M, be such that y e (NF,)”. Hence there exists a
complex-valued homomorphism C of H(NF,) such that C(g) = g(y) for
geA. If feH(F,) the restriction of f to NF, obviously gives an
element of H(NF,). Hence C can be restricted to H(F, and we
obtain a complex-valued homomorphism of H(F,) such that C(g9) = g(y)
for ge A.

THEOREM 10. Let F be a closed subset of M, such that F = F,
then MH(F) - F.

Proof. Let f e Hy(F) and define d(z) = | f(z) — f(y(x))| on My,
where y(x) is the point in F' such that g(z) = g(y(x)) for ge A. As-
sume that d is not identical zero. Let D = {x € My, |d(x) > 0}. Ob-
viously D N F is empty and hence D lies off the Shilov boundary of
H(F). Hence Dc K = Hull ,,(bD). Let us put C = H(F)x and
choose 2 €bD such that x is a strong boundary point of C. Choose
a closed neighborhood V of y(x) in M, such that there exists {g,}c A
with lim|g, — flvnr = 0. Now we choose heC such that h(z) =
|hlx =1 and {xe K||h(z)| = 1/2} c{V N F}ur. Now we obtain a con-
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tradiction using the same argument as in the final part of Theorem
5. Hence we have proved that if f e H,(F) then f is constant on
each fiber {x},, when xe F. Since H,(F') is a dense subalgebra of
H(F) it follows that F = My .

COROLLARY 2. If {F,} s a family of matural set of M, then
NF, is a natural set.

Proof. Lemma 4 shows that (NF,)" < N F, = N F, and then Theo-
rem 10 implies that NF, is a natural set.

DEFINITION. If F is a closed subset of M, then B(F') is the in-
tersection of all natural sets containing F'. B(F') is called the barrier
of F.

Corollary 2 shows that B(F') is the smallest natural set contain-
ing a closed subset F' of M,.

LEMMA 5. Let F be a natural set. Let fe H(F) and let F, =
{ge F||f(x)| £1}. Then F, is a natural set.

Proof. Let ze Myyy. If ge H(F') the restriction of g to F,
gives an element of H(F). It follows that g¢g(z) = g(y) for some
point ye M, when ge H(F). In particular f(z) = f(y) and since
| ()| < | f|F, it follows that y ¢ F,. Hence we have proved that F, = F,
and now Theorem 10 implies that F, is a natural set.

THEOREM 11. Let F be a closed subset of M,. Let S(F) be the
Shilov boundary of H(B(F')). Then S(F)CF.

Proof. Assume that S(F') meets B(F') — F. Hence we can find
xe B(F) — F such that x is a strong boundary point of H(B(F)).
Now we can choose f € H(B(F)) such that F, = {x € B(F)|| f(2)| < 1}
contains F' and omits the point x.

Lemma 5 shows that F, is a natural set, a contradiction to the
fact that B(F') is the smallest natural set containing F.

We finally give some examples of natural subsets of M.

DEFINITION. An A-analytic polyhedron P is a closed set in M,
of the form P = {xec V|| f.(x)] <1 where V is an open neighborhood
of P and {f,} is a family in Hy(V)}.

THEOREM 12. An A-analytic polyhedron is a matwral set.
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Proof. Let U be an open neighborhood of P and W a closed set
containing U such that W< V. Now we can find finitely many {f.},
say f,-+- fp such that P, ={xe W||fi(x)| <1, ¢=1---k} is con-
tained in U. Now we can prove that P, is a natural set using the
same argument as in the final part of Theorem 5. Finally we let U
shrink to P and obtain natural sets {P,} such that P = NP,. Now
Corollary 2 shows that P is a natural set.

DErFINITION. If F is a closed subset of M, we put R,(F) =
{heC(F)|h = f|/g where f,gec A and g has no zero on F}.
We let R(F') be the function algebra on F' generated by R,(F).

DEerFINITION. If F' is a closed subset of M, we put Hull ;(F) =
{ve M,|g(x)e g(F) for ge A}.

THEOREM 13. My, = Hull .(F') for every closed set F' in M, and
if Mpy = F then F 1s a natural set.

Proof. If ye My, we choose xe M, such that g(y) = g(x) for
ge A. It is easily seen that x e Hull 4(F') and that (f/g)(y) = f(x)/g(x)
when f/ge Ry(F). Since Ry (F) is dense in R(F') it follows that y is
uniquely determined by x. Conversely if we choose 2 ¢ Hull (F) then
the mapping X; /g — f(x)/g(x) is well defined on R(F). We have
[ f@)/g=)| =|flglr for if f(z) = g(x) while | f/g], <1 we see that
(9 — f) is different from zero on F' and hence (g — f)(x)e (9 — f)(F)
is different from zero, a contradiction. Hence we can extend X to
R(F) and we obtain a complex-valued homomorphism on R(F') such
that ¢ is mapped into g(x) when ge A. This proves that M, =
Hull ,(F). If Mgy = F then Corollary 1 can be applied to prove that
F is a natural set.
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