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GENERALIZED CONVEXITY CONES AND
THEIR DUALS

DAN AMIR AND ZVI ZIEGLER

The structure of the intersections and unions of generalized
convexity cones is analysed. The main results involve on the
one hand denseness properties of sums of two distinct gener-
alized convexity cones and on the other hand the availability
of a decomposition for measures of the cones dual to intersec-
tions of generalized convexity cones, As an application an
integration scheme which converges for all convex functions
is found.

The generalized convexity cones, which were introduced by Karlin
and Novikoff, find many applications in the systematic study of
inequalities, in the theory of approximation and interpolation and in
various branches of probability theory.

It is shown in §1 that the sums and differences of two generalized
convexity cones are dense subsets of the Frechet space of continuous
functions on the open interval (a, b).

Passing to the dual cones in §2, we show that any measure
belonging to the dual of the intersection of two (or, respectively,
three) consecutive generalized convexity cones can be decomposed into
the sum of two (respectively, three) measures belonging to the cor-
responding dual cones. For example, any measure belonging to the
dual cone of the cone of convex and monotone functions can be de-
composed into the sum of a measure belonging to the dual cone of
the cone of convex functions and a measure belonging to the dual
cone of the cone of monotone functions. It is also shown in this
section that a decomposition of this type is not generally available
for measures of the cone dual to the intersection of 4 consecutive
generalized convexity cones.

In §3 we demonstrate the availability of a decomposition of a
particularly simple type for measures of compact support on (a, b)
belonging to the cone dual to the intersection of two consecutive
generalized convexity cones.

An application of the foregoing analysis, involving convergence
properties of integration schemes, is given in § 4.

Preliminaries. Let {u,(t)})., be an Extended Complete Tchebycheff
(ECT) system on the interval [a, b] (for definitions of the pertinent
concepts and for proofs of most of the statements in this section,
the reader is referred to [3]).
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426 DAN AMIR AND ZVI ZIEGLER

For 0 < n < N, we denote by C(u,, ---,u,) the convex cone of
functions defined on (a, b) which are convex with respect to {w}y.
The notation C(u,, --+,u_,) is used to denote the convex cone C*+ of
nonnegative functions on (a, b).

It is shown in [3, pp. 878-379] that in studying generalized con-
vexity cones one may assume, with no loss of generality, that {u;(t)}\,
are of the form:

uo(t) = wo(t)
u@)zimaﬂ’wmem
(0.1) . . o

ua®) = )| ) M0ty - [ it - d

a

where the functions w,(t),+ = 0,1, .-+, N, are strictly positive on [a, b]
and w;(t)eC** [a,b], ©=0,1,..-, N. The first order differential
operators

0.2) Dfy =2 1L

w0 0L N

are closely related to the cones; in fact, if a function f(¢) is n +1
times differentiable, then it belongs to C(u,, ---,u,) if, and only if
DD, D f(t) =0, a <t <b.

The cone C(u,, -+, u,), 0 < n < N, taken modulo the linear space
spanned by «,, ---,u,, is spanned by a one—parameter family of ex-
treme rays. These are represented by the functions ¢,(¢; ), a< ¢ < b,
where ¢,(t; «) is identically 0 for ¢ < ¢t < « and has the form

u,(t) + zlci(x)ui(t) for 2 <t<b
(see [5], p. 566). The conjugate function ¢,(¢; x) is defined as
(~1)”[un(t) + 5 ci(x)ui(t)] for a<t<a

and 0 for # < ¢ <b. By using the integral representation of @,(t; x)
(see [3], p. 387) and applying to it the operator D,_.D,_,--- D, it
can easily be verified that (—1)"@,(¢; @) € C(tho, *++, Up_y).

Let M denote the space of Radon measures on [a, b], i.e., the dual
space of the Banach space Cla, b] of continuous functions on [a, b]
with the sup norm. For a set K of functions defined on (a, b),
let K* ={p:pesM, n(f) =0v fe K} (u(f) = oo is permitted). K*
is clearly a convex cone, called the dual cone of K. We shall denote
[C(ugy ==+, u)]* by C*(uty, -+, u,). The study of the extreme rays of
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convexity cones and of their intersections leads to the following
characterization of dual cones ([5], p. 572):

Necessary and suffictent conditions for p to belong to

[kémc(uo, e, %k)]*

(0.3) Sbutdﬂgo , ’Z::m+1,...’n’
qufn(t; x)dpt) =0, a<z<b.

Another useful characterization can be obtained along the lines
described in ([2] and [6]). Define, for a measure pe M, the functions

P = | wie)dp@),
(0.4) ,
(P;p)(t) = S; w,@)P;_px)de, j=1,2 --- N.

We then have:
Necessary and suffictent conditions for p to belong to

n k
[t o]
are:
Pjp(a)zo, j:Oyl,...’m’
(0.5) P;p(a) = 0, j=m+1, -, m,
Puxy=0, a<x=<hbH.

We shall avail ourselves also of the differential operators D},
1=20,1,..-, N defined by

Dif(t) = -2 S ®  (1ight hand derivative)

0.6) wy(t) dt

: iy 1 dF(®) _13 ...
D’f(t)—wi(t) TR t=1,2---,N.

Note that if f(b)=f'(b)="---=f"(b)=0, then (—1)/*'P;Df---D} f=f.

We finally recall that a simple example of an ECT-system is
furnished by the system 1,¢,¢% --- on [0,1]. This corresponds to
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{w,=1,w;=1,9=1,2,-..}. Convexity with respect to (1, ¢, ¢, +--, t")
is ordinary n + l-st order convexity. The extreme rays in this case
are given by:

, 0=st<w
$a(t; @) =
t—2)", aw<t<1l.

1. Sums of generalized convexity cones. Let C = C[a, b] denote
the Banach space of real-valued continuous functions on the closed
interval [a, b], with the norm || f|| = max{|f(®)]; a <2 <b}. Let
further C, = C(a, b) denote the Frechet space of continuous functions
on the open interval (a, b) with the topology of uniform convergence
on compact subsets of (@, b). The corresponding dual spaces are,
respectively, the space M of Radon measures p defined on [a, b] (these
are representable as functions of bounded variation on [a, b]) and its
subspace M, of Radon measures on (a, b) with compact support—the

duality being p(f) = Sfd;e (cf. [1]).

THEOREM 1. The sums C(uy, + -+, u,) + C(Uy, ++ -, %,), form >n=1,
and the differences C(uy, -+, U,) — C(Uy, -++,U,), for m,n =1, are
dense (proper) subsets of C,.

Proof. We recall first that, for n =1, every function of
C(ty, +++,%,) is continuous in (a, d) (cf. [3]). Let C°(uy +-+,u,)
denote the polar set of C(u,, ---,u,) in M, i.e.,

Co(um "'1un):{#:xu(f)z —1 for all feC(uo, "'1un)}'

Since C(uy, ++-,u,) is a cone, this set coincides with the set
{t: (f) =0 for all fe Cluy, +++,u,)}. Thus, we have

CO(“’O) ""un) = Moﬂ C*(uO) "'yun) .

Furthermore, since C(u,, +--,u,) and C(u,, ---, %,) are convex cones,
their sum is the convex hull of their union, so that

[C(gy +» vy uy) + Ctgy » o+, Un)]°
= [C(toy *++, U) U Ctko, +++, U)]°
= C°(u,o, cee, U, N Co(uo, cee, um)
= M, N C*(t, + -+, %) N C*(ty, +++, Up) -

(1.1)

In [6], Theorem 3, it was proved that, for m =+ n,
C*(uoy Ct u’n) N C*(u’m ft Ty um) = {0} . ‘
Thus, (1.1) implies that [C(u,, +--, %,) + C(uy, ---, u,)]° = {0} and
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[C(%O, Y un) + C(uo, ctty Cm)]oo = Co- As C(um °t %y u’n) + C(’II/O, ) um)
is convex, the left hand side of this last equation is the weak-closure

of C(ug, -+, u,) + C(thg, -+, u,), which is also the strong closure
by the Hahn-Banach theorem (cf. [1], 2.2.7). This proves that
C(tg, =+, u,) + C(the, +++, U,) is a dense subset of C,. It is a proper

subset; moreover, its complement is dense as well. This observation
follows from the fact that the functions of the convexity cones have
one sided limits (possibly oo) at b, while the functions which do not
enjoy this property are obviously dense in C,.

The proof of Theorem 3 in [6] shows also that, for every m and
n, C*(Uy, =+, ,) N [—C*(Uy, -+, u,)] = {0}, so that the corresponding
result for C(u,, ---,u,) — C(u,, -+, %,) follows in an exactly ana-
logous way.

REMARKS. (a) As C, is metrizable, Theorem 1 implies that, for
every f € Coand m > n = 1, there exist two sequences (9,) C C(uy -+, U,)
and (&) < C(uy, +++, u,), such that (g, + h,) converges to the given f
uniformly on each compact subset of (a, b).

(b) Similar results hold when m or n < 1.

(¢) Analogous results hold when C, is replaced by C and C(u,, « - -, %,)
by C N C(ug, ++ -, %,).

2. Sums of dual cones in M. We know that each dual cone
C*(ty, + -+, u,) is closed in the weak o(M, C)—topology of M. In this
section we show that the sums of 2 or 3 consecutive dual cones are
o(M, C)—closed, while the sum of 4 consecutive dual cones need not
be o(M, C)—closed.

THEOREM 2. For each n,0 < n < N, we have

C*(um M) u’n—l) =+ C*(u’«)y ) un) = [C(u’ay tt Y u’n—-l) N C(um ctty un)]* .

Proof. Since the inclusion relation
C*(u/o: tecy un—l) + C*(u'oy ) un) - [C(%D, ctcy un—-L) N C(um cry un)]*
is obviously true, we need prove only the converse inclusion.
We start by analyzing the case n =0. Let a measure g,
prelCrn C(u)]* be given. By (0.3) it satisfies
|umdpy 205 [otsmautz0, a<a<b.

Define now the measure g, by

= [ woaum o



430 DAN AMIR AND ZVI ZIEGLER

where 6, is the Dirac measure with unit mass at a. Then clearly
t =0, ie., pe(ChH*. Define now g, = p — p,. Then we clearly

have

[ utidpet) = | wrdp® - | wdidmo = o
and
[t 0 = | suts map 20, a<a<s.

Hence, p,e C*(u,), and the decomposition has been accomplished.
Assume now that » = 1. Let a measure g,

rE [C(um M un—d) N C(’on, ) un)]*

be given. By (0.5) it satisfies

(2-1) Pj#(a):()’ '1:20,1,"',’)’&—1,
and
(2.2) Pu)y =0, a=x=<bh.

If P,p(a) = 0, then we already have pe C*(uy, -+, u,); thus we
may assume that P,u(a) = A > 0. Define the function F'(t) by

F(t) = A — ()
where
o® = | wae) | wawd - T wi) 21 Pt do, - d,

Let s = inf {support y}; then v(f) = 0 for a < ¢ < s, and v(f) is strictly
increasing for s <t <b. Thus, F({) = A for a <t <s, and F(i) is
a strictly decreasing function for s < ¢ < b. Making use of conditions
(2.1), we find

Put) = — [ w@Ppedz,  i=0,1,+ 01

where P_,pt = p. This relation implies that

P.pu(t) — Pop(a)
= (=1 [ wa@) | wei@i) o [P wie)Pnto)dz, - da,

so that
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P,p(t) — F(b)
t T3
= wa@) - [T w @2l Par@) | + (<1 Puptelda, - do,

is a nondecreasing nonnegative function, which is strictly positive and
strictly increasing for ¢ >s. Since P,u(b) =0, it follows that
F(b) < 0. Since F(¢) is a strietly decreasing function for s < ¢t < b, we
may consider the inverse funection F~'(t) on [s,b]. Let ¢, s <c¢ < b be
defined by ¢ = F~*(0), and introduce the function F',(f) = max {F'(¢), 0}.

This function coincides with F(¢) on [a, ¢] and is identically zero on
[¢, b]. Thus, we have

P,u(t) = Fi(t)

with strict inequality holding for a neighbourhood of ¢. Thus, there
exist an », ¢ — s >r >0, and an » > 0 such that

(2.3) Puty—F.(t)y=9n>0 for c—r=t=c+r.

We introduce the smoothing kernels o.(t) defined by

asexp[—rl(t/-s—)?], [t <e,

0 o ltlze,

(2.4) p:(t) =

where «, is a normalizing factor, chosen so that

S:, o.()dt = 1.

Define now the function

A—w, —co <V A
Jw) =
0 A=Zv<oo
and set

fiw)=\"_ s - tar

where ¢ is chosen so small that 0 <e <%, F(c+ 7)< —e¢ and
F —r)>e.

It is easily seen that f,(v) is a monotone decreasing function
since f(v) is such. Furthermore, since f(v) is piecewise linear, we
have

fiw)y=A—vforv<Ad—c¢; fiw)=0forv=A4+¢.

By the choice of ¢ and the fact that the application of p.(t) amounts
to an averaging operation, we find that
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|f(v) = fiw)] =%, foral v.
Setting F\(t) = f.(v(f)), we obtain
(2.5) |Fo.(t) — Fi(t)] =7 forall a<t<b.

Furthermore, F\(t) = F(t) for [a, FF~'(¢)], and F, = 0 for [F~'(—¢), b].
By virtue of the choice of ¢, and the fact that F(¢) is monotone
decreasing, we have

(2.6) Ft)=F.(t), for tela,c—r]Ule+ r b].

Note further that F(t) is monotone decreasing. Since f,(v) is in-
finitely differentiable as a function of v, we deduce that F,(¢) has
" continuous derivatives up to the w-th order, and an = + l-st right
derivative (measure).

Construct the measure g, by

ft = (=1)""D; +-- DiF, .
Using (0.7), we have
P;‘/"lz(_l)n—jD?H‘”D:Fl 0=7=n

where for 7 = n the right hand side is understood as F,. These
relations in turn imply that

@7 Pyu(@) = (=1)=Di, - DiF(@ =0, j=0,1,---n—1
and that

1 dF,

®8) Pott®) = = o i

which is nonnegative for ¢ < x < b, by virtue of the monotonicity of
F(x). Relations (2.7) and (2.8) imply, by (0.5), that £, € C*(uq, =+, Un_y).

Consider now the measure p, = ¢t — pt,. By virtue of (2.7) we
obtain, using the fact that P,u,(a) = Fi(a) = A, that

(2.9) Py(@) =0, =01, n.

Furthermore, by using (2.3), (2.5) and (2.6), we deduce the nonnega-
tivity, for all ¢ < o < b, of

P, p(x) = P, p(x) — P.p(x) = P,pu(w) — Fiy(x) .

This, taken together with (2.9) and (0.5), shows that p, e C*(u,, - -+, u,)
and the decomposition has been accomplished.

THEOREM 3. For every n,0=<n < N — 1, we have
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1 1 *
ZI C*(u’Oy ctty un-!—k) = [k:m—l C(uOy ctty un-l—k)] .

k=—1

Proof. As in the proof of Theorem 2, we need prove only that

3 C¥y -+ ) O 0 Cluy oy )|

k=—1
since the other inclusion is obvious. Furthermore, using Theorem 2
we deduce that it suffices to prove that

[ ﬁ C(Uoy =+, u’n-}-k)]*

k=—1

(2.10)
C C*(um ctty un——l) + [C(um ctty un) N C(um ) un+l)]* .

We start with the case n = 0. Let a measure
re[CH N Cuy) N Cluy, u)|*
be given. By (0.3), p satisfies the conditions

|utduwz0, =01,
and
[#t Ddp® 20 a<a<b.

Define the measure p, by

= [ modue o

N

where §, is the Dirac measure with unit mass at a. Then we clearly
see that o, € (C*)* while v = ¢ — p, satisfies
[ wtave =0,
and
Lot oo = [ ot ey 20, a<w<od
so that, by (0.3), ve[C(u,) N C(u,, u,)]* and the decomposition has been
accomplished for this case.
Assume now that » =1 and let p ¢ [krlw C(to, * -,un+k)]* be given.
=—1
By (0.3), it satisfies

P;u(a) =0 7=0,1,..-,m—1
(2.11) P,p@) =0
P,opu@)=0, a=Zx=b.
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If P,p(a) =0, then the conditions (2.11) imply, by (0.3) that we
already have pe[C(uq, +++, %u,) N CUy, +++, Uy+y)]*. Thus, we may as-
sume that P,¢(a) = A > 0. Furthermore, since P,.,x(x) = 0 and

L Puip(a) = —w.(@P.p(a) <0,
we deduce that P, ,pu(a) = B > 0.

Since P,.,p(x) and w,.,(t) are continuous, there exist a ¢ and an
7 >0 such that a <c¢—7<c+7<band

P, p(x) = —;—B for asex=c+7y
(2.12)
C = S WOt < BJ4A .
Set
i AC—v@®) a=Zz=Zc
) = nt1 t dt, F = .
V(%) Saw+() () 0 c<wo<b

Then F(x) has the following properties:

(2.13) P,ust) 2 Fl), a=osb,

(2.14) Ppe) —F@)z +B, aswsc+y,
(2~15) D?-°-D;:<+1F(a):(), ?::091’"'3%’
(2.16) —D# . Fla)=A .

Define the function f(v) by

~A(C—v) —o < v=C
F@) = { 0 C<v<oo
and let
Fo) =" solw - at

where p.(t) is the function defined in (2.4) and ¢ is chosen so that it
satisfies
e+ c 1
@1 ex|Twamit, x| w.mdt, Ae<B.
c 7

c—

The function f,(v) is an infinitely differentiable, monotone non-
increasing and convex function of ». Moreover, we clearly have:
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fiw) = A(C —v), v=C—c¢,

(2.18) Siv) =0 , v=C+e,

|ﬂ—fW§%B, Coe<v<C+e.

Construct now the function Fy(x) = f.(v(z)). Then, by using
(2.17) and (2.18), we find

Fl(x):F(x) y aéxéc_v,

F, = F =0 ’ =x=b,
(2.19) () () cH+N=w

lRm—FMHé%B, a<z=bh.

Furthermore, since f,(v) is a convex function of v, we have

(2.20) Dj:D::HFl — D;k[dfl] = Wiy d2f1 >0.
dv w, dv*

Construct now the measure g, by: g, = (—1)"*Dg .-« D}, F,. We
have then P;pt, = (—1)*~*'D¥,, -« D¥,,F,,5=0,1, ---, n,and P,,,u,=F\,
Thus, by (2.15) and (2.19)

Pj/"l(a) = (—'l)n—ﬂ_lD;{H’ cor, Dy Fi(a) =0, 5 =0, 1, «eryn—1
and, by (2.20)

Pn—l#l(x) = D;’;D;'L(—HFI(/U) = 0.

These relations imply by (0.5) that g, € C*(ug, +++, U,_y).
Define now v by v = ¢t — g,. Then, using (2.16), (2.14) and (2.19)
we have

Py(a) = P;p(a) — Pipy(a) =0, ij=01---,n—-1
Py(a) = P,pu(a) — Pp(a) = A + Di, Fla) =0,
P, y@) = P, px) — Fy(x) = 0.

These relations imply by (0.5) that v e [C(u,, -+, %,) N C(tg, *«+, Upr)]*
so that the decomposition has been accomplished and the theorem is
proved.

It is quite surprising, knowing Theorems 2 and 3, that the cor-
responding statement concerning four consecutive convexity cones is
false. This is demonstrated by the following example which shows
that

[C) N CA,2)nCA, 2z, 2% N CE, x, 2% «")]*
# C*1) + C*(L, @) + C*(1, &, 2") + C*(1, x, 2%, &) .
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ExAMPLE. Let the measure p be represented by the function
f@)=— St dp, where

400t — 40 , 01<t<0.2,
80 — 200t , 04<t<05),
f(t) =<200¢ — 120 , 05=t<0.6,
40 — 50t 06=<t<0.8,
0 , elsewhere .

It is immediately seen that
(2.21) S: Fftydt =1, S: tf(t)dt = 0
and a simple computation yields
(2.22) | ef®dt>o0.
Consider the function Q(x) defined by

Qo) = | ¢ —aysmit, o0=as1.
Differentiation yields
Q@ =—2{ ¢-wrod, @@ =2] rou.

The second derivative Q"(x) has in (0,1) precisely two zeros, as can
be directly checked from the graph of f(¢). Since Q'(x) vanishes for
0 and 1, it may have at most one zero inside (0,1). Finally, since
Q(0) > 0 by (2.22), and Q1) =0 while Q(x) is positive near 1, we
may deduce that Q(x) =0 for all 0 <z < 1. Using the fact that
{(t — )%} are the extreme rays for C(1, x, «*), we deduce by (0.3) that
f@e[CtNnCA)NCQA,x)NCA,=x,2%]*. Since f(1) =0, this implies
that pe[CQ) N CQA,x) N CA, =, 2*) N CA,x, 2% «°)]* (cf. [6]).

Suppose now that there exists a decomposition g = g, + p, with
teC*), p.e[CA,z) N CA, x, 2% NCA, z, %, 2°)]*, then there exists

t
a corresponding decomposition f = f, + f, where f.(t) = -—S du;,

1 =1,2; f,e(CH* f.e[CQ)NCA,x)NCA,x, 2H)]*.
By (0.3), these functions have to satisfy

Si@) =0 y 0sz=s1
(2.23) {

[ rwie=0,  {eramarzo.
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In this case, however, the equalities
0= S: Lt dt = So th(0)dE + S: th(6)dt
imply that
S tf,(b)dt = 0 .

Since fi(t) is nonnegative and continuous from the right, it follows
that fi(t) = 0. On the other hand, we know that, by (2.21) and (2.23),

1= S: F(t)dt = S: Fbydt .

Thus, we have arrived at a contradiction, which shows that the
assumption that there exists a decomposition is untenable.

3. Sums of dual cones in M,. The existence of a decomposi-
tion of pre MyN[C(ty, «*+, Up_y) NC(Uy, +++, u,)]* into a sum of a measure
e M, N C*(y, +++, %,,) and a measure p, € M, N C*(%,, - -+, u,) follows
from Theorem 2. For these cones, however, we have the stronger
result:

THEOREM 4. Let pt be a measure of [C(ty, + « «, Un_i) N C(to, +++, %,)]*
such that inf {support (#)} = s > a. Then there exists a decomposition
po= A+ ey i €CH (U, vy Upy),y ta€ C*(Uy, + -+, u,) where pt, is either
0 or supported in any n + 1 prescribed distinct points in (a, s).

Proof. We may assume that
|| watidpe(t) = 4 > 0

since otherwise pt € C*(u,, - - -, u,) and the decomposition is accomplished
by choosing p, = 0.
Let {x;}r** be an arbitrarily prescribed set of points such that
a<x < ooe < Xpyy < 8. Consider the system of linear equations
n+1
> au(w;) =0, ©1=0,1,...,m—1
61 )
3, ast(ey) = 4.

Since (%o, +++, ,) is a Tchebycheff system, the corresponding de-
terminant does not vanish, and the system of equations has a unique
solution (a,, «++, Gn1)).
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n+1
Define p, = >, a;0,, where d,, is the Dirac measure with unit
7=1

mass at z;. By virtue of (3.1), we have

(3.2) S wtdp®) =0, i=0,1,--,m—1.

(3.3) |ty = 4> 0.

From [6], Theorem B, we deduce that g, has at least = sign
changes. Since it is supported in at most # + 1 points, it follows
that it has exactly % sign changes. The same theorem allows us
to conclude that either g, or —p, belong to C*(u, -+, %,_,). Since
Uy € C(o, +++, %,_), relation (3.3) implies that g, e C*(uy, - -+, U,_y).

It remains to be shown that g, = ¢ — p, belongs to C*(uy, « -+, %,).
It is easy to deduce that

(3.4) S:ui(t)dpz(t) —0, =01 -,m.
Thus, by (0.3), we have to show only that
(3.5) [t manmz0, a<a<b.
Consider first the case ¢ > x,,,. We have

|| a6 D) = | 5,65 () = 0
so that

|, #atts )dpe®) = | 065 @)ty z 0.

The inequality following by applying (0.3) to the measure p.
Suppose next that » < x,,,. Since z,., < s, we have

b

$a(t; w)dLe(?)

Il

|, ga(ts )t

I

a6 + 5 eu@patt) [ap

Il

.
.
[ uattap® + 5, o) || wib)dut)

= [ et + 5 e | uitrdpe) = 4.

The last equality following from (3.2)-(3.3).
Thus, for z < z,,, (3.5) is equivalent to
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(3.6) [ outts gty < A4
Since
|| 16t @) + (~17.t; )ldputt
= [Tt + S ey fam® = 4
We further deduce that (3.6) is equivalent to
(3.7 R RACE O

which follows from the fact that (—1)"8,(t; @) e C(t, +++, %,_,) and
p. € C*(uy, =+ +, U,_,). This completes the proof of Theorem 4.

4. Application. In this section we derive a simple Riemann-
Stieltjes integration scheme which converges monotonely for all convex
functions. We start by restating a theorem of Fejer (see [4]):

Given 2 interlaced partltlons (i), (t)r%t, of the interval [0, 1]:
0=t =8 <t <8 <ty < vee T8 <y K8y < vee <l < 8y =
tmis = 1. Form the Riemann sums:

Sule) = 3 (5 — 5:-)0(s)

m-+1
Suii(9) = ; (t; — ti_)g(t) .
Then necessary and sufficient conditions for

4.1) Sni(9) = Su(9)

to hold for every increasing and convex function g on [0, 1], are:

3
4.2) Z:)Qi(pi — i) =0 (2=0,--,m—1)

where 9, = Spi — tmeiy € = by — Sm_is. (To derive this formula-
tion from the theorem as stated in [5], substitute: g(x) = f1 — ),
m=n+1,8,=1—2,_;,t; =1 — Y,;). Furthermore, it was shown
in [5] that no Riemann scheme of this type converges monotonely for
all monotone function or for all convex functions. In order to obtain
a scheme converging monotonely for all convex functions we shall
modify Fejer’s scheme to a Riemann-Stieltjes scheme.

The inequality (4.1) means that, provided (4.2) is satisfied, the

measure p defined by p¢ = Z(s 8510, Z,(t t;_1)0,, belongs to

[CL)Nn CA,z]*. We apply to ¢ the decompos1t10n of Theorem 4:
Given 2 points u, v satisfying: 0 < uw < v < t,, we construct the meas-
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ure 1, = 4@, — 0)/(v — u), where A = | tdp(®) = T api — pir) (ef.

[4.2]). Then, we have ¢ — p,e C*(1, ). This means that, for every
convex function g, we have:

g(w) .

S,(0) — —A— g(v) = Sunlo) —
v w

Suppose now we have a sequence of consecutively interlaced partitions
A™ = (thr, (m = 1,2, -++), such that:
0=t = << < e <P <Y < el <7
=tpii=1 m=1,2,--)

k
and X qP(p! — p7) =20 (k=0,---,m —1;,m=1,2, --.) where p =
=0

Tr_, — Thil qr = ontl — ¢m . ., and suppose also we have a sequence
(v,) satisfying: 0 < v, < v, <7t (m=0,1,-..) and

A, [(Vy — Vpsy) = 7 (constant) (m =1,2, - - -) where 4,, =m§q2”(pz" — Pl
1=0
Define:
S (0) = 3 — T)9(e) — Y9(va)

Then the sequence 3, (¢9) decreases monotonely for every convex function
1

g, the limit being S g(t)dt — vg(0), provided the partitions 4™ tend to
0

zero (in maximal diameter). A simple useful scheme satisfying our
requirements is: ¥ =i/m@E =0, .-, m;m =1,2,.-.), v, = 1/2m. In
this scheme A4, = 1/2m(m + 1) and v = 1, hence for every function

g convex on [0, 1], the sums ﬁ)g(i/m)/m — 9(1/2m) decrease mono-

tonely to S: g(t)dt — g(0) .
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